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Abstract

As the interest in autonomous systems continues to grow, one of the major challenges is collecting
sufficient and representative real-world data. Despite the strong practical and commercial interest in
autonomous landing systems in the aerospace field, there is a lack of open-source datasets of aerial
images. To address this issue, we present a dataset -LARD- of high-quality aerial images for the
task of runway detection during approach and landing phases. Most of the dataset is composed of
synthetic images but we also provide manually labelled images from real landing footages, to extend
the detection task to a more realistic setting. In addition, we offer the generator which can produce
such synthetic front-view images and enables automatic annotation of the runway corners through
geometric transformations. This dataset paves the way for further research such as the analysis of
dataset quality or the development of models to cope with the detection tasks. Find data, code and
more up-to-date information at https://github.com/deel-ai/LARD

1 Introduction

Recent advances in Artificial Intelligence has made Al-based systems attractive to various fields, including
transportation. However, in the aeronautic domain where these algorithms could increase autonomy, Al
breakthroughs are slow to reach the market, partly due to the lack of dedicated datasets.

1.1 Context — why vision based landing

Increasing the level of autonomy of aircraft will ease the flying in case of pilots cognitive load and would
therefore improve the safety in civil aviation. Today, aircraft already have on-board functionalities, that
allow for complete automatic landings. But it has a huge impact on airport operations (number of landing
per hour), high installation and maintenance costs. Thus the actual solution can only be used in bad
weather conditions with impact on the landing rate. When the visibility is correct, the final phase still
requires the pilot to see the runway at a specific distance.

In a future where it is envisaged to fly with only one pilot on board, a single pilot may not be in
capacity to assume all tasks required during the landing phase (especially the final ones). Thus, it is
required for the aircraft to be capable of performing landings without impacting the airport operations
by merging information from several systems. Considering recent advances in both computer vision and
embedded hardware platforms make vision-based algorithms a potential direction in participating to the
guidance and navigation during the landing stage. A vision-based landing system will have to detect very
distant to close runways on high resolution images. There are thus three challenges to tackle: propose
1) an efficient vision-based algorithm for the detection of runways of 2) very variable groundtruth sizes
with 3) low execution time.

1.2 Importance of datasets

To design deep learning vision-based landing systems, one mandatory step is to define datasets. In-
deed, high-quality, large-scale datasets are crucial for autonomous driving research. In the recent years,
there have been an increasing number of efforts in that direction: releasing datasets to the commu-
nity | |, open-source simulators that allow us to generate scenarios and images to enable Al


https://github.com/deel-ai/LARD

for autonomous cars like the CARLA simulator [DRC"17] or playground environment [PTA ™ 17] among
other. Regrettably, whether it is about real image retrieval or open-source simulators, the field of Al for
aeronautics flights is way behind. It is very difficult today to retrieve images in flight and furthermore
getting their metadata. We may also rely on simulator to easily generate images with associated meta-
data, but up to our knowledge, there is no good quality open-source simulator that could be used for
image generation. As a consequence, this lack of dataset impedes the widespread of Al product for the
aeronautical field.

1.3 Contributions

In this work, we want to close the gap and offer an open source dataset for runway detection to the
community. We started by clearly defining the task at hand: detecting a runway in an image taken
during the landing phase of an aircraft. In order to determine which images could potentially be taken
during landing, we established a formal definition of the generic landing approach cone. Based on this
definition, we developed a strategy for constructing the dataset to encompass a wide range of scenarios.
Our approach involves 1) blending full approaches with a large or limited number of approach images,
and 2) taking into account various airports with diverse environments such as urban or rural areas, as
well as different times of day when the images were captured.

As collecting synthetic data is easier than real ones, we opted to create a dataset primarily composed
of synthetic images. In particular, we considered Google Earth Studio as a suitable choice because it
provides high-quality runway images, as illustrated in Figure 1. This figure compares an image recorded
during a flight with our generator. Although the weather conditions differ between the two images, we
note a great similarity in the runway’s environment.

Google Earth
S0 NowA

Figure 1: Ilustration of the quality of the synthetic images - Comparison of a real landing footage (left)
with a synthetic replica (right)

To fulfill the need for important volume of data, we chose to develop an open source data generator
capable of reliable automatic annotation, and we decided to enrich the synthetic images that it can
produce with images from real-footage. This, in turn, increases the overall dataset quality and allows to
extend the detection task to a more realistic setting. For that purpose, we collected videos of real landings
(such as ') and requested the permission to use them for academic purpose. Once this authorization
granted, we extracted some images of landing footage and performed manual runway annotation to
enrich the dataset. Since the process of labeling images is time-consuming, we included only 103 images
in our dataset. However, videos can still be used to evaluate the performance of a model as long as a
human reviews the output.

The remainder of this document is structured as follows. Section 2 presents the related works on
available datasets and on vision-based runway detection approaches. Section 3 presents the approach
followed to design the dataset and Section 4 describes the LARD dataset. Section 5 presents briefly the
synthetic image generator.

Thttps://www.youtube.com/user/TheGreatFlyer
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2 Related work

Training Machine Learning models typically requires large amounts of data especially when tight perfor-
mance guarantees are needed. Collecting and annotating this data is not only a costly task but also a
particularly difficult one when all possible operating parameters need to be covered, including edge cases.

2.1 Runway Images Datasets

To the best of our knowledge, there is no image dataset of runways seen from aerial front-view. Synthesized
data is one solution to address this problem, as it allows the creation of multiple scenarios at a lower cost.
This is a well-known problem in aviation and the common solution is to use a flight simulator | |.
For example, thanks to simulators, pilots can train for emergency maneuvers and become familiar with
flight controls and standard procedures. The complexity and realism of such simulators depend on the
needs and regulations of the relevant authorities (e.g. FAA in America, EASA in Europe | D-
To reproduce the environment around airport runways, our solution is to rely on an open-source
virtual globe. Virtual globes are indeed prevalent tools in data collection, exploration, and modeling,
used in numerous research activities over the last decade | |. In this work, we consider Google Earth
Studio | ], an advanced animation tool for accessing and rendering Google satellite images.

2.2 Airport Data

To generate a runway dataset, it is necessary to know the runway location. The construction of a database
with airports location is possible through the sharing of open source databases including geographic or

thematic data. These include GeoNames | |, established by a European organisation, the USGS
Geographic Names Information System | |, established by the US government, and the GEOnet
Name Server | |, established by the US military. The thematic airport database includes OurAir-
ports [ ]. Complementary tabular information of airports and their runways can also be found
in | ; , | and have been used in previous works. The previous databases

can be merged to provide an approximate location of an airport runway. However, to our knowledge,
there is no open source database that contains the location of the corners of a runway. Obtaining this data
therefore requires manual annotation which can be applied either at the image level or in a geographic
coordinate system using an online tool, such as Google Earth, and automatically projected into the image
frame. The latter option, although more efficient, requires camera information. Those information can
then be plugged into a remote sensing image provider such as Google Earth | |, but limited to the
available catalog of the platform.

2.3 Vision-Based Runway Detection

This section records the various efforts for the detection and localization of airport runways (not only based
on deep learning). The first line of work is based on image processing. The main focus consists in searching
for runways’ singular features such as templates, geometric patterns, or textures. Those works are mainly
based on pipelines using filtering operations such as Hough transforms, Sobel or Canny edge operators, and
edge-preserving smoothing techniques | , , ]. More
recently, machine learning algorithms was applied, such as SVM or AdaBoost mainly to classification
tasks (airport versus non-airport) | ) , ) ]

All these works suffer from multiple limitations. Flrstly, image-processing-based methods considerably
reduce the representation space and rely heavily on expert knowledge and a priori in the domain of opera-
tion such as | ]. Their robustness to outliers such as objects in the vicinity of the runway is limited,
as is their generalization ability. Moreover, these algorithms require a large amount of data coupled with
a lot of potentially complex and expensive metadata (airport design, photometric measurements, ...).

The literature on airport runway detection and localization tasks using deep learning is scarce. Object
detection and image classification tasks have largely benefited from deep learning-based methods. When
it comes to the aeronautical domain, we note the low rate of publications, in particular on detection
tasks. Some works are more or less related to the aeronautical domain, by integrating aircraft in their
classification task. | | have also proposed a deep learning approach for a related task which is the
detection of ground markings on runways, while [ | used a YOLO detector to detect airports
from satellite images. The pioneering work in runway extraction is highlighted in ARDN | |
However, the impact of these works remains limited by the lack of reproducibility, as well as by the



angle of view adopted for the detection. Indeed, the extraction of airports’ runways is done by a satellite
view from above. The input distribution is thus not compatible with runway detection from an airborne
front-looking camera. Today, to our knowledge, only private aeronautical companies challenge deep-
learning-based solutions for runway detection with a front-looking camera either located on the nose or a
wing of the aircraft. The success of deep learning for runway extraction has been notably demonstrated
in recent research and development efforts of private companies such as Airbus’ Autonomous Taxi, Take-
Off, and Landing demonstrators (ATTOL, Dragonfly, [ARB22|) or the Daedalean project. Daedalean, in
collaboration with the aviation certification authorities (FAA, EASA), published research reports tackling
different certification and trustworthy challenges surrounding this use case [FD20, BFBC'21]. Neither
the neural networks nor the training dataset are disclosed.

3 Approach followed to design the dataset

The LARD dataset is designed to represent civil aircraft landings. Therefore we start by defining a generic
landing approach cone based on the documentation provided by aeronautical standards. Then, from this
definition, we derive a strategy to generate a dataset of images with adequate labels.

3.1 Generic landing definition

Figure 2 illustrates the different positions / angles / distances / markings involved in the geometric
description of a landing. Runway markings are standardized [FAA22] and appear in most cases as
follows: A first line at the start of the runway, called landing threshold, represents the underline limit of
the runway. It is usually followed by a pattern of stripes (the piano) and then the runway identifiers.
The target of an aircraft during landing is the Aiming Point, located 300 meters beyond the landing
threshold, between two rectangular markings visible on each side of the runway centerline?.

Lateral path Aiming Point

Camera angle Vertical path
angle

Centerline

Runway
Corner

Figure 2: Geometry of a landing

The position of the aircraft with respect to the runway is defined by 3 parameters: The along track
distance which corresponds to the distance between the projection of the aircraft nose on the centerline
of the runway (on the ground) and the Aiming Point. The lateral (resp. vertical) path angle which
corresponds to the angle formed by the centerline and the line defined by the Aiming Point and the plane
nose projection on the ground (resp. plane orthogonal to the ground going through the centerline). On
the other hand, the attitude of the aircraft is defined by its rotation angles (denoted respectively as pitch,
roll, yaw). The yaw angle is relative to the runway heading® whereas pitch and roll are relative to the
horizontal plane.

These 6 parameters allow to define a generic landing approach cone (Definition 3.1) corresponding to a
realistic aircraft trajectory during landing, as well as an envelope for the aircraft attitude that encompass
typical aircraft orientations during approaches on a runway.

Definition 1 (Generic landing approach cone) A generic landing approach cone is the set of all
pairs {positions, attitude) within the ranges of the 6 parameters of Table 1.

2An imaginary line going through the middle of the runway
3For instance a yaw of 0° indicates that the aircraft faces directly the runway, regardless of the runway orientation.



’ Parameter \ range ‘

Along track distance | [0.08, 3] NM
Vertical path angle | [-2.2,-3.8|°
Lateral path angle -4, 4] °
Yaw -10,10] ©
Pitch [8,0] °

Roll [-10,10] °

Table 1: Parameters of the generic landing approach cone

3.2 Strategy to generate the dataset
Before designing the dataset, we first need to properly define the tasks it will address.

Task 1 (Main task) The main task is the detection of a single runway within an image when the aircraft
flies within the generic landing approach cone. We assume that the camera is positioned at the aircraft
nose and directly faces the runway. Thus, the landing geometry defined previously directly applies to what
can be observed from the camera. For this task we chose to restrict the conditions to:

1. The aircraft is landing on airports with a piano;

2. There exists only one runway for which current position is considered within the approach cone®;
3. The runway is fully visible on the image (no occlusion);
4.

Optimal conditions: clear daylight and no adverse weather conditions (clouds, precipitations...).

An adequate dataset for this task 1 should therefore not only cover a variety of airports all around
the world, but also span a wide range of positions inside the approach cone, to ensure a comprehensive
coverage of all possible landing scenarios. This motivated us to generate scenarios similar —in term of
along track distances distribution— to a complete landing approach, for several airports, and to produce
few hundreds of pictures for each runway in the training set. The selection of this order of magnitude
resulted from a trade-off between the variety of images produced for each runway, and the benefits in term
of annotation cost reduction. Indeed, on one hand, the risk with having thousands of images per runway
or more is the high similarity of resulting positions in the cone and the low independence between each
image, which may lead to overfitting models. On the other hand, collecting only a few dozen of images
per runway limits the possibility to encounter edge cases for each parameter and increases the need for
manual annotation of runway corners to fulfill the high volume of data required. Finally, note that in
practice, in an attempt to realistically cover the variety of possible landings, we generate approaches
within the cone by adding Gaussian noise to the center of the ranges for each cone parameter.

Because large sets of data are needed, we chose to make use of synthetic images generators, and
we selected Google Earth Studio for its availability and the configuration capabilities it offers. This
tool support trajectories of positions (defined within our landing approach cone) as input, and allows to
produce a variety of high quality images, relatively close to the reality, as illustrated in Figure 1. This
choice led us to derive two tasks from the main task 1. The first one remains in the synthetic domain
whereas the second addresses the Sim-to-Real capabilities.

Task 2 (New runway generalization capacity) The task is the detection of runways never seen dur-
ing training on synthetic images.

To perform the task 2, we provide, in the test set, synthetic runway images from a great variety of airports
that were never seen in the training dataset.

Task 3 (Sim to real generalization capacity) The task is the detection of runways on real footage
images when training is done on synthetic images for the same runways.

To perform the task 3, we gathered and manually labelled frames from videos of landing available on
the web. It is worth noting that the pictures from real footage are in majority in 16:9 aspect ratios and
3840%2160 or 1920x 1080 resolutions. In order not to lose information, we decided to keep each footage in
its original resolution, thus having 3 different images sizes (the third one being 2448x2648, which is the

4 Another runway can still be visible, but the aircraft should not be in its approach cone



resolution chosen for the synthetic data). Because real videos were captured from commercial aircraft,
they are by definition in the generic landing approach cone. However in that case, the images had to be
labeled manually a posteriori, by pointing the 4 corners of the polygons corresponding to the runways
with a labeling tool.

Extensibility It should be emphasized that this dataset was also designed in such a way that users
can easily extend it. Indeed, we provide the set of airports from which the runways were taken, in the
form of a database which contains the coordinates of runways corners and can be enriched with new
airports and runways if needed. This can be done by using a dedicated script, where the user must
indicate the geographic coordinates® of each corner of a specific runway while specifying its metadata
(the corresponding airport ICAO code and the runway identifier). We also provide the possibility to
generate new scenarios for Google Earth Studio and to benefit from an automatic labeling process.

3.3 Choice of label associated to a runway

As specified in task 1, the images of the dataset must always contain fully visible runways. Any label
associated to an image should allow to define the runway inside of it in an unambiguous way whether the
data is synthetic or real footage. There are several approaches for delimiting a runway, the most usual
being contours, ground marking, corners, horizon line or any other semantics specific to a runway. We
chose to encode the runway position by the pixel coordinates of its four corners in the image.

As pointed out in | |, representing the runway by its four corners poses some concerns such
as instability in the presence of runway occlusion and sensitivity to the aircraft position estimation. The
occlusion problem can be avoided by restricting the task to cases where there is no occlusion. But the
sensitivity issue still remains. While it was partially tackled by | | by adding expert knowledge
such as the width of the runway, we consider this stability problem to be out of scope of the open source
dataset definition.

However, the drawbacks mentioned previously were outweighed by the advantages of the corner repre-
sentation, as this approach is easily applicable to any image to ensure consistency of metadata, and does
not require camera-related information (typically camera angles). This allowed us to collect both syn-
thetic images and real data from landing videos without any description of the camera. This is especially
true for real landing footage retrieved from Youtube which do not contain information on the runways or
about the aircraft relative position. Moreover, the detection of a runway by its four corners is a variant
of box or parallelogram detection problems, which have been widely studied in deep learning | |-
Thus, this literature can be reused to address the tasks identified in Section 3.2. Finally, it is compatible
with both image detection and image segmentation approaches, two of the most widely used approaches
for locating and identifying objects in image.

4 Dataset

This section presents in details the dataset that was designed according to the strategy described in
Section 3.2. We also provide an assessment of its quality with respect to the generic landing.

4.1 Data Description

The dataset is divided into a training set and a test set as illustrated in Figure 3.

12 212 2221 2 315
train train _da test
73% 13% 14%

Figure 3: Proportion of each subset of the dataset

The Training set is solely composed of synthetic images produced using the synthetic image generator
described in Section 5. It is composed of 14 433 images of resolution 2448 x 2648, taken from 32 runways in
16 different airports in total. It corresponds to approximately 451 pictures per approach (or per runway).

5Latitude, longitude and altitude



It is worth noting that a subset of 5 runways in this training set are dedicated to Domain Adaptation
(namely train_da), as described in the task 3.

The Test set aggregates two main sources of data and contains both synthetic pictures and frames taken
from real footage of landing. It is composed of 2315 images divided as follows:

e Synthetic: 2 221 synthetic images taken from 79 runways in 40 different airports, which corresponds
to approximately 28 pictures per approach. This part of the test set produces a variety of environments
and airport types which have not been seen during training, and is aiming at verifying the generalisation
capabilities of the detection models.

e Real: 103 hand-labeled pictures from real landing footage on 38 runways in 36 different airports,
usually obtained using an in-cockpit camera. This subset is further divided into nominal cases, edge
case, and images dedicated to domain adaptation intended to verify the Sim-to-Real capabilities that
a model may exhibit. The images provided in this very last subset correspond to the 5 runways also
provided in the training dataset.

4.2 Dataset Quality Analysis

1.0 1
data

® train

® test

0.8 4 o real

0.6

0.4 1

0.2 1

0-00 o 02 o2 o6 o8 1‘0' 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
’ ’ ’ x ’ ’ Height/width bounding boxes ratio

Figure 4: Normalized positions of runway cen- Figure 5: Top - Illustration of different aspect ratios of the
ters in train, test and real® subsets. bounding boxes. Bottom - Distributions of bounding boxes
height over width ratios for the train, test and real subsets.

In this section, we provide a few statistical elements and the associated explanations to estimate the
quality of the dataset and its suitability for the tasks presented in Section 3.2. It covers the following
claims: 1) The runways positions and aspect ratios of the bounding boxes which result from the image
generation are homogeneously distributed and suitable for a detection task, and 2) the distribution of
airports used to generate synthetic images is relevant to the tasks and produces a diversity of runway
characteristics and surrounding terrains and landscapes.

4.2.1 Runway positions

The plot of runway centers positions of Figure 4 shows an even distribution both for the training set and
for the test set, located primarily around the center of the images. Nevertheless, a large area in the top
and the bottom contain little to no points, which is the result of two main factors: (i) the presence of
the watermark, which is expected to be removed from the images before usage by cropping 300 pixels
from the top and the bottom of the pictures, and (ii) the ranges of the pitch parameter defined in the
Table 1 which prevent the runway to appear at the very top or bottom of the image. Additionally, the

6Subset of the test set containing only images from real footage.



real images of the test set appear to be slightly biased towards the bottom-right, which seems to result
from the positions of the cameras in the cockpits.

4.2.2 Bounding boxes analysis

800 dataset
= train
800 1 dataset =1 test
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8 400 G
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Bounding box fill ratio Bounding boxes areas for runways, in % of the total image

(a) Distribution of bounding box fill ratios (percentage of the  (b) Distribution of bounding boxes areas (areas in
bounding box that correspond to pixels belonging to the runway  logarithmic scale)
itself)

Figure 6: Comparison of bounding box characteristics between training and test sets

The aspect ratio of the objects bounding boxes is a sensitive aspect for a detection task, as elongated
objects in one or the other direction may not exhibit recognizable features. Figure 5 illustrates the aspect
ratio variability, and highlights how the majority of the bounding boxes in all three subsets have an aspect
ratio between 0.5 and 1.5, indicating that most images are suitable for the targeted detection task.

The histograms of Figure 6 illustrate the relationships between the runways, their bounding boxes and
the global images. Figure 6a shows comparable distribution for the training and the test set, where most
of the runways fill between 20% and 80% of their bounding boxes. This also indicates that bounding boxes
should in general contain enough runways pixels for the detection task to be applicable and consistent’.
Additionally, Figure 6b, which illustrates how the areas of the bounding boxes cover the whole images,
shows that the training set and the test set follow approximately the same distribution. This provides
a certain level of guarantee that the bounding boxes will look similar between the training and the test
set. Moreover, the figure shows that the vast majority of bounding boxes areas are over 25 x 25 pixels,
which makes them large enough for a runway to be detected by humans. On the other hand, the dataset
contains only a few examples of bounding boxes with large size, which may bias the learning process
when the aircraft is close to the runway and should be further investigated.

4.2.3 Distances to runways

The synthetic images and the real images do not contain the same metadata. The distance between the
aircraft and the runway is given for synthetic images as the slant distance, however it is not available
for real images, for which a value called time to landing is provided instead. This value can be used as
a proxy for the distance to the runway, considering that planes have comparable speed during landing
phase.

Figure 7 shows how the distributions of slant distance (for synthetic images) and time to landing (for
real images) relate to each other®. It indicates that for both sources of data, the test set contains an
important part of the images close to the runway while a non-negligible number of pictures were taken

"Note that for the labels, we use the ground truth directly from a geometric projection, therefore the entirety of the
runway polygon is inside of the bounding box
80nly the shapes of the distributions should be compared as the slant distance was re-scaled to fit the diagram
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Figure 7: Comparison of distance estimation between real images and synthetic images in the test set

at longer distances from the runway, in a nearly evenly distributed manner, despite the limited number
of real images.

4.2.4 Visualisation of the approach cone
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Figure 8: 3-dimensional visualisation of aircraft positions in the training set and the test set

The parameters used in the scenario generation correspond to the standard approach cone of an
aircraft during landing phase (Definition 3.1). Figure 8 illustrates the distribution of points in this cone
for synthetic images, for which the position of the aircraft relative to the runway can be retrieved. In
this figure, the z-axis correspond to the along track distance, but the other two axis are also distances
(cross track distance and height above runway), computed from the angles provided in Table 1 (Lateral
path angle and Vertical path angle). For the training set in Figure 8a, the randomly sampled points
span the whole approach cone corresponding to the scenarios generation parameters. Moreover, while
the synthetic test set contains less data, it still covers a variety of positions in the cone, as illustrated in
Figure 8b.

4.2.5 Airport worldwide distribution

Figure 9 plots the distribution of airports from all around the world which were used to build the
LARD dataset. Indeed, obtaining a great variety of images is a fundamental aspect for verifying the
generalization capabilities of the models, as highlighted in task 2, and current distribution of airports
presents the following benefits: first, it ensures a diversity of runway visuals, with different surface types’
and various runway length, width and markings, even if the runway standardization reduces the variability
for this aspect. Second, it allows for a variety of surrounding terrain and landscapes such as grass, snow,
dirt, but also city architectures, water bodies or mountainous reliefs.

9 Asphalt and concrete are typically used for runway surfaces
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Figure 9: Distribution of airports used for the training set and the test set

5 Synthetic Dataset Generation

This section presents the synthetic image generator based on Google Earth Studio. The generator does
not only generate synthetic images but also relevant information associated to each image (e.g. runway
position, position of the camera).

5.1 General overview of Google Earth Studio

Google Earth Studio allows to draw trajectories or zoom from one point to another and render the
corresponding synthetic pictures or videos. For partial automation, the tool supports scenario files in
.esp or .kml formats containing the parameters for sequences of frames. It is thus possible to generate
and render a synthetic set of pictures from a .esp file where each frame of the video obtained can then be
associated with metadata. In Table 2 we list some of the parameters that are configurable by the user.

Although the generated data are based on real satellite images, the underlying transformations for
the aggregation of satellite images and their adaptation to user constraints (day, night, time, cloudy, see
Table 2), are not disclosed and may potentially induce synthetic biases.

Position Longitude, Latitude, Altitude
Camera Rotation Horizontal angle, Vertical angle, Roll
Field of view
Environment | Date Time of year, month, day, hour
Output type Pictures (.jpeg) or video (.mp4)
Dimensions Width, height of the output
Rendering Coordinates Metadata with 3D positions (.json)
Texture Image quality
Attribution position | Position of the image attribution

Table 2: Earth Studio parameters

5.2 Generator overview

The generator pipeline is presented in Figure 10. The two inputs (in gray) are the airport database and
the configuration file to be filled by the user, setting which runway they want to generate images from
and other parameters (e.g. number of images). Then, the first script (in white) generates a scenario file
that can be provided as an input for Google Earth Studio. This virtual globe tool can then generate the
corresponding images, together with an information file (here in json format). Finally, the last module
of our generator associates the ’labels’ to each image, in particular the scaled position of the four corners
on the picture.

10
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Figure 10: Generator pipeline

The output in gray contains the images, the labels and the metadata. This will be used as a ground-
truth for benchmarking machine learning models for the tasks defined in Section 3.2. These labels allow
for the synthesis of images like the ones shown in Figure 11.

‘
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Figure 11: Images from Tarbes runway (France), with bounding boxes isolating the runway - Using the
projection matrices, we can project the coordinates of the runway corners onto any generated image.

5.3 Automatic Annotation

This section details the labelling module of Figure 10. To generate the labels, we retrieve the positions
of the corners and the position of the camera in the World Geodesic System 1984 (WGS84'”) coordinate
system and we project the corners of the runway in the image coordinate system. Note that the aiming
point position can be deduced in the world reference coordinate system WGS84, as long as the latitude
and longitude coordinates of the runway corners are known. The projection from WGS84 to the image
based coordinate system is done using two standard matrices [Sze22]:

e The Extrinsic matrix whose role is to get the coordinates of the corners in the camera-centered coor-
dinate system.

e The Intrinsic matrix whose role is to project the 3D coordinates expressed in the camera-centered
coordinate system into the 2D image

The extrinsic matrix takes as parameters the rotation matrix of the camera as well as a translation
vector. The rotation matrix can be easily deduced from the composition of the rotation along the three
axis that depend on the pitch, roll and yaw angles. The translation vector only depends on the camera
position which is determined by the aiming point, the slant distance and the horizontal and vertical
angles. The intrinsic matrix takes as parameters all the information related to the scale, field of view and
the optical center of the camera. We instantiate the intrinsic matrix for the projection from the camera
system to the image system, as proposed in [[HZ03], using the vertical and horizontal focus values and
the principal offset point. We can then deduce the focal length values using the dimensions of the image
and the field of view, whose values are specified by the user during the generation of synthetic images.
The main steps of our synthetic annotation pipeline are described in Figure 12.

10Coordinate system for spatial referencing, navigation and cartography.
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Figure 12: Synthetic annotation pipeline

Overall, for the cost of a single annotation (the corners of a runway), this generator allows to produce
an infinity of images with various camera angles and positions, where the annotation is automatically
propagated, which drastically reduces the labeling cost.

6 Conclusion and way forward

According to EASA and [BFBCT21], a majority of non-commercial airplane accidents occur during
landing phase in good weather conditions. Moreover, they are often due to human errors, with perception
being the highest risk factor, which highlights the need for safer landing systems.

Introducing autonomy in these systems could be a first step to solve this issue, starting with pilot
assistance, up to fully autonomous landings in the far future. This evolution will undoubtedly rely on
Artificial Intelligence to detect the runway position which, in turn, will allow to compute the aircraft
position. We presented in this article an unambiguous specification of this task and we underscored the
importance of large dataset to enable the use of deep learning algorithm.

This paper is a first answer to the problem of collecting high volumes of aerial images. In the context
of autonomous landing, we presented both a dataset of runway images and the synthetic generator based
on Google Earth that allows to generate such images. A major benefit of this approach is the possibility
to enrich the dataset at will with new runways, without incurring high annotation costs, thanks to the
automatic labeling process. Thus we hope that this work will inspire the expansion of the dataset and
serve as a foundation for future research in the wider context of object detection in aerial images. Indeed,
the parameters ranges used in this paper can be modified to suit any task relying on the production of
aerial images, while benefiting from the automatic labeling capabilities.
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