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A singular perturbation approach for the
control of electromagnetic actuators
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∗ LAAS-CNRS, Université de Toulouse, INSA, UPS, Toulouse, France
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Abstract: The paper is devoted to the control of electromagnetic actuators. Compared to
most results in the literature, the design explicitly takes into account the nonlinearities and the
magnetic saturation. An approach based on singularly perturbed systems is proposed to take
advantage of the different time scales of the model and provide a minimal complexity control
law. Associated with an integral action, this control law ensures accuracy and robustness w.r.t
some disturbances and some unknown parameters of the actuator. The use of the singular
perturbation method allows also to limit the implementation complexity compared to classical
methods such as backstepping control. The synthesis of the control law is then tested through
simulations that illustrate the efficiency of the method.

Keywords: Electromagnetic actuator, nonlinear control application, Lyapunov method,
singular perturbation method

1. INTRODUCTION

In recent years, many industrial technologies have wit-
nessed the increasing use of electromagnetic actuators
(EMA) due to their high precision compared to more
classical actuators, Chen et al. (2004). Such devices can be
found at the heart of systems as micropositioning Cugat
et al. (2003), suspension or levitation control for railway
vehicles Foo and Goodall (2000); Lee et al. (2006) or
hydraulic valves in cars or space industries Deschaux et al.
(2019), paper or plate production Jin et al. (1998) to cite
a few applications.

Even if the technology has matured, the precision of such
a device comes at the price of a more consequent effort
to control them (see Boldea (2003); Forrai (2018) and
references therein) and it therefore raises many theoretical
issues. Indeed, the dynamics driving an electromagnetic
actuator are highly nonlinear which makes the control
design complicated. If one aims at designing a highly
precise and fast actuators, it is often necessary to take into
account the phenomena of magnetic saturation and flux
fringing. The first phenomenon is related to the saturation
of the magnetic flux and leads to the saturation of the
magnetic force limiting the capacities of the actuator
Deschaux et al. (2018, 2019). The second well-known
phenomenon is related to the flux leakage in the air gap
Zhang et al. (2022). This effect is generally difficult to
model and results in a partial misunderstanding of the
inductance of the magnetic circuit Deschaux (2020).

In the literature, numerous works are based on linear
models (usually constructed from a linearization around
an operating point) to design some classical proportional,
proportional integral control laws Forrai (2018), state feed-
back based on geometric approach Mercorelli (2017) or
Model Predictive Control, Di Cairano et al. (2007). Notice
that these approaches have been extended in a Linear

Parameter Varying framework in Forrai et al. (2007). Ob-
viously, these approaches are effective locally, i.e. close to
the operating point. For broader use, many researches have
turned to nonlinear controls to deal with more relevant
models, as for instance Control Lyapunov Function, Pe-
terson et al. (2006), Flatness based control, Robert Koch
et al. (2002),Mercorelli et al. (2003), Sliding Mode Control
Mercorelli (2012)), Nguyen et al. (2007) to see a few.
Among the many methods considered, backstepping meth-
ods are the most common tools to design efficient control
laws based on a nonlinear model of the actuators Kahveci
and Kolmanovsky (2010), Schwarzgruber et al. (2012) and
references therein. Indeed, given the cascade structure of
the system, i.e. an electromagnetic subsystem controlling
a mechanical structure, many backstepping designs have
been proposed to ensure the closed loop stability of the
overall system. Nevertheless, few them have taken into
account all the nonlinearities like the magnetic saturation,
Deschaux et al. (2019).

In this paper, we propose to design a control law based on
a nonlinear model, taking into account not only the non-
linearities resulting from the calculation of the magnetic
flux, but also the variation of the inductance w.r.t. the
position of the mechanical body and more particularly the
magnetic saturation. Moreover, in order to consider the
different dynamics of the physical systems involved (elec-
trical, magnetic and mechanical subsystems), we turned
to a synthesis of control laws based on singularly per-
turbed systems, Kokotović et al. (1999). The key idea
is to separate the design process into two steps so as to
eventually obtain a simplified control law while ensuring
the asymptotic stability of the overall closed-loop system.
The slow system consists of the mechanical subsystem
whose driving force law has been virtually chosen to ensure
a trajectory tracking with some performance requirements.
The fast system corresponds to the electrical subsystem
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Fig. 1. Scheme of the actuator.

for which we design the voltage control law to make
the actual current converges to the ideal one required
to induce the desired magnetic force for the mechanical
slow subsystem. Furthermore, in order to obtain a precise
closed-loop system, an integral action is also added to the
nonlinear design. This feature allows to compensate for
disturbance force (or uncertain force/parameters) affecting
the mechanical positioner.

The paper is organized as follows. Section 2 deals with
the description of the system and its modeling as a
singularly perturbed system. Section 3 is devoted to the
control design. Section 4 shows some simulation results to
illustrate the proposed methodology. Lastly, a conclusion
is given in Section 5.

2. DESCRIPTION OF THE SYSTEM

2.1 Physical system

The studied actuator is depicted in Figure 1. The mech-
anism is made of a coil winding a magnetic circuit, itself
composed of a fixed frame and a moving part. The distance
between these two parts is the airgap and it influences the
magnetic flux. The control variable is the voltage at the
coil terminals, and the resulting current induces a mag-
netic force which tends to close the airgap (unidirectional
force, toward right). The spring is used to counteract the
magnetic force and pushes the moving part to the left.

2.2 Modeling

Physical modeling
The model can be divided in three distinct parts : mechan-
ical, electrical and magnetic parts. Regarding the first one,
the mechanical subsystem is a simple mass-spring system
that can be modeled with the Newton’s second law :

m
d2p(t)

dt2
= −Fmag − λ

dp(t)

dt
−K

(
p(t)− l0

)
, (1)

where Fmag is the magnetic force induced by the coil
current, the second and third terms in the right-hand
side represent respectively the friction and the spring
forces. Parameters λ and K are the friction and stiffness
coefficients, l0 is the natural length of the spring and m is
the mass of the moving part.
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Fig. 2. Experimental characterization of Fmag with respect
to the current i and the airgap p (as a percentage of
the maximal displacement).

The electrical part stems from the coil controlled by the
voltage u:

u(t) = Ri(t) + L(p)
di(t)

dt
+ i

dL(p)

dt
,

with i the current flowing through the coil and R its
electrical resistance. The third term in the right-hand side
is due to the fact that the inductance of the system L is
varying and depends on the airgap p(t) via the magnetic
circuit. Hence, the electrical equation becomes

u(t) = Ri(t) + L
di(t)

dt
+ i

∂L

∂p

dp(t)

dt
(2)

The magnetic phenomena, induced by current i flowing
through the coil, generate the driving force Fmag that
allows to move the mechanical part. This force actually
depends both on the current and the airgap, its modeling
is therefore a crucial step in the control of EMA. Various
models exist in the literature and consider different hy-
pothesis, leading to more or less accurate representation
of the process, to develop suitable design methods. Only
few of them (Zhang et al. (2022) and references therein)
take into account the magnetic saturation of the magnetic
circuit which is specific to the material. This phenomenon
has a substantial impact on the value of the force and can-
not be neglected. Then, an experimental characterization
have been set up to identify a function Fmag(p, i) w.r.t.
the airgap and the current, Deschaux et al. (2019). Results
of the experiment are plotted in Figure 2. Regarding the
circuit inductance, L which depends on the airgap has
been identified via a finite element method software. In
the sequel, we will consider that L is a small quantity
(L(p) < 0.09H in our case).

Gathering equations (1) and (2) and defining the position
p and velocity v of the moving part, and the current i
as state variables, a state space modeling for the EMA is
obtained :

dp

dt
= v

dv

dt
=

1

m

(
− Fmag(p, i)− λv −K

(
p− l0

)
+ Fd

)
di

dt
=

1

L

(
u−Ri− iv

∂L

∂p

) (3)



Furthermore, one considers an additional force Fd which
represents an unknown constant (or slowly time varying)
force that disturbs the mechanical system. This distur-
bance may also encompasses uncertainty on the natural
spring length l0.

The purpose of the paper is:

- To model electromagnetic actuators as a singularly
perturbed system highlighting the different dynamics
involved.

- To determine a control law based on the previous
model allowing to stabilize the position of the me-
chanical part at a given operating point with some
accuracy and robustness properties.

- To benefit from the decoupling of the dynamics to
derive a minimal complexity control law for the sake
of implementation simplification and reliability.

At this stage, it is important to understand that this
system is a multi-physical system which naturally admits
very different response times. The electrical part is indeed
much faster than the mechanical part. Considering these
physical features, we have focused our control techniques
on singular perturbations method popularized by Koko-
tović et al. (1999).

Singular perturbation system modeling
In order to control the position of the actuator, that
is to make p converges to a given constant reference r,
we aim at reworking the above model. As a first step,
in order to cope with the static error, let consider the
mechanical subsystem (the two first equations of (3)) and
let us introduce an integral action with a new state variable
η. Regarding the well-known integral action, it is a useful
control technique to eliminate the steady state error.

dη

dt
= p− r

dp

dt
= v

dv

dt
=

1

m

(
− Fmag − λv −K

(
p− l0

)
+ Fd

) (4)

As in a backstepping approach, Khalil (2002), let us
consider the magnetic force as a virtual control input force
Fu, which is designed as a state feedback law to control
the above linear mechanical system:

Fu = γ0 η + γ1 p+ γ2 v = Γ

[
η
p
v

]
= Γξ (5)

with γ0 ∈ R∗, γ1 ∈ R and γ2 ∈ R scalar gains to be tuned.
ξ denotes the state of (4). Combining the subsystem (4)
and the virtual control (5), one obtained the virtual closed
loop system:

dη

dt
= p− r

dp

dt
= v

dv

dt
=

1

m

(
− γ0η − (γ1 +K)p− (γ2 + λ)v +Kl0 + Fd

)
which possesses a unique equilibrium point


η⋆ =

1

γ0

(
K(l0 − r)− γ1r + Fd

)
p⋆ = r
v⋆ = 0

Defining now the deviation vector x w.r.t. the equilibrium
point

x =

[
x0

x1

x2

]
=

[
η − η⋆

p− p⋆

v − v⋆

]
= ξ − ξ∗

the following new virtual closed-loop dynamical system is
to be studied

ẋ =

 0 1 0
0 0 1

−γ0
m

−γ1 +K

m
−γ2 + λ

m

x (6)

Control gain Γ of (5) can then be easily designed to
stabilize the mechanical system with some required perfor-
mances and robustly w.r.t. parameters K and λ. Remark
that the term η⋆, likely unknown, is not used in the control
law (5) and will be actually compensated by the integral
control action.

We now need to take into account the deviation between
the desired force Fu for our control objective and the
actual magnetic force Fmag induced by the electrical
part. Theory and experimentation (see Figure 2) show
that Fmag is strictly monotonic both w.r.t. the position
and the current. Hence, for a given desired Fu and a
position p, a unique corresponding desired current id can
be computed. Note that id is a function of the entire
extended mechanical states x. Let us denote the difference
between the desired current and the actual one z = i− id.
With these notations, the original mechanical subsystem
(4) is equivalently rewritten as

ẋ =

 0 1 0
0 0 1

−γ0
m

−γ1 +K

m
−γ2 + λ

m


︸ ︷︷ ︸

A

x+

 0
0
1

m


︸ ︷︷ ︸

B

δ(x, z) (7)

with δ(x, z) = Fu −Fmag(p, i) = Fu −Fmag(x1 + r, z+ id)
corresponds to the error between the desired force and
the actual one. Note that we have Fu = Fmag(x1 + r, id).
The desired current id(x) = F−1

mag(Fu, x1 + r) for the ideal

control law Fu is a static function of [η, p, v]T , and can be
straightforwardly expressed as a function of x. F−1

mag stands
for the reciprocal function of Fmag for a chosen p = x1+r.

The second step of our modeling is to assess the derivative
of z, and thus to make the link with the electrical part:

ż =
1

L

(
u−Ri− iv

∂L

∂p

)
− did

dt

=
1

L

(
u−

(
R+ x2

∂L

∂x1

)(
z + id

))
− did

dt

The second line expresses the dynamic of z in the (x, z)
state variables. Note that the desired current is a known
nonlinear static function of x. Based on the fact that the
inductance L is a small quantity and that the current
dynamic is much faster than the mechanical dynamic, we
aim at exploiting this feature and model the system in the
framework of singular perturbation system Khalil (2002);
Kokotović et al. (1999). Denoting ε = L, the whole system
can be rewritten as



ẋ = f(x, z)
εż = g(x, z, ε)

(8)

with
f(x, z) = Ax+Bδ(x, z)

g(x, z, ε) = u−
(
R+ x2

∂L

∂x1

)(
z + id

)
− ε

did
dt

The input u will be a state feedback based control, it is
thus a function of the state u = u(x, z).

3. CONTROL DESIGN

The objective of this section is to design a control law
for the voltage input u such that the closed-loop system is
asymptotically stable. The singular perturbation modeling
(8) enables to emphasize the two time-scale dynamics with
the so-called reduced system (with a slow dynamic) and
boundary-layer system (with a fast dynamic).

3.1 Reduced system and boundary-layer system

First, let us begin with the following lemma that defines
the equilibrium point.

Lemma 1. If u(0, 0) = Rid(0), the origin (x∗ = 0, z∗ = 0)
is the unique equilibrium point of (8).

Proof 1. From the first condition f(x, z) = 0, it can be
readily seen that x∗

1 = x∗
2 = 0. The third line gives

0 = − γ0
m

x0 +
1

m
δ(x, z)

0 = − γ0x0 + Γ(x+ ξ∗)− Fmag(r, z + id)

0 = Γξ∗ − Fmag(r, z + id)

This last equality is true if and only if z∗ = 0. Furthermore,
assessing the first equation with z = 0 implies x∗

0 = 0
too. Setting (x = 0, z = 0) in the second condition
g(x, z, ε) = 0, we have

g(0, 0, ε) = u(0, 0)−Rid − ε
did
dt

∣∣∣∣
x=0,z=0

knowing that

did
dt

=
d
(
F−1
mag(Fu, x1 + r)

)
dt

=
∂F−1

mag

∂Fu

∂Fu

∂ξ
ξ̇+

∂F−1
mag

∂(x1 + r)
x2

Then, since at the equilibrium point ξ̇ = 0 and x2 = 0, one
proves that did

dt

∣∣
x=0,z=0

= 0. Finally, if the control law at

the origin u(0, 0) = Rid, we get g(0, 0, ε) = 0 for all ε > 0.
The point (x∗ = 0, z∗ = 0) is thus the unique equilibrium
point of (8).

At this stage, let us calculate the roots of 0 = g(x, z, 0),
that is when ε = 0, to define the quasi-steady-state model
and thus, the two subsystems with two time-scales. This
leads us to solve

0 = u(x, z)−
(
R+ x2

∂L

∂x1

)(
z + id

)
Choosing the control law to be linear in z :

u = k1z + k2(x), (9)

where k1 and k2(·) are a gain and a function to be designed,
the above equation has a unique solution

z = h(x) =
k2(x)−

(
R+ x2

∂L
∂x1

)
id(

R+ x2
∂L
∂x1

)
− k1

(10)

Consequently, the reduced system is defined by

ẋ = f(x, h(x)) = Ax+Bδ(x, h(x)) (11)

reminding that A and B are defined in (7) and δ(x, h(x)) =
Fmag(x1 + r, id) − Fmag(x1 + r, h(x) + id). As for the
boundary layer system, it is expressed as

ż = g(x, z, 0) (12)

=

(
k1 −

(
R+ x2

∂L

∂x1

))
z + k2(x)−

(
R+ x2

∂L

∂x1

)
id

(13)

The state x being considered as a fixed parameter in this
fast dynamic. However, the equilibrium point of the above
system is not zero. So let define the error variable : y = z−
h(x) that correspond to the distance of the state z to the
quasi-steady-state trajectory. Combining (8), (9) and (10),
its dynamic is written

ẏ = ż − ∂h

∂x
ẋ

=
1

ε

(
k1z + k2(x)−

(
R+ x2

∂L

∂x1

)(
z + id

))
− did

dt
− ∂h

∂x
ẋ

ε ẏ = k1

(
y + h(x)

)
+ k2(x)

−
(
R+ x2

∂L

∂x1

)(
y + h(x) + id

)
− ε

did
dt

− ε
∂h

∂x
ẋ

=

(
k1 −

(
R+ x2

∂L

∂x1

))
y + k2(x)

+

(
k1 −

(
R+ x2

∂L

∂x1

))
h(x)

−
(
R+ x2

∂L

∂x1

)
id − ε

(did
dt

+
∂h

∂x
ẋ
)

=

(
k1 −

(
R+ x2

∂L

∂x1

))
y − ε

(did
dt

+
∂h

∂x
ẋ
)

Considering the new time variable τ = t/ε, that corre-
sponds to the fast time scale, the new boundary layer
system is given by:

dy

dτ
= g(x, y + h(x), 0)

=

(
k1 −

(
R+ x2

∂L

∂x1

))
y

(14)

It is worthy to notice that this dynamic does not depend
on the control term k2(x). This latter will be useful later
to control the quasi-steady-state model.

3.2 Stability conditions

Firstly, one aims at proving stability of the two subsystems
(11)-(14) by finding a Lyapunov function for each of them
independently before designing a stability condition for
the whole system. With this two-step approach, we intend
to design a control law with a reduced complexity for the
sake of implementation. First of all, taking into account
some physical features of the system, some assumptions
are stated.

Assumption 1. The state x belongs to the compact set

x ∈ Dx = {x ∈ Rn | ∥x∥2 ≤ κ}



Assumption 2. The rate of change of the magnetic force
w.r.t. the current, for any airgap, is bounded

|Fmag(p, i2)− Fmag(p, i1)|
|i2 − i1|

=
|δ(x, i1 − i2)|

|i2 − i1|
≤ α1

Such an upperbound can be computed based on the
experimental data plotted in Figure 2.

Assumption 3. The variation of L w.r.t. the airgap has
been computed from a numerical simulations campaign.
With the finite element method software COMSOL and
also the electrical engineering software PLECS. For the
latter, a reluctance network has been designed to model
the magnetic circuit and to characterize the system induc-
tance (see Deschaux et al. (2018); Deschaux (2020)). Then,
a bound on | ∂L∂x1

| can be provided. From Assumption 1, the

velocity |x2| is also bounded. Then an upperbound for the
following expression can be estimated :∣∣∣∣x2

∂L

∂x1

∣∣∣∣ ≤ α2

This first lemma shows the asymptotic stability of the
reduced system alone and provides an expression for the
term k2(·) in the global control law (9).

Lemma 2. Defining the second part of the control law (9)
as

k2(x) =
(
R+x2

∂L

∂x1

)
id =

(
R+x2

∂L

∂x1

)
F−1
mag(Fu, x1 + r)

(15)
there exists P ∈ R3×3 a positive definite matrix such
that the quadratic function V (x) = xTPx is a Lyapunov
function for the reduced system (11).

Proof 2. Let us consider the Lyapunov candidate function
V (x) = xTPx. Its derivative along the trajectory of the
reduced system (11) equals

V̇ (x) = xT
(
ATP + PA

)
x+ 2xTPBδ(x, h(x)) (16)

Reminding that h(x) is defined in (10), let us set the
second part of the control law (9) as (15). Then, we
have h(x) = 0 and thus δ(x, h(x)) = 0. Hence, the

negative definiteness of V̇ (x) (16) boils down to the simple
condition ATP + PA < 0. Since A is Hurwitz by design,
with a virtual state feedback (5), there always exists a
matrix P > 0 such that the condition holds.

Remark 1. It is important to note that this particular
choice (15) for k2(x), which cancels h(x), allows to enforce
the slow dynamic of the reduced system to match the ideal
prescribed mechanical dynamic (6). A simpler control law
k2(x) = Rid could have been considered, and it can be
shown that the reduced system (11) remains stable despite
the perturbation term δ(x, h(x)) with h(x) being then
equals to

h(x) =
− ∂L

∂x1
id(

R+ x2
∂L
∂x1

)
− k1

x2

However, in that case, once the fast dynamic (current dy-
namic re-expressed as y) has converged, the quasi-steady-
state trajectory will be different from the requirements
specified in (6) for the expected mechanical behavior.

This second lemma provides a condition for tuning the
gain k1, from the global control law (9), to ensure the
asymptotic stability of the boundary-layer system alone.

Lemma 3. Under Assumption 3, for any gain k1 ∈ R
verifying the condition

k1 < R− α2 (17)

then the quadratic function W (y) = q y2, ∀q ∈ R∗
+, is a

Lyapunov function for the boundary-layer system (14).

Proof 3. Let us define the Lyapunov candidate function
W (y) = 1

2q y2, with q ∈ R∗
+ a positive scalar. Its derivative

along the trajectory of the boundary layer system (14)
equals

∂W

∂y
g(x, y, 0) = qy2

(
k1 −R− x2

∂L

∂x1

)
≤ qy2

(
k1 −R+ α2

)
The transition from the first line to the second one stems
from Assumption 3. Hence, the derivative is negative
definite if the condition (17) holds.

At this stage, we have exhibited a Lyapunov function for
each subsystem (11) and (14), we are now in position to
prove the local asymptotic stability of the whole closed
loop system.

Theorem 1. Under Assumptions 1, 2, 3, there exists k1
sufficiently large such that the closed loop system (3), (9),
(15) is locally asymptotically stable.

Proof 4. The closed loop system is driven by the following
equations:

ẋ = f(x, y)
εẏ = g(x, y, ε)

(18)

with
f(x, y) = Ax+Bδ(x, y)

g(x, y, ε) =

(
k1 −

(
R+ x2

∂L

∂x1

))
y − ε

did
dt

.

Let us consider a Lyapunov function composed by the two
Lyapunov functions defined in Lemma 2 and Lemma 3:

Vg(x, y) = V (x) +W (y)

For all (x, y) ∈ Dx × {y ∈ R | ∥y∥2 ≤ κy}, where κy >
is any positive scalar, Vg is positive definite. The time
derivative of Vg along the trajectories leads to the following
expression:

V̇g(x, y) =
∂V (x)

∂x
ẋ(t) +

∂W (y)

∂y
ẏ(t)

= xT
(
ATP + PA

)
x+ 2qy2

(
k1 −R− x2

∂L

∂x1

)
+ 2xTPBδ(x, y)− 2qεyT

did
dt

The first two terms corresponds to the expressions ob-
tained in proofs of lemmas when the two subsystems are
studied independently. They contribute to the negativity
of the Lyapunov function derivative. The last two terms
stem from the interconnection between the reduced system
and the boundary layer system. Let consider the term
−2qεyT did

dt , which can be bounded by:

qεβyT y+
qε

β

(∂id
∂x

(Ax+Bδ(x, y))
)T(∂id

∂x
(Ax+Bδ(x, y))

)
with β > 0, an extra free positive decision variable.
Furthermore, the desired current id(x) can be evaluated
through the expression of the desired force Fu = Fmag(x1+
r, id(x)) which is a linear function of x. As the magnetic



force applied to the mechanical system Fmag is a con-
tinuously differentiable function and assuming that x is
bounded, there exists α3 > 0 such that

∂id

∂x

T ∂id

∂x
< α2

3,

One obtains therefore:

−2qεyT
did
dt

≤ qεβyT y

+
qεα2

3

β
(Ax+Bδ(x, y))T (Ax+Bδ(x, y))

Hence, an uppperbound for Vg can be estimated as:

V̇g(x, y) ≤

[
x

δ(x, y)
y

]T

M

[
x

δ(x, y)
y

]
,

where

M =


M11 PB +

qεα2
3

β
ATB 0

⋆
qεα2

3

β
BTB 0

⋆ ⋆ qεβ + q(k1 −R+ α2)


withM11 = ATP+PA+

qεα2
3

β
ATA. Furthermore, invoking

Assumption 2, the function δ(x, y) is bounded as:

δT (x, y)δ(x, y) ≤ α2
1y

T y

Then, using the S-procedure, if there exists γ > 0 such
that the[

x
δ(x, y)

y

]T

M

[
x

δ(x, y)
y

]
− γ

(
δT (x, y)δ(x, y)− α2

1y
T y

)
< 0

then V̇g(x, y) is negative definite for all (x, y) ∈ Dx ×
{y ∈ R | ∥y∥2 ≤ κy}, and therefore the closed loop
system is locally asymptotically stable. Therefore, the last
sufficient stability condition is equivalent to ensure that
the matrix

M11 PB +
qεα2

3

β
ATB 0

⋆
qεα2

3

β
BTB − γ 0

⋆ ⋆ qεβ + q(k1 −R+ α2) + γα2
1


is negative definite.

Furthermore, for sufficiently large γ > 0, there exists P
such thatA

TP + PA+
qεα2

3

β
ATA PB +

qεα2
3

β
ATB

⋆
qεα2

3

β
BTB − γ

 < 0

Lastly, ∀γ, ϵ, β, q, there exists k1 > 0 such that

qεβ + q(k1 −R+ α2) + γα2
1 < 0,

Regrouping the last two arguments, there exists k1 such
that V̇g is negative definite for all (x, y) ∈ Dx × {y ∈
R | ∥y∥2 ≤ κy}, which concludes the proof.

4. SIMULATION RESULTS

The proposed methodology is now illustrated with a nu-
merical example. The actuator of Figure 1, described
by the model (3), is simulated with parameters set as:
m = 200 g, λ = 50 N.s/m, K = 15.103 N/m and l0 =
5.10−3 m. The moving part position is initialized at p(0) =
0.7 mm, that is the airgap is open because of the spring
force. The initial values for the velocity v and the current i
are naturally set to zero. The simulation test is to drive the
position p to the setpoint r = 0.5 mm. Following figures
show the simulation results of the complete system (18)
for different values of k1 = {−200,−500,−1000,−2000},
along with the simulation of the reduced system (11)
corresponding to the desired dynamic for the mechanical
subsystem.

First, it can be observed the whole state (x, y) converges
to 0, meaning that the physical state (ξ, i) converges to
the desired equilibrium, especially the position p toward
the setpoint r. Simulations depicted in Figures 3 and 4
show that the position and velocity trajectories get closer
to the ideal mechanical dynamic as the absolute value of
gain k1 is increased (see also the phase plane in Figure
7). As expected, the more k1 is negative the faster the
boundary layer system (14) converges to 0, as shown in
Figure 5, and the decoupling of the two time-scale system
is valid. Note that as long as y has not converged there
is in the x-system a force δ(x, y) that deviates the closed-
loop mechanical subsystem dynamic from the one designed
based on some specifications (see Figures 6). This force
affects the acceleration of the moving part, and thus its
integral influences the velocity x2. Of course, as y is slower
(for a smaller absolute value of k1), the integral value δ is
larger. All trajectories of y (and thus δ) being anyway very
fast compared the x, these influences on velocity appears
as a change of the initial condition. This reasoning explains
the different amplitudes of the velocity x2 around the
initial time (see Figure 4).

At last, the effect of a disturbance force Fd affecting the
acceleration of the moving part has been simulated. A
step like disturbance of 5N was applied at time t = 0.8 s.
The evolution of the position is plotted in Figure 8. The
integral action appended to the model in (4) enables to
compensate for a non-vanishing disturbance. The gain k1
has no effect on the response to Fd. That was expected
since the disturbance appears in the mechanical subsystem
and not in the electrical one, the fast dynamic where k1 is
effective.

5. CONCLUSION

In this paper, we have designed a novel control strategy
for electromagnetic actuators. Compared to most papers
of the literature on this topic, we have considered a more
accurate model, especially taking into account the varying
nature of the inductance and the magnetic saturation of
the force. A augmented model has been built to embed an
integral action and to ensure accuracy for the mechanical
subsystem, despite some disturbances in the balance of
forces. A nonlinear control has been designed based on
a singular perturbation reformulation. The choice of this
approach intended to design a simpler control law expres-
sion for sake of implementation, compared to backstepping



Fig. 3. Plot of the position deviation w.r.t. the reference
x1 = p− r.

Fig. 4. Plot of the velocity x2 = v.

and sliding mode controls, considering decoupled systems
thanks to the two time scale dynamics (reduced and
boundary layer systems). Simulations validate the theory
and shows promising result before experimental tests.
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