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The paper is devoted to the control of electromagnetic actuators. Compared to most results in the literature, the design explicitly takes into account the nonlinearities and the magnetic saturation. An approach based on singularly perturbed systems is proposed to take advantage of the different time scales of the model and provide a minimal complexity control law. Associated with an integral action, this control law ensures accuracy and robustness w.r.t. some disturbances and some unknown parameters of the actuator. The use of the singular perturbation method allows also to limit the implementation complexity compared to classical methods such as backstepping control. The synthesis of the control law is then tested through simulations that illustrate the efficiency of the method.

INTRODUCTION

In recent years, many industrial technologies have witnessed the increasing use of electromagnetic actuators (EMA) due to their high precision compared to more classical actuators, [START_REF] Chen | Design and control of a 2-dimensional electro-magnetic suspension actuator[END_REF]. Such devices can be found at the heart of systems as micropositioning [START_REF] Cugat | Magnetic micro-actuators and systems (magmas)[END_REF], suspension or levitation control for railway vehicles [START_REF] Foo | Active suspension control of flexible-bodied railway vehicles using electrohydraulic and electro-magnetic actuators[END_REF]; [START_REF] Lee | Review of maglev train technologies[END_REF] or hydraulic valves in cars or space industries [START_REF] Deschaux | Magnetic force modelling and nonlinear switched control of an electromagnetic actuator[END_REF], paper or plate production [START_REF] Jin | Direct electrostatic levitation and propulsion of silicon wafer[END_REF] to cite a few applications.

Even if the technology has matured, the precision of such a device comes at the price of a more consequent effort to control them (see [START_REF] Boldea | Linear electromagnetic actuators and their control: A review[END_REF]; [START_REF] Forrai | Modeling, system identification, and control of electromagnetic actuators[END_REF] and references therein) and it therefore raises many theoretical issues. Indeed, the dynamics driving an electromagnetic actuator are highly nonlinear which makes the control design complicated. If one aims at designing a highly precise and fast actuators, it is often necessary to take into account the phenomena of magnetic saturation and flux fringing. The first phenomenon is related to the saturation of the magnetic flux and leads to the saturation of the magnetic force limiting the capacities of the actuator [START_REF] Deschaux | Nonlinear control for an uncertain electromagnetic actuator[END_REF][START_REF] Deschaux | Magnetic force modelling and nonlinear switched control of an electromagnetic actuator[END_REF]. The second well-known phenomenon is related to the flux leakage in the air gap [START_REF] Zhang | Hysteresis and magnetic flux leakage of long stroke micro/nanopositioning electromagnetic actuator based on maxwell normal stress[END_REF]. This effect is generally difficult to model and results in a partial misunderstanding of the inductance of the magnetic circuit [START_REF] Deschaux | Analyse et synthèse du système de commande d'un détendeur électronique pour applications spatiales[END_REF].

In the literature, numerous works are based on linear models (usually constructed from a linearization around an operating point) to design some classical proportional, proportional integral control laws [START_REF] Forrai | Modeling, system identification, and control of electromagnetic actuators[END_REF], state feedback based on geometric approach [START_REF] Mercorelli | A geometric approach for the design and control of an electromagnetic actuator to optimize its dynamic performance[END_REF] or Model Predictive Control, Di Cairano et al. (2007). Notice that these approaches have been extended in a Linear Parameter Varying framework in [START_REF] Forrai | Electromagnetic actuator control: A linear parameter-varying (lpv) approach[END_REF]. Obviously, these approaches are effective locally, i.e. close to the operating point. For broader use, many researches have turned to nonlinear controls to deal with more relevant models, as for instance Control Lyapunov Function, [START_REF] Peterson | Nonlinear control for magnetic levitation of automotive engine vales[END_REF], Flatness based control, Robert [START_REF] Koch | Modeling and control of solenoid valves for internal combustion engines[END_REF], [START_REF] Braun | Flatnessbased feed-forward control design for solenoid actuators considering eddy currents[END_REF], [START_REF] Mercorelli | Robust flatness based control of an electromagnetic linear actuator using adaptive pid controller[END_REF], Sliding Mode Control Mercorelli (2012)), [START_REF] Nguyen | Accurate sliding-mode control of pneumatic systems using low-cost solenoid valves[END_REF] to see a few. Among the many methods considered, backstepping methods are the most common tools to design efficient control laws based on a nonlinear model of the actuators [START_REF] Kahveci | Control design for electromagnetic actuators based on backstepping and landing reference governor[END_REF], [START_REF] Schwarzgruber | Nonlinear control of an electro-magnetic actuator under highly dynamic disturbances[END_REF] and references therein. Indeed, given the cascade structure of the system, i.e. an electromagnetic subsystem controlling a mechanical structure, many backstepping designs have been proposed to ensure the closed loop stability of the overall system. Nevertheless, few them have taken into account all the nonlinearities like the magnetic saturation, [START_REF] Deschaux | Magnetic force modelling and nonlinear switched control of an electromagnetic actuator[END_REF].

In this paper, we propose to design a control law based on a nonlinear model, taking into account not only the nonlinearities resulting from the calculation of the magnetic flux, but also the variation of the inductance w.r.t. the position of the mechanical body and more particularly the magnetic saturation. Moreover, in order to consider the different dynamics of the physical systems involved (electrical, magnetic and mechanical subsystems), we turned to a synthesis of control laws based on singularly perturbed systems, [START_REF] Kokotović | Singular Perturbation Methods in Control: Analysis and Design[END_REF]. The key idea is to separate the design process into two steps so as to eventually obtain a simplified control law while ensuring the asymptotic stability of the overall closed-loop system. The slow system consists of the mechanical subsystem whose driving force law has been virtually chosen to ensure a trajectory tracking with some performance requirements. The fast system corresponds to the electrical subsystem for which we design the voltage control law to make the actual current converges to the ideal one required to induce the desired magnetic force for the mechanical slow subsystem. Furthermore, in order to obtain a precise closed-loop system, an integral action is also added to the nonlinear design. This feature allows to compensate for disturbance force (or uncertain force/parameters) affecting the mechanical positioner.

The paper is organized as follows. Section 2 deals with the description of the system and its modeling as a singularly perturbed system. Section 3 is devoted to the control design. Section 4 shows some simulation results to illustrate the proposed methodology. Lastly, a conclusion is given in Section 5.

DESCRIPTION OF THE SYSTEM

Physical system

The studied actuator is depicted in Figure 1. The mechanism is made of a coil winding a magnetic circuit, itself composed of a fixed frame and a moving part. The distance between these two parts is the airgap and it influences the magnetic flux. The control variable is the voltage at the coil terminals, and the resulting current induces a magnetic force which tends to close the airgap (unidirectional force, toward right). The spring is used to counteract the magnetic force and pushes the moving part to the left.

Modeling

Physical modeling

The model can be divided in three distinct parts : mechanical, electrical and magnetic parts. Regarding the first one, the mechanical subsystem is a simple mass-spring system that can be modeled with the Newton's second law :

m d 2 p(t) dt 2 = -F mag -λ dp(t) dt -K p(t) -l 0 , (1) 
where F mag is the magnetic force induced by the coil current, the second and third terms in the right-hand side represent respectively the friction and the spring forces. Parameters λ and K are the friction and stiffness coefficients, l 0 is the natural length of the spring and m is the mass of the moving part.

The electrical part stems from the coil controlled by the voltage u: 

u(t) = Ri(t) + L(p) di(t) dt + i dL(p) dt ,
with i the current flowing through the coil and R its electrical resistance. The third term in the right-hand side is due to the fact that the inductance of the system L is varying and depends on the airgap p(t) via the magnetic circuit. Hence, the electrical equation becomes

u(t) = Ri(t) + L di(t) dt + i ∂L ∂p dp(t) dt (2) 
The magnetic phenomena, induced by current i flowing through the coil, generate the driving force F mag that allows to move the mechanical part. This force actually depends both on the current and the airgap, its modeling is therefore a crucial step in the control of EMA. Various models exist in the literature and consider different hypothesis, leading to more or less accurate representation of the process, to develop suitable design methods. Only few of them [START_REF] Zhang | Hysteresis and magnetic flux leakage of long stroke micro/nanopositioning electromagnetic actuator based on maxwell normal stress[END_REF] and references therein) take into account the magnetic saturation of the magnetic circuit which is specific to the material. This phenomenon has a substantial impact on the value of the force and cannot be neglected. Then, an experimental characterization have been set up to identify a function F mag (p, i) w.r.t. the airgap and the current, [START_REF] Deschaux | Magnetic force modelling and nonlinear switched control of an electromagnetic actuator[END_REF]. Results of the experiment are plotted in Figure 2. Regarding the circuit inductance, L which depends on the airgap has been identified via a finite element method software. In the sequel, we will consider that L is a small quantity (L(p) < 0.09 H in our case).

Gathering equations ( 1) and ( 2) and defining the position p and velocity v of the moving part, and the current i as state variables, a state space modeling for the EMA is obtained :

             dp dt = v dv dt = 1 m -F mag (p, i) -λv -K p -l 0 + F d di dt = 1 L u -Ri -iv ∂L ∂p (3) 
Furthermore, one considers an additional force F d which represents an unknown constant (or slowly time varying) force that disturbs the mechanical system. This disturbance may also encompasses uncertainty on the natural spring length l 0 .

The purpose of the paper is:

-To model electromagnetic actuators as a singularly perturbed system highlighting the different dynamics involved. -To determine a control law based on the previous model allowing to stabilize the position of the mechanical part at a given operating point with some accuracy and robustness properties. -To benefit from the decoupling of the dynamics to derive a minimal complexity control law for the sake of implementation simplification and reliability.

At this stage, it is important to understand that this system is a multi-physical system which naturally admits very different response times. The electrical part is indeed much faster than the mechanical part. Considering these physical features, we have focused our control techniques on singular perturbations method popularized by [START_REF] Kokotović | Singular Perturbation Methods in Control: Analysis and Design[END_REF].

Singular perturbation system modeling

In order to control the position of the actuator, that is to make p converges to a given constant reference r, we aim at reworking the above model. As a first step, in order to cope with the static error, let consider the mechanical subsystem (the two first equations of (3)) and let us introduce an integral action with a new state variable η. Regarding the well-known integral action, it is a useful control technique to eliminate the steady state error.

             dη dt = p -r dp dt = v dv dt = 1 m -F mag -λv -K p -l 0 + F d (4)
As in a backstepping approach, [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF], let us consider the magnetic force as a virtual control input force F u , which is designed as a state feedback law to control the above linear mechanical system:

F u = γ 0 η + γ 1 p + γ 2 v = Γ η p v = Γξ (5)
with γ 0 ∈ R * , γ 1 ∈ R and γ 2 ∈ R scalar gains to be tuned. ξ denotes the state of (4). Combining the subsystem (4) and the virtual control (5), one obtained the virtual closed loop system:

             dη dt = p -r dp dt = v dv dt = 1 m -γ 0 η -(γ 1 + K)p -(γ 2 + λ)v + Kl 0 + F d which possesses a unique equilibrium point      η ⋆ = 1 γ 0 K(l 0 -r) -γ 1 r + F d p ⋆ = r v ⋆ = 0 Defining now the deviation vector x w.r.t. the equilibrium point x = x 0 x 1 x 2 = η -η ⋆ p -p ⋆ v -v ⋆ = ξ -ξ *
the following new virtual closed-loop dynamical system is to be studied

ẋ =    0 1 0 0 0 1 - γ 0 m - γ 1 + K m - γ 2 + λ m    x (6)
Control gain Γ of (5) can then be easily designed to stabilize the mechanical system with some required performances and robustly w.r.t. parameters K and λ. Remark that the term η ⋆ , likely unknown, is not used in the control law (5) and will be actually compensated by the integral control action.

We now need to take into account the deviation between the desired force F u for our control objective and the actual magnetic force F mag induced by the electrical part. Theory and experimentation (see Figure 2) show that F mag is strictly monotonic both w.r.t. the position and the current. Hence, for a given desired F u and a position p, a unique corresponding desired current i d can be computed. Note that i d is a function of the entire extended mechanical states x. Let us denote the difference between the desired current and the actual one

z = i -i d .
With these notations, the original mechanical subsystem (4) is equivalently rewritten as

ẋ =    0 1 0 0 0 1 - γ 0 m - γ 1 + K m - γ 2 + λ m    A x +    0 0 1 m    B δ(x, z) (7) with δ(x, z) = F u -F mag (p, i) = F u -F mag (x 1 + r, z + i d )
corresponds to the error between the desired force and the actual one. Note that we have F u = F mag (x 1 + r, i d ).

The desired current i d (x) = F -1 mag (F u , x 1 + r) for the ideal control law F u is a static function of [η, p, v] T , and can be straightforwardly expressed as a function of x. F -1 mag stands for the reciprocal function of F mag for a chosen p = x 1 + r.

The second step of our modeling is to assess the derivative of z, and thus to make the link with the electrical part:

ż = 1 L u -Ri -iv ∂L ∂p - di d dt = 1 L u -R + x 2 ∂L ∂x 1 z + i d - di d dt
The second line expresses the dynamic of z in the (x, z) state variables. Note that the desired current is a known nonlinear static function of x. Based on the fact that the inductance L is a small quantity and that the current dynamic is much faster than the mechanical dynamic, we aim at exploiting this feature and model the system in the framework of singular perturbation system [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF]; [START_REF] Kokotović | Singular Perturbation Methods in Control: Analysis and Design[END_REF]. Denoting ε = L, the whole system can be rewritten as ẋ

= f (x, z) ε ż = g(x, z, ε) (8) with f (x, z) = Ax + Bδ(x, z) g(x, z, ε) = u -R + x 2 ∂L ∂x 1 z + i d -ε di d dt
The input u will be a state feedback based control, it is thus a function of the state u = u(x, z).

CONTROL DESIGN

The objective of this section is to design a control law for the voltage input u such that the closed-loop system is asymptotically stable. The singular perturbation modeling (8) enables to emphasize the two time-scale dynamics with the so-called reduced system (with a slow dynamic) and boundary-layer system (with a fast dynamic).

Reduced system and boundary-layer system

First, let us begin with the following lemma that defines the equilibrium point. Lemma 1. If u(0, 0) = Ri d (0), the origin (x * = 0, z * = 0) is the unique equilibrium point of ( 8). Proof 1. The complete proof can be found in the technical note [START_REF] Ariba | A singular perturbation approach for the control of electromagnetic actuators[END_REF].

At this stage, let us calculate the roots of 0 = g(x, z, 0), that is when ε = 0, to define the quasi-steady-state model and thus, the two subsystems with two time-scales. This leads us to solve

0 = u(x, z) -R + x 2 ∂L ∂x 1 z + i d
Choosing the control law to be linear in z :

u = k 1 z + k 2 (x), ( 9 
)
where k 1 and k 2 (•) are a gain and a function to be designed, the above equation has a unique solution

z = h(x) = k 2 (x) -R + x 2 ∂L ∂x1 i d R + x 2 ∂L ∂x1 -k 1 (10)
Consequently, the reduced system is defined by ẋ

= f (x, h(x)) = Ax + Bδ(x, h(x)) (11 
) reminding that A and B are defined in (7) and δ(x, h(

x)) = F mag (x 1 + r, i d ) -F mag (x 1 + r, h(x) + i d ).
As for the boundary layer system, it is expressed as ż

= g(x, z, 0) (12) = k 1 -R + x 2 ∂L ∂x 1 z + k 2 (x) -R + x 2 ∂L ∂x 1 i d (13) 
The state x being considered as a fixed parameter in this fast dynamic. However, the equilibrium point of the above system is not zero. So let define the error variable : y = zh(x) that correspond to the distance of the state z to the quasi-steady-state trajectory. Combining (8), ( 9) and ( 10), its dynamic is written

ε ẏ = k 1 -R + x 2 ∂L ∂x 1 y -ε di d dt + ∂h ∂x ẋ
Considering the new time variable τ = t/ε, that corresponds to the fast time scale, the new boundary layer system is given by:

dy dτ = g(x, y + h(x), 0) = k 1 -R + x 2 ∂L ∂x 1 y (14) 
It is worthy to notice that this dynamic does not depend on the control term k 2 (x). This latter will be useful later to control the quasi-steady-state model.

Stability conditions

Firstly, one aims at proving stability of the two subsystems ( 11)-( 14) by finding a Lyapunov function for each of them independently before designing a stability condition for the whole system. With this two-step approach, we intend to design a control law with a reduced complexity for the sake of implementation. First of all, taking into account some physical features of the system, some assumptions are stated. Assumption 1. The state x belongs to the compact set

x ∈ D x = {x ∈ R n | ∥x∥ 2 ≤ κ} Assumption 2.
The rate of change of the magnetic force w.r.t. the current, for any airgap, is bounded

|F mag (p, i 2 ) -F mag (p, i 1 )| |i 2 -i 1 | = |δ(x, i 1 -i 2 )| |i 2 -i 1 | ≤ α 1
Such an upperbound can be computed based on the experimental data plotted in Figure 2. Assumption 3. The variation of L w.r.t. the airgap has been computed from a numerical simulations campaign.

With the finite element method software COMSOL and also the electrical engineering software PLECS. For the latter, a reluctance network has been designed to model the magnetic circuit and to characterize the system inductance (see [START_REF] Deschaux | Nonlinear control for an uncertain electromagnetic actuator[END_REF]; [START_REF] Deschaux | Analyse et synthèse du système de commande d'un détendeur électronique pour applications spatiales[END_REF]). Then, a bound on | ∂L ∂x1 | can be provided. From Assumption 1, the velocity |x 2 | is also bounded. Then an upperbound for the following expression can be estimated :

x 2 ∂L ∂x 1 ≤ α 2
This first lemma shows the asymptotic stability of the reduced system alone and provides an expression for the term k 2 (•) in the global control law (9). Lemma 2. Defining the second part of the control law (9) as

k 2 (x) = R + x 2 ∂L ∂x 1 i d = R + x 2 ∂L ∂x 1 F -1 mag (F u , x 1 + r) (15 
) there exists P ∈ R 3×3 a positive definite matrix such that the quadratic function V (x) = x T P x is a Lyapunov function for the reduced system (11). Proof 2. The complete proof can be found in the technical note [START_REF] Ariba | A singular perturbation approach for the control of electromagnetic actuators[END_REF].

This second lemma provides a condition for tuning the gain k 1 , from the global control law (9), to ensure the asymptotic stability of the boundary-layer system alone. Lemma 3. Under Assumption 3, for any gain k 1 ∈ R verifying the condition k 1 < R -α 2 (16) then the quadratic function W (y) = q y 2 , ∀q ∈ R * + , is a Lyapunov function for the boundary-layer system (14).

Proof 3. The complete proof can be found in the technical note .

At this stage, we have exhibited a Lyapunov function for each subsystem ( 11) and ( 14), we are now in position to prove the local asymptotic stability of the whole closed loop system. Theorem 1. Under Assumptions 1, 2, 3, there exists k 1 sufficiently large such that the closed loop system (3), ( 9), ( 15) is locally asymptotically stable. Proof 4. The complete proof can be found in the technical note [START_REF] Ariba | A singular perturbation approach for the control of electromagnetic actuators[END_REF].

SIMULATION RESULTS

The proposed methodology is now illustrated with a numerical example. The actuator of Figure 1 First, it can be observed the whole state (x, y) converges to 0, meaning that the physical state (ξ, i) converges to the desired equilibrium, especially the position p toward the setpoint r. Simulations depicted in Figures 3 and4 show that the position and velocity trajectories get closer to the ideal mechanical dynamic as the absolute value of gain k 1 is increased. As expected, the more k 1 is negative the faster the boundary layer system (14) converges to 0, as shown in Figure 5, and the decoupling of the two time-scale system is valid. Note that as long as y has not converged there is in the x-system a force δ(x, y) that deviates the closedloop mechanical subsystem dynamic from the one designed based on some specifications (see Figures 6). This force affects the acceleration of the moving part, and thus its integral influences the velocity x 2 . Of course, as y is slower (for a smaller absolute value of k 1 ), the integral value δ is larger. All trajectories of y (and thus δ) being anyway very fast compared the x, these influences on velocity appears as a change of the initial condition. This reasoning explains the different amplitudes of the velocity x 2 around the initial time (see Figure 4).

CONCLUSION

In this paper, we have designed a novel control strategy for electromagnetic actuators. Compared to most papers of the literature on this topic, we have considered a more accurate model, especially taking into account the varying nature of the inductance and the magnetic saturation of the force. A augmented model has been built to embed an integral action and to ensure accuracy for the mechanical subsystem, despite some disturbances in the balance of forces. A nonlinear control has been designed based on a singular perturbation reformulation. The choice of this approach intended to design a simpler control law expression for sake of implementation, compared to backstepping and sliding mode controls, considering decoupled systems thanks to the two time scale dynamics (reduced and boundary layer systems). Simulations validate the theory and shows promising result before experimental tests. 
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 1 Fig. 1. Scheme of the actuator.
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 2 Fig. 2. Experimental characterization of F mag with respect to the current i and the airgap p (as a percentage of the maximal displacement).

  , described by the model (3), is simulated with parameters set as: m = 200 g, λ = 50 N.s/m, K = 15.10 3 N/m and l 0 = 5.10 -3 m. The moving part position is initialized at p(0) = 0.7 mm, that is the airgap is open because of the spring force. The initial values for the velocity v and the current i are naturally set to zero. The simulation test is to drive the position p to the setpoint r = 0.5 mm. Following figures show the simulation results of the complete system for different values of k 1 = {-200, -500, -1000, -2000}, along with the simulation of the reduced system (11) corresponding to the desired dynamic for the mechanical subsystem.
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 3 Fig. 3. Plot of the position deviation w.r.t. the reference x 1 = p -r.
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 4 Fig. 4. Plot of the velocity x 2 = v.
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 5 Fig. 5. Plot of the current deviation w.r.t. the suitable current for the desired mechanical dynamic y = i -i d .
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 6 Fig. 6. Plot of the force deviation δ(x, y).