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ABSTRACT 13 

Coherent ocean vortices, or eddies, are usually tracked on the surface of the ocean. 14 

However, tracking subsurface eddies is important for a complete understanding of deep ocean 15 

circulation. In this study, we develop an algorithm designed for the detection of subsurface 16 

eddies in the Arabian Sea using Nucleus for European Modelling of the Ocean (NEMO) model 17 

simulations. We optimize each parameter of our algorithm to achieve favorable results when 18 

compared with an algorithm using sea surface height (SSH). When compared to similar 19 

methods, we find that using the rescaled isopycnal potential vorticity (PV) is best for subsurface 20 

eddy detection. We proceed to demonstrate that our new algorithm can detect eddies 21 

successfully between specific isopycnals, such as those that define the Red Sea Water (RSW). 22 

In doing so, we showcase how our method can be used to describe the properties of eddies 23 

within the RSW and even identify specific long-lived subsurface eddies. We conduct one such 24 

case study by discerning the structure of a completely subsurface RSW eddy near the Chagos 25 

Archipelago using Lagrangian particle tracking and PV diagnostics. We conclude that our 26 

rescaled PV method is an efficient tool for investigating eddy dynamics within the ocean’s 27 

interior, and publicly provide our optimization methodology as a way for other researchers to 28 

develop their own subsurface detection algorithms with optimized parameters for any 29 

spatiotemporal model domain. 30 

 31 

SIGNIFICANCE STATEMENT 32 

Eddies are a key part of ocean circulation both at the surface and in the subsurface. The 33 

purpose of our study was to design the first detection method comprehensively optimized for 34 

subsurface eddy detection from numerical simulations. We demonstrate that potential vorticity 35 

(PV) is the best field to use when algorithmically tracking eddies in subsurface water masses, 36 

using our new method to identify and track eddies in the Red Sea Water (RSW). Additionally, 37 

our method allows us to efficiently evaluate the dynamics of eddies through potential vorticity 38 

diagnostics, exemplified with a previously undescribed eddy near the Chagos Archipelago. Our 39 

methodology can be used by future researchers to study the eddy dynamics hidden within 40 

subsurface water masses around the world. 41 

 42 



 
 

3 

1. Introduction  43 

 Coherent ocean vortices known as eddies are ubiquitous throughout the world’s oceans 44 

(Chelton et al., 2011). Mesoscale (50-300 km) eddies contribute as much to global mass 45 

transport as the mean flow (Zhang et al., 2014). In the Arabian Sea, the variability of the surface 46 

mesoscale eddy field is primarily driven by instability generated via the seasonal reversal of 47 

monsoon winds, producing the southwest monsoon in the summer and northeast monsoon in 48 

the winter (Trott et al., 2018). As a result of the reversing winds and their associated planetary 49 

wave dynamics, several climatological eddies consistently form in the same regions every year, 50 

including the Great Whirl and the Socotra Eddy in the Somali Current region, as well as the 51 

Lakshadweep High in the Laccadive Sea (Beal and Donohue, 2013; Ernst et al., 2022; Shankar 52 

and Shetye, 1997). These named eddies and the mesoscale eddy field as a whole modulate 53 

changes in upper ocean stratification, air-sea interactions, and transport of heat and salt across 54 

the Arabian Sea (Trott et al., 2019; Wang et al., 2019; Zhan et al., 2020).  55 

 Oceanic eddies and their impacts are often studied with the aid of automated eddy 56 

detection and tracking algorithms due to their transience, ubiquity, and the increasing number 57 

of observations (Lian et al., 2019). At the surface, the most widely used detection methods 58 

utilize quantities derived from sea surface height (SSH), including sea level anomaly (SLA), 59 

absolute dynamic topography (ADT), and geostrophic currents (Chaigneau et al., 2008; 60 

Pegliasco et al., 2021; Nencioli et al., 2010). Currents in particular may be further processed to 61 

derive other fields through which eddies can be identified, including relative vorticity, the 62 

Okubo-Weiss (OW) parameter, and the local normalized angular momentum (LNAM) (Isern-63 

Fontanet et al., 2003; Le Vu et al., 2018; Souza et al., 2011). Conventional Eulerian algorithms 64 

use these fields to identify local extremes that correspond with eddy centers, as well as 65 

numerical or geometric criteria that define eddy edges (Sadarjoen and Post, 2000). By contrast, 66 

Lagrangian methods, including the Lagrangian averaged vorticity deviation and the modulus 67 

of vorticity, define Lagrangian coherent structures (LCS) associated with the attraction or 68 

repulsion of particles (Haller et al., 2019; Vortmeyer-Kley et al., 2016, 2019). Generally, 69 

Lagrangian methods tend to detect fewer total eddies with smaller eddy radii, being highly 70 

sensitive to the time integration parameter while adhering to a stricter definition of particle 71 

interactions (Vortmeyer-Kley et al., 2019). Both Eulerian and Lagrangian methods have been 72 

compared for surface mesoscale eddy detection, with the prevailing conclusion that different 73 
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algorithms are suitable for different purposes, although some methods conclusively perform 74 

better than others at specific tasks (Lian et al., 2019; Souza et al., 2011; Vortmeyer-Kley et al., 75 

2019).  76 

While eddy detection and tracking at the surface has been extensively developed, 77 

subsurface eddy detection in both observations and models is less mature. High resolution 78 

satellite data are only available at the surface, meaning that subsurface data must be derived 79 

from numerical models, synthetic profiles, or sparse in-situ observations (Petersen et al., 2013). 80 

In the first two cases, verification of completely subsurface findings is scarce; while in the third 81 

case, observations can provide a limited picture of eddy three-dimensional structure and 82 

occasionally identify individual subsurface eddies, but ultimately cannot provide a 83 

comprehensive overview of subsurface eddying (Assassi et al., 2016; de Marez et al., 2019; de 84 

Marez et al., 2020; Sun et al., 2022). Regardless, models have been used for subsurface eddy 85 

surveys in the past, albeit using methodologies and thresholds developed for surface eddy 86 

detection or using algorithms that compare unfavorably with more recently developed 87 

methodologies (Doglioli et al., 2007; Petersen et al., 2013; Lian et al., 2019; Xu et al., 2019). 88 

Due to the lack of SSH and corresponding geostrophic current measurements found beneath 89 

the surface, methodologies need to be adapted and optimized for a subsurface ageostrophic 90 

environment. Many of the best-performing methodologies were designed using criteria derived 91 

for geostrophic regimes, such as edge detection methods that require finding closed streamlines 92 

(Le Vu et al., 2018; Nencioli et al., 2010). Therefore, there is a current lack of synchronicity 93 

between existing surface and potential subsurface eddy detection algorithms.  94 

Successful subsurface tracking methodologies, properly implemented, may be used for 95 

multiple purposes, including the study of the spread of distinct water masses. In the Arabian 96 

Sea, there are several high-salinity water masses that typically exist in the range between 0 and 97 

1000 meters: the Arabian Sea high salinity water (ASHSW), Persian Gulf water (PGW), and 98 

Red Sea water (RSW) (Prasad et al., 2001). These water masses each impact the physical 99 

structure of the Arabian Sea with implications for oxygen and nutrient concentrations both 100 

above and below the pycnocline (Morrison et al., 1998; Queste et al., 2018). Recent modelling 101 

and observational studies have indicated the role that subsurface eddies might play in the 102 

spreading and mixing of these water masses (L’Hégaret et al., 2015, 2016, 2021; Morvan et 103 

al., 2020). L’Hégaret et al. (2021) specifically suggest that mesoscale eddies have a major 104 

impact on the distribution and spreading of outflows from the Gulf of Oman and Gulf of Aden 105 
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(GoA) through the rest of the Arabian Sea. Through the development of a specialized eddy 106 

tracking algorithm, we aim to distribute a tool that can efficiently detect eddies that lie 107 

specifically within important subsurface water masses. Here, we choose RSW as an example 108 

due to its identifiable presence at depths greater than 600 meters (L’Hégaret et al. 2021). 109 

 Eddy detection algorithms aimed at detecting purely subsurface eddies must perform 110 

well independently from surface-derived measurements. The main remaining model-derived 111 

fields for use are current velocities, temperature, and salinity. From these, vorticity, the OW 112 

parameter, and LNAM are all viable derived fields. PV is another useful field for use in  113 

subsurface eddy detection, and has been used to success observationally but is more complex 114 

for surface eddy tracking due to the effect of outcropping (Bretherton, 1966; Morel et al., 2019; 115 

Pelland et al., 2013; Schneider et al., 2003). In this study, we will perform the first comparison 116 

and optimization of Eulerian subsurface eddy detection algorithms derived from these fields 117 

against an established winding angle algorithm using SSH at the surface (Chaigneau et al., 118 

2008). We will then demonstrate our resulting optimized algorithm by characterizing the 119 

dynamics of a large, previously undiscovered subsurface eddy that forms semi-regularly to the 120 

east of the Chagos Archipelago. The remainder of our study is organized as follows: section 2 121 

details the data, fields, and tracking algorithm used in this study, section 3 describes the 122 

optimization of our algorithms, section 4 is a case study of a subsurface eddy that highlights 123 

the effectiveness of our optimized algorithm, and section 5 presents a summary and the 124 

conclusions of our work. 125 

2. Data & Methodology 126 

a. Model Simulations 127 

 In this study, we use model simulations from the Nucleus for the European Modelling 128 

of the Ocean (NEMOv3.1) maintained by the Copernicus Marine Environmental Service 129 

(CMEMS), available online at https://resources.marine.copernicus.eu/ with a product ID of 130 

GLOBAL_ANALYSIS_FORECAST_PHY_001_024. Variables used include potential 131 

temperature and salinity from which we derive potential density, SSH, and zonal and 132 

meridional velocities. This is a daily gridded 1/12º horizontal resolution dataset with 50 vertical 133 

levels between 0 meters and 5500 meters. Output is generated in 10-day forecast segments 134 

beginning on January 1st, 2016 and extending into 2022. We choose this model simulations 135 
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given its eddy-resolving high resolution and the fact that it has been successfully used in studies 136 

of Indian Ocean dynamics, notably in the Bay of Bengal (Roman-Stork and Subrahmanyam, 137 

2020). As these are publicly available model outputs, the use of this product in this study allows 138 

for reproduction of our results and calibration of other subsurface eddy detection 139 

methodologies in the future. 140 

b. Field Calculations 141 

1) VORTICITY 142 

 We calculate relative vorticity, 𝜔, as the curl of the total velocity field: 143 

 
𝝎 = 𝝏𝒗

𝝏𝒙
− 𝝏𝒖

𝝏𝒚
, (1) 

where v and u are the magnitudes of the meridional and zonal currents respectively. In the 144 

northern hemisphere, a high-magnitude positive vorticity indicates a maximum of cyclonic 145 

rotation, while a high-magnitude negative vorticity indicates a maximum of anticyclonic 146 

rotation. Vorticity typically decreases from a maximum at the eddy center to zero in the area 147 

of maximum velocity of an isolated eddy, then often reverses sign towards its outer edge 148 

(Aouni, 2021). 149 

2) OKUBO-WEISS PARAMETER 150 

 The Okubo-Weiss (OW) parameter, W, is a combination of vorticity as well as the 151 

normal (sn) and shear (ss) components of the strain as follows (Okubo, 1970; Weiss, 1991): 152 

 𝒔𝒏 =
𝝏𝒖
𝝏𝒙
− 𝝏𝒗

𝝏𝒚
, (2) 

 
 𝑠' =

()
(*
+ (+

(,
, (3) 

 
and 153 

 𝑾 = 𝒔𝒏𝟐 + 𝒔𝒔𝟐 −𝝎𝟐. (4) 

 
A highly negative W signifies a vorticity dominated environment, indicating a likely 154 

eddy center, and W increases towards the edge of an eddy. The sign of the relative vorticity in 155 

the eddy center is used to determine the sense of rotation of an eddy detected using the OW 156 

parameter. 157 
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3) LOCAL NORMALIZED ANGULAR MOMENTUM 158 

The local normalized angular momentum (LNAM) is defined identically to Le Vu et 159 

al. (2018)’s Eq. (2) as implemented in their Angular Momentum Eddy Detection Algorithm 160 

(AMEDA): 161 

 
𝐋𝐍𝐀𝐌(𝑮𝒊) =

∑ 𝑮𝒊𝑿𝒋 	× 	𝑽𝒋𝒋

∑ 𝑮𝒊𝑿𝒋	𝑽𝒋𝒋 	+ 	∑ 5𝑮𝒊𝑿𝒋5	5𝑽𝒋5𝒋
=	

𝑳𝒊
𝑺𝒊 	+ 𝐁𝐋𝐢

, (5) 

 
Where Gi is a grid point and Xj and Vj are the position and velocity vector of a 162 

neighboring point; Li is therefore the local angular momentum at Gi while Si, the sum of the 163 

scalar products, is added to the renormalization term BLi. The summed area is a square domain 164 

whose exact size depends upon the first baroclinic deformation radius. LNAM is especially 165 

useful for detecting eddies whose size lies closely to this radius; as the Arabian Sea lies at low 166 

latitudes, this varies from more than 200 km towards the equator to 80 km or less towards the 167 

northern terrestrial boundaries (Chelton et al., 1998). The only difference between our 168 

formulation of LNAM here and LNAM as defined in Le Vu et al. (2018) is that we use 169 

ageostrophic currents in this analysis. A full description of LNAM can be found in Le Vu et al. 170 

(2018). 171 

4) RESCALED POTENTIAL VORTICITY 172 

 We calculate the rescaled potential vorticity (PV) as designed by Morel et al. (2019) 173 

and demonstrated by Assene et al. (2020). The rescaled PV is defined as 174 

 𝐏𝐕𝐫𝐞𝐬𝐜𝐚𝐥𝐞𝐝 =	 (𝛁	 × 	𝑼 + 	𝒇). 𝛁𝒁(𝝆) 

																												= 	𝐝𝐢𝐯[	(𝛁	 × 	𝑼 + 	𝒇)𝛁𝒁(𝝆)	] 

(6) 

 

where 𝑈 is the velocity field, f  defines the Coriolis parameter, and Z(𝜌) is a function of 175 

potential density. In practice, this function is a reference density profile chosen to represent the 176 

stratification of an area such that the typically overwhelming signature of the pycnocline in the 177 

traditional Ertel PV can be minimized or eliminated. Therefore the choice of this profile 178 

depends upon the spatiotemporal study area. While the rescaled PV (hereafter PV) is highly 179 

sensitive to the choice of reference profile in the surface layers, it becomes less important the 180 

further away the calculation is made from the pycnocline. For this study, we choose a new 181 

reference profile located at 72ºE, 0ºN on a particular day for each monsoon for each year: July 182 

1st for the summer monsoon, and January 1st for the winter monsoon. This location on these 183 
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dates often displays stratification typical of the open ocean Arabian Sea and rarely contains 184 

either eddies or a distinct signature of RSW, making it ideal for the elimination of near-surface 185 

stratification without interfering with subsurface water mass signatures. 186 

The rescaled PV bears the same conservation properties as the traditional Ertel PV and 187 

is also closely related to the quasigeostrophic PV. As a result, it is more closely related to other 188 

dynamical fields, such as vorticity. Indeed, at rest, the rescaled PV is close to f, the local 189 

Coriolis parameter, and an eddy can be identified by its PV anomaly (i.e. PVa = PV-f) within 190 

a layer bounded by two isopycnals, determining its dynamical core. Similarly to 191 

quasigeostrophic eddies, the vertical integration of the rescaled PV within this layer is then 192 

representative of the eddy strength. Finally, in numerical configurations where tides are 193 

simulated, internal gravity waves are generated and they can have a strong mesoscale signature 194 

in all dynamical fields (pressure, stratification, velocity, vorticity) that can spoil detection and 195 

tracking of eddies. PV filters out the signature of gravity waves, which, even though the present 196 

simulation results used here do not represent tides, is another argument for the use of PV for 197 

the detection of eddies. 198 

 This makes the rescaled PV a powerful tool for interpreting the dynamics of subsurface 199 

eddies in numerical models, though some considerations must be noted. Firstly, the necessary 200 

use of isopycnic layers separates the calculation of the PV field from the other fields noted 201 

here, which are typically calculated at static depths. Secondly, the dynamics associated with 202 

PV anomalies are non-local, such that the velocity or vorticity fields associated with a PV 203 

anomaly extend outside the layer. The choice of the isopycnal layers is thus crucial and vertical 204 

sections can be used to make sure the layer is associated with specific PV signature of water 205 

masses and eddies. Finally, when considering the surface layer, the previous arguments are still 206 

valid replacing the upper isopycnic surface bounding the layer with the ocean surface. But an 207 

additional effect, representing the dynamical effect of outcropping in terms of a PV Dirac sheet, 208 

has to be calculated (Bretherton, 1966; Schneider, 2003; Morel et al, 2019). The calculation of 209 

the mean isopycnal PV proposed in Assene et al (2020) has here been extended to take this 210 

term into account (Bretherton, 1966; Schneider, 2003; Morel et al, 2019). For the optimization 211 

component of this study, we calculate the surface layer of the PV between 1000 kg m-3 and 212 

1025.5 kg m-3, accounting for this outcropping at the surface (see Appendix). The 1025.5 kg 213 

m-3 boundary corresponds to the upper edge of the PGW mass as defined by L’Hégaret et al. 214 
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(2021). As a result, this isopycnal is effective at capturing the surface water mass dynamics in 215 

the Arabian Sea without being contaminated by subsurface dynamics as a denser isopycnal 216 

might. Less dense bounding isopycnals reduce the viable study areas around the Gulfs of Aden 217 

and Oman due to the highly dense surface water in these locations.  218 

5) VERTICAL VELOCITY 219 

 We obtain estimates of vertical velocity (w) using the zonal (u) and meridional (v) 220 

components of velocity where appropriate through the integration of the continuity equation: 221 

𝝏𝒘
𝝏𝒛 = −L

𝝏𝒖
𝝏𝒙 +

𝛛𝐯
𝛛𝐲Q 

(7) 

 
c. Eddy Detection Methods 222 

1) THRESHOLDED METHODS 223 

Thresholded methods search for an area with only one local extreme where the largest 224 

enclosing contour is at (or sometimes above, depending on the exact formulation) a threshold 225 

defined by the field in question. These thresholds can be determined at a fixed value arbitrarily, 226 

or as a result of some other calculation. The most common calculation performed to obtain a 227 

threshold for OW is as a multiplicative factor of the standard deviation of the field. Hereafter, 228 

this multiplier is called the STD factor (e.g. Henson & Thomas, 2008; Lian et al., 2019). We 229 

will use the standard deviation method, but optimize the STD factor for both OW and vorticity, 230 

with the ensuing methods of center and edge detection being labelled hereafter as OWT and 231 

VORTT respectively. The STD factors of each will differ between center detection and edge 232 

detection, as the center factor will be stricter than the edge factor to ensure a local extreme is 233 

properly identified. It is worth noting that threshold methods necessarily may not need to obtain 234 

centers before enclosing contours. In this study, we separate both in order to determine if 235 

different center and edge detection fields or methods are more efficient than a single field 236 

center-and-edge detection method. 237 

LNAM as defined by Le Vu et al. (2018) is also a thresholded method with a static 238 

parameter K that is specified as |LNAM(LOW < 0)| = K, where LOW is the Local Okubo Weiss 239 

parameter, calculated in the same domain as LNAM. As with the OWT and VORTT methods’ 240 

thresholds, we will optimize K. LNAM is designed and calculated as a center detection method, 241 

not as an edge detection method, and so we only use LNAM for obtaining eddy centers.  242 
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2) WINDING ANGLE METHODS 243 

 Winding angle methods are those that do not set a threshold for obtaining eddy centers 244 

or edges, instead obtaining these features by searching for the largest closed contour around a 245 

single local extreme with at least 4 x 4 grid points enclosed. This is the original methodology 246 

used by Chaigneau et al. (2008) with SLA (hereafter referred to as the SSH method, as SSH is 247 

the field available in the NEMO model simulations used). We use the winding angle 248 

methodology for OW, hereafter OWWA, vorticity, hereafter VORTWA, and PV averaged within 249 

a layer bounded by two isopycnals, hereafter PVISO. The only parameter that must be set for 250 

winding angle methods is the search increment, which we set as a value lower than the typical 251 

absolute minimum value for each respective parameter: 10-4 m for SSH, 10-7 s-1 for VORTWA, 252 

10-14 s-1 for OWWA, and 10-7 s-1 for PVISO. As Lian et al., (2019) demonstrate, winding angle 253 

methods are weakly sensitive to adjustments in this parameter. Our chosen values, at the 254 

expense of longer computation times, ensure that the closed contours we obtain are accurate 255 

and do not stop short of the largest closed contour. The winding angle contour edge can be 256 

discarded to isolate the winding angle center, allowing for a hybridization of different center 257 

and edge detection methodologies as we detail in Section 3. 258 

d. Error-derived Similarity Score 259 

In order to numerically optimize the performance of each prospective subsurface eddy 260 

detection method, we employ a metric that we will attempt to maximize as we vary each 261 

detection method’s parameters. We first recognize that we must perform this optimization at 262 

the surface, given the lack of observation-based subsurface eddy identification algorithms. Due 263 

to the success of the SSH method in previous studies specifically in the Arabian Sea, we first 264 

analyze surface eddies and use this method’s output as our benchmark (Ernst et al., 2022; Trott 265 

et al., 2018, 2019). Given that our goal is to obtain an algorithm with the best possible similarity 266 

to a proven surface detection method at depth, we can compare the output of our methods to 267 

the SSH method in several ways. We have selected four axes along which to measure error, 268 

selected to reflect the critical components of an eddy tracking algorithm: number of eddies, 269 

shape of eddies, and area covered by eddies (positive and negative error). For each of the 270 

following calculations, the label  AE refers to anticyclonic eddies (AEs) while the label CE 271 

refers to cyclonic eddies (CEs). 272 
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1) NUMBER ERROR 273 

The percentage error between the number of eddies identified by the SSH algorithm 274 

(NSSH) and the algorithm to be tested (NTest) was used to eliminate algorithms that over-identify 275 

eddies in situations where they should be identifying a fewer eddies and vice versa. It is 276 

calculated as: 277 

 
𝐄𝐫𝐫𝐍𝐮𝐦 = T

𝐍𝐓𝐞𝐬𝐭 − 𝐍𝐒𝐒𝐇
𝐍𝐒𝐒𝐇

T (8) 

2) RATIO ERROR 278 

 Some eddy detection schemes will frequently falsely classify currents, front, filaments, 279 

and other elongated structures as eddies. In order to reduce these false classifications, we can 280 

take the ratio of the longest and shortest distances between the eddy edge and the geometric 281 

eddy centroid. Therefore, the ratio error is calculated as the percentage error between the 282 

average of the ratio in both the SSH algorithm (RatioSSH) and the algorithm to be tested 283 

(RatioTest). A ratio closer to 1 reflects a perfectly circular eddy, while a lower ratio reflects an 284 

eddy that is either overly elongated or possesses some anomalously extending element such as 285 

a filament. This is functionally very similar to the classic circularity test but is much more 286 

computationally efficient. We calculate the ratio error as: 287 

 
𝐄𝐫𝐫𝐑𝐚𝐭𝐢𝐨 = T

𝐑𝐚𝐭𝐢𝐨𝐓𝐞𝐬𝐭 − 𝐑𝐚𝐭𝐢𝐨𝐒𝐒𝐇
𝐑𝐚𝐭𝐢𝐨𝐒𝐒𝐇

T (9) 

3) SPATIAL POSITIVE ERROR 288 

This is the percentage error between the area correctly identified as an eddy, either AE 289 

or CE, in the SSH algorithm and the algorithm to be tested. This is assessed pixel by pixel using 290 

a classification scheme where a pixel labelled 0 is considered to be not an eddy, 1 is considered 291 

to be within an AE, and 2 is considered to be within a CE. Any pixels labelled AE or CE are 292 

considered to be part of an eddy, or positively detected. This error is calculated as: 293 

 
𝐄𝐫𝐫𝐏𝐨𝐬 =

𝟏
𝟐LT

𝐅𝐍𝐀𝐄
𝐓𝐏𝐀𝐄 	+ 	𝐅𝐍𝐀𝐄

T + T
𝐅𝐍𝐂𝐄

𝐓𝐏𝐂𝐄 	+ 	𝐅𝐍𝐂𝐄
TQ (10) 

Where TP is the number of true positive pixel identifications, and FN is the number of false 294 

negative pixel identifications. 295 
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4) SPATIAL NEGATIVE ERROR 296 

 This is the percentage error between the area correctly identified as not containing an 297 

eddy in the SSH algorithm and the algorithm to be tested, using the same pixel by pixel 298 

classification as per the spatial positive error. It is therefore calculated as: 299 

 
𝐄𝐫𝐫𝐍𝐞𝐠 =

𝟏
𝟐 LT

𝐅𝐏𝐀𝐄
𝐓𝐍𝐀𝐄 	+ 	𝐅𝐏𝐀𝐄

T + T
𝐅𝐏𝐂𝐄

𝐓𝐍𝐂𝐄 	+ 	𝐅𝐏𝐂𝐄
TQ (11) 

where TN is the number of true negative pixel identifications with the SSH algorithm 300 

considered to be the truth, and FP is the number of false positive pixel identifications. 301 

5) AGGREGATE SIMILARITY SCORE 302 

 This is the aggregate score, S, used to optimize eddy detection methods. It is calculated 303 

using an arithmetic mean of the above errors: 304 

 
𝑺 = ]𝟏 −

𝟏
𝟒 _𝐄𝐫𝐫𝐍𝐮𝐦 +	𝐄𝐫𝐫𝐑𝐚𝐭𝐢𝐨 +	𝐄𝐫𝐫𝐏𝐨𝐬 +	𝐄𝐫𝐫𝐍𝐞𝐠`a ∗ 𝟏𝟎𝟎 (12) 

A perfect similarity score of 100 indicates that the test and SSH methods result in the exact 305 

same eddy detection scheme with the same number of eddies, in the same shapes, covering all 306 

of the same pixels. We therefore attempt to maximize the similarity score of an algorithm in 307 

the ensuing analysis, although each individual error is considered in the performance of the 308 

results. In our analysis below, there is no weighting given to each of the scores. However, the 309 

reader is invited to use arbitrary weighting of the scores in their own applications for their own 310 

purposes. 311 

e. Tracking 312 

 An eddy tracking methodology is required to verify the identification of specific eddies 313 

over multiple time steps. In this study, we use the eddy tracking algorithm developed by 314 

Chaigneau et al. (2008) and Pegliasco et al. (2015). This algorithm has since been used in the 315 

Arabian Sea to describe the nature and variability of both the eddy field as a whole and to 316 

characterize specific climatological eddies (Ernst et al., 2022; Trott et al., 2018). This algorithm 317 

compares eddies with overlapping areas between subsequent time steps using a cost function 318 

based upon the differences in radii, amplitudes, and EKE of each eddy. A minimum of this cost 319 

function represents the most statistically similar and thus likely eddy trajectory to continue 320 
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tracking. A comprehensive description of this tracking algorithm can be found in Trott et al. 321 

(2018). It is worth noting that any other tracking algorithms may be used in conjunction with 322 

our detection scheme. 323 

f. Optimization Domain 324 

 All optimizations are performed between 10ºS and 30ºN, 40ºE and 80ºE, and over the 325 

winter (November, December, January, February) and summer (May, June, July, August, 326 

September) monsoons of 2016, 2017, and 2019 to encompass the Arabian Sea. These years 327 

were chosen as their monsoons cover each classification of monsoon from weak (2016) to 328 

normal (2017) to strong (2019) and so provide variation of the Arabian Sea eddy field to fully 329 

test each parameter (Ernst et al., 2022; Greaser et al., 2020). All eddies with a radius smaller 330 

than 25 km are eliminated from our results, as these eddies are below the mesoscale (defined 331 

here as smaller than the first baroclinic deformation radius, approximately 50 km in the central 332 

Arabian Sea) and currently lack altimetric verification for the SSH method in the Arabian Sea 333 

(Le Vu et al., 2018). The total number of eddy maps (days) across all tested monsoons is 837, 334 

with the SSH method at the surface finding a total number of 24,681 CEs and 23,532 AEs 335 

before individual detections are collated into trajectories. 336 

3. Eddy Tracking Optimization 337 

a. Center Thresholds 338 

 To begin our search for an optimized detection method, we separate the center- and 339 

edge-finding components and test their parameters separately. First, we optimize the thresholds 340 

of the methods that require them, namely VORTT, OWT, and LNAM. We do this by using the 341 

SSH edge component, ensuring that the edge-finding method is the same for each center 342 

method tested (Fig. 1). 343 
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 344 

Figure 1. Optimizations of the center threshold parameters of VORTT (a), OWT (b), and LNAM 345 
(c) with each type of error and score. The STD factor for OWT is considered to be always 346 
negative, as only a negative OW is associated with eddy centers. 347 

We find that the optimized center threshold values of 0.85 for VORTT (Fig. 1a), 0.15 348 

for OWT (Fig. 1b), and 0.65 for LNAM (Fig. 1c). We note that the optimum threshold parameter 349 

is most heavily determined by the number and the spatial positive errors, with only a slight 350 

variation in ratio error and very little change in spatial negative errors. We find that these 351 

thresholds lie closely to values found in the literature, i.e. 0.2 for OWT’s STD factor and 0.7 352 

for LNAM’s K (Isern-Fontanet et al., 2003; Le Vu et al., 2018; Xu et al., 2019). However, our 353 

optimal values are smaller by 0.05 in both cases, reflecting a very slightly more lenient 354 

threshold. Overall, only OWT favors a single optimum value based upon its aggregate score, 355 

while VORTT and OWT each have a wide range of similar values higher than 0.7; VORTT 356 

scores are similar between a STD factor of 0.5 and 1, while LNAM scores have the largest 357 

range of comparable values between 0.1 and 0.8, which also matches the findings of Le Vu et 358 

al. (2018). All further analysis with these methods is hereafter performed with the optimized 359 

values determined above. 360 

b. Center Filtering 361 

 Given the high resolution of the model used and the noise often contained within the 362 

non-normalized vorticity derived fields, a simple low-pass moving average filter may be 363 

applied to the data to enhance detectability of mesoscale features (Souza et al., 2011). The size 364 

of this filter, if it should be applied at all, may also be optimized, with the number of pixels on 365 
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each side of the center pixel (the half window) denoting the smoothing factor (Fig. 2). In this 366 

case, an increase in smoothing factor by 1 increases the size of the low-pass filter by 1/12º on 367 

all sides, such that a maximum tested smoothing factor of 15 is a filter of 31 pixels by 31 pixels 368 

(including the center pixel), or approximately a 280 km low-pass filter depending on latitude.  369 

 370 

Figure 2. Smoothing factors optimized for the center components of VORTT (a), VORTWA (b), 371 
OWT (c), OWWA (d), and PVISO (e) for each type of error and score. STD factors are the 372 
optimized values in Fig. 1. 373 

We find that the optimal smoothing factors for each field are 2 for VORTT (Fig. 2a), 7 for 374 

VORTWA (Fig. 2b), 0 (no smoothing) for OWT (Fig. 2c), 3 for OWWA (Fig. 2d), and 3 for PVISO 375 

(Fig. 2e). Of these optimizations, VORTT and OWT are the most sensitive, with higher 376 

smoothing factors drastically increasing both number and spatial correct errors. OWWA and 377 

PVISO are only slightly less sensitive, with increasing number and spatial correct errors on either 378 

side of the optimized value. Lastly, VORTWA is relatively stable, with little difference between 379 



 
 

16 

high and low smoothing factors. As with the threshold values obtained in section 3a, we 380 

continue with the optimized smoothing factors above. 381 

c. Edge Thresholds 382 

 VORTT and OWT can be decomposed into center and edge thresholds which may be 383 

considered separately (Fig. 3). For this purpose and for other edge method optimizations, the 384 

center method is set to SSH to remain constant. 385 

 386 

Figure 3. Optimizations of the edge threshold parameters of VORTT (a) and OWT (b) with each 387 
type of error and score. The STD factor for OWT is always negative.  388 

We find that VORTT has an edge STD factor threshold optimized at 0.6 (Fig. 3a) while 389 

OWT is optimized at 0.1 (Fig. 3b). Both STD factors are smaller than their respective center 390 

STD factors (Fig. 1), reflecting the need for a more restrictive STD factor to determine the 391 

center versus the edge of an eddy. Neither VORTT nor OWT compare well to SSH as edge 392 

methods, with minimal spatial correct errors of 0.91 and 0.84 respectively, meaning that more 393 

than 4 out of every 5 eddy-containing pixels in the SSH method were identified as non-eddies 394 

with these methods. This is consistent with previous comparisons that have demonstrated that 395 

the OWT method identifies smaller eddy contours than other methods as compared to the SSH 396 

method, which tends to result in relatively large eddy contours (Lian et al., 2019; Souza et al., 397 

2011). We would logically expect that if our ‘truth’ method were, e.g., a variant of the OWT 398 

method, the spatial positive error would be considerably less for OWT given the method’s 399 

resemblance. 400 
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d. Edge Filtering and Ratios 401 

 As with center methods, we can determine what degree of low-pass filtering might 402 

benefit eddy edge detection. We can also filter out elongated fronts and other non-eddy 403 

structures using the same axis ratio used for the calculation of the ratio error metric (Section 2, 404 

d, 2). In other words, all eddies with a ratio of longest to shortest edge away from the centroid 405 

less than a certain threshold are eliminated. In this regard, we vary both the spatial smoothing 406 

and minimum ratio together to obtain an optimal result (Fig. 4). 407 

 408 

Figure 4. Aggregate similarity score of the edge components of VORTT (a), VORTWA (b), OWT 409 
(c), OWWA (d), and PVISO (e) for the optimization of both smoothing factor and minimum 410 
centroid ratio using SSH centers. Black Xs mark the combination of smoothing factor and 411 
centroid ratio that result in the best similarity score for each edge method tested. 412 

We find that both thresholded methods perform best when relatively unprocessed: 413 

VORTT (Fig. 4a) is optimized at a smoothing factor of 2 with no minimum centroid ratio, while 414 

OWT (Fig 4c) is optimized without smoothing or a minimum ratio. OWWA follows VORTT in 415 

benefiting from a small smoothing factor of 1 and no minimum centroid ratio (Fig. 4d). 416 
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VORTWA (Fig. 4b) benefits from moderate smoothing factor of 5 and a minimum ratio of 0.12 417 

and PVISO (Fig 4e) benefits from a similar smoothing factor of 4 as well as a small minimum 418 

centroid ratio of 0.08. We proceed to the final step of method hybridization with these 419 

parameters set exactly as in Fig. 4. 420 

e. Hybrid Method Evaluation 421 

 Hybrid center and edge detection methods can leverage the strengths of two separate 422 

fields or sets of restrictions to produce a superior detection algorithm; AMEDA is one such 423 

example, using LNAM for center detection with SSH or geostrophic currents used for edge 424 

detection (Le Vu et al., 2018). As a result, we can combine the optimized center and edge 425 

methods independently produced by the above analysis to determine if using separate center 426 

and edge detection methods creates the optimal hybrid method for subsurface eddy detection 427 

when compared to the traditional SSH method (Fig. 5). 428 

 429 

 430 
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Figure 5. Hybrid method optimization using all center and edge method combinations. Shown 431 
are the number error ErrNum (a), centroid ratio error ErrRatio (b), spatial correct error ErrPos 432 
(c), spatial incorrect error ErrNeg (d), and aggregate similarity score (e). Black Xs mark 433 
optimal combinations of methods per error and score. Errors are considered optimal when 434 
minimized, and similarity score is considered optimal when maximized. 435 

We find that the overall best algorithm is one that utilizes PVISO for both center and 436 

edge detection with a similarity score of 74.65 (Fig. 5e); this algorithm performs best for both 437 

number errors (Fig. 5a) and ratio errors (Fig. 5b) as well, with optimal errors of 12.16% and 438 

5.07% respectively. However, both spatial errors have separate optimal algorithms, as ErrPos is 439 

optimized with VORTWA centers and VORTWA edges with an error of 71.66% (Fig. 5c) and 440 

ErrNeg is optimized with LNAM centers and OWWA edges with an error of 1.27% (Fig. 5d). We 441 

do note, however, that there is relatively little difference between the best and worst performing 442 

ErrNeg algorithms versus other error types and that ErrPos is relatively large for all methods, 443 

underlining the fact that eddies delimited by SSH have larger contours than any other method. 444 

Overall, the best performing edge methods are VORTWA and PVISO regardless of center 445 

methods, while the best overall center method varies by edge method (Fig. 5e). That the 446 

winding angle edge algorithms perform better in this analysis is unsurprising, given the 447 

winding angle nature of the original SSH algorithm. We would expect that any such 448 

comparison would favor similarly constructed algorithms. However, this comparison process 449 

is applicable for any original eddy tracking methodology, and so the desirable traits of any 450 

other algorithm can be potentially replicated using our overall optimization approach. 451 

Before using any of these hybrid algorithms, we must verify their performance visually 452 

to ensure they are detecting eddies sensibly. For this, we select 6 of our algorithms. We first 453 

display the SSH algorithm to provide a baseline, then follow with OWT centers and OWWA 454 

edges, as this algorithm is the best performing algorithm using only OW. Then, we demonstrate 455 

VORTWA centers and VORTWA edges as the best performing ErrPos algorithm, LNAM centers 456 

and OWWA edges as the best performing ErrNeg algorithm, VORTT centers and PVISO edges as 457 

the runner up to the best algorithm, and PVISO centers and PVISO edges as the best overall 458 

algorithm. We demonstrate each of these algorithms in several times and locations, beginning 459 

in the GoA on January 1st, 2017 (Fig. 6). 460 
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461 
Figure 6. Detected contours (black lines) and centers (+s for AE centers, Xs for CE centers) 462 
on January 1st, 2016 in the GoA for the following center/edge hybrid methods: SSH/SSH (a), 463 
OWT/OWWA (b), VORTWA/VORTWA (c), LNAM/OWWA (d), VORTWA/PVISO (e), and PVISO/PVISO 464 
(f). Color is given by the edge fields and are shown without low pass filtering. Current vectors 465 
are overlaid. 466 

 In this snapshot, we find 4 major eddies: an elongated CE in the GoA, two cyclones to 467 

the north and south of Socotra, and a large AE partially out of frame to the east (Fig. 6a). All 468 

algorithms detect the eddies to the north and south of Socotra, with the PVISO algorithms 469 

achieving the most accurate shapes (Fig. 6e, f). By contrast, only the VORTWA/VORTWA and 470 

PVISO/PVISO algorithms properly detect the large eastern AE (Figure 6c, f). The middle CE is 471 

partially detected in two parts by the OWWA edge algorithms and the VORTWA/VORTWA 472 

algorithm, while only the PVISO/PVISO algorithm identifies it as a single eddy (Fig. 6b, c, d, f). 473 

In terms of smaller eddies, the possible AE to the west of Socotra seen in the SSH method is 474 

only identified by the VORTWA/VORTWA algorithm, while the cyclone alone 8ºN is detected 475 

by all algorithms except the PVISO/PVISO one. Overall, this figure demonstrates that all methods 476 

are capable of detecting eddies within the GoA and around Socotra, but that PVISO algorithms 477 
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achieve the most desirable eddy shapes. We continue to see if this is the case using an image 478 

of the Gulf of Oman on July 28th, 2017 (Fig. 7). 479 

480 
Figure 7. As in Figure 6, but for the Gulf of Oman on July 28th, 2017. 481 

At this point in time, we observe two major eddies in the region, an AE along the 482 

southeastern coast of the Arabian Peninsula and exiting the Gulf of Oman (Fig. 7a). These 483 

eddies are once again detected by all algorithms, although the PVISO edge methods additionally 484 

identify an elongated section to the east (Fig. 7e; Fig. 7f). Besides these two large eddies, there 485 

are a handful of smaller cyclones and anticyclones centered around 64ºE, 20ºN that are partially 486 

detected by all methods except LNAM/OWWA. This makes sense, as every other algorithm 487 

over-detects smaller eddies in the region, while LNAM/OWWA is optimized for reducing false 488 

detections. The OWT/OWWA and VORTWA/VORTWA methods are especially prone to false 489 

detections to the northeast. This is reflective of the broader trend of VORTWA/VORTWA as seen 490 

in Figure 5c and 5d: this algorithm consistently detects almost every eddy in any given image 491 
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as it optimizes spatial positive errors, but consistently over-detects, as it has the greatest spatial 492 

negative error. This is especially seen in the next series of images of climatological eddies, 493 

beginning with the Lakshadweep High (LH) during the northeast monsoon in 2016 (Fig. 8). 494 

495 
Figure 8. As in Figure 6, but for the Laccadive Sea and West India Coastal Current region on 496 
January 1st, 2016. 497 

Here, the LH is centered around 75.8ºE, 7.5ºN, with smattering of less intense AEs and 498 

CEs to the west and northwest (Fig. 8a). As before, all algorithms detect the LH, though the 499 

PVISO/PVISO algorithm makes a curious detection of the LH as an AE, rather than a CE, with a 500 

core of positive PV (Fig. 8f). This is only possible due to the isopycnal averaging process 501 

detecting a cyclonic core underlying the LH as more powerful than the anticyclonic anomaly 502 

at the surface. Misdetections of this manner are not normally the case with this algorithm’s 503 

performance, but it indicates a reason why its spatial positive error would be higher at the 504 

surface, as deeper features can confuse the algorithm. Logically, this would not be an issue in 505 

deeper isopycnal layers. Besides the LH, the smaller eddies are best represented by the 506 
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PVISO/PVISO algorithm, with the other algorithms displaying their common traits as previously 507 

highlighted: an over detection of eddies by VORTWA/VORTWA, an under detection of eddies 508 

by LNAM/OWWA, a balanced performance by OWT/OWWA that tends towards under detection, 509 

and a similar performance by VORTWA/PVISO that tends towards over detection (Fig. 8b, c, d, 510 

e). To complement this analysis of the LH region and conclude our visual tests, we present a 511 

similar snapshot of the Great Whirl (GW) during the strong southwest monsoon of 2019 (Fig. 512 

9). 513 

 514 

Figure 9. As in Figure 6, but for the Somali Current region on August 28th, 2019. 515 

The GW is evidently the massive AE centered on 53.3ºE, 7.9ºN (Fig. 9a). At this point 516 

in time, only VORTWA/VORTWA and PVISO/PVISO algorithms properly detect it (Fig. 9c; Fig. 517 

9e). By contrast, although centers are identified in every other algorithm, internal variation 518 

within the GW prevents a detection. The orbiting cyclone to the GW’s east is detected by all 519 

algorithms except LNAM/OWWA, a rare failing for this algorithm, while the OW algorithms 520 
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falsely detect filaments along the southern edge of the GW (Fig. 9b, d). The surrounding 521 

energetic eddy field is best represented by PVISO/PVISO, although no algorithm perfectly detects 522 

every eddy. Every algorithm in this snapshot falsely detects at least one eddy, e.g. the possible 523 

cyclone to the southwest of the GW that is detected by every algorithm except OWT/OWWA 524 

(Fig. 9b). It is reasonable to conclude that many of these less pronounced detections could be 525 

false detections or non-detections by the SSH algorithm. However, as previous studies have 526 

concluded, no single algorithm is perfect at detecting all types of eddies, and there is a lack of 527 

a unified eddy definition, so our analysis above includes all of the SSH algorithm’s features 528 

and biases, by nature integrating some of them into our resulting algorithms that emulate it 529 

(Lian et al., 2019; Souza et al., 2011). 530 

With all of the above analyses considered, we conclude that the best algorithm for use 531 

both along isopycnals and in the general sense is PVISO/PVISO, specifically with the smoothing 532 

factors and centroid ratios we have optimized. By contrast, algorithms that utilize the OW are 533 

prone to detecting much smaller eddy contours, often missing eddies entirely and often missing 534 

large circulations. Algorithms based around the relative vorticity are functional, but with a 535 

tendency to massively over identify eddies.  536 

To summarize our final PVISO/PVISO optimized method: we first begin with the 537 

horizontal velocity fields, temperature, and salinity from our model. We calculate potential 538 

density and then rescale the density profile for each vertical column using a representative 539 

reference profile defined at a certain location and time (here, 72ºE, 0ºN, recalculated for each 540 

monsoon season). This rescaling reduces the effect of the pycnocline on the resultant PV 541 

profile. The PV field is averaged between two bounding isopycnals as in Assene et al. (2020). 542 

In the figures above, this is done for the surface waters of the Arabian Sea down to 1025.5 kg 543 

m-3. This rescaled PV is passed through a simple moving average low pass filter with a half-544 

window of 3 pixels to slightly reduce noise (Fig. 2). Then, we extract local extremes with closed 545 

contours of smoothed PV around them and label them as tentative eddy centers. Prior to edge 546 

detection, we again smooth the original rescaled PV field in a similar manner with a half-547 

window of 4 pixels (Fig. 3). We then find the largest enclosing contour of PV around each 548 

previously identified extreme in the winding angle method style described by previous studies 549 

(Chaigneau et al., 2008). Finally, we eliminate all instances of contours with a longest-to-550 
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shortest centroid-to-edge distance ratio of less than 0.08, excluding overly elongated, front-like 551 

features from the final results (Fig. 3).  552 

To summarize, the final optimized parameters for PVISO/PVISO and all other algorithms 553 

are placed in Table 1. 554 

 555 

Method Optimal 
Smoothing 
(Pixels) 

Optimal 
Smoothing 
(Kilometers) 

Optimal 
Ratio 

Optimal 
Threshold 
Parameter 

Optimal 
Partner 
Method 

Final 
Similarity 
Score 

VORTT, 
Center 

2 19  0.85 * STD OWWA 69.18 

VORTT, 
Edge 

2 19 0 0.6 * STD VORTT 58.98 

OWT, 
Center 

0 0  0.15 * STD OWWA 67.86 

OWT, Edge 0 0 0 0.1 * STD PVISO 58.48 
VORTWA, 
Center 

7 65   PVISO 73.48 

VORTWA, 
Edge 

5 46 0.12  VORTWA 71.01 

OWWA, 
Center 

3 28   VORTWA 69.28 

OWWA, 
Edge 

1 9 0  VORTT 69.18 

LNAM, 
Center 

   0.65 (K) VORTWA 65.90 

PVISO, 
Center 

3 28   PVISO 74.65 

PVISO, 
Edge 

4 37 0.08  PVISO 74.65 

Table 1. The summary of final parameters for all tested detection methods as individually noted 556 

in Figures 1-5. Kilometer values for optimal smoothing are approximate, rounded values given 557 

the variation of longitude with latitude and are intended primarily for reference within our 558 

specified domain. 559 

 560 

 561 

 562 
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4. Case Study: Red Sea Water 563 

a. Isopycnal Evaluation. 564 

 In this section, we demonstrate the procedure by which eddies within a water mass can 565 

be tracked using our method. We begin with a brief case study of RSW, using our diagnostics 566 

to pinpoint a new large eddy identifiable exclusively in the subsurface. However, we must 567 

begin this demonstration by  defining the RSW domain in our model. Previous studies have 568 

determined several isopycnals along which the RSW water mass lies based upon observations 569 

(L’Hégaret et al., 2021; Prasad & Ikeda, 2001). Although exact ranges vary depending on the 570 

distance from the strait of Bab-el-Mandeb, strict definitions of RSW might choose isopycnals 571 

of 1027 kg m-3 and 1027.4 kg m-3, while more loose boundaries might define isopycnals of 572 

1026.5 kg m-3 and 1028 kg m-3. In order to determine the isopycnals along which we determine 573 

the RSW water mass to be for our model, we must validate it against observations. In this case, 574 

we use the methodology of L’Hégaret et al., 2021 to determine our isopycnals (Fig. 10). 575 

 576 

Figure 10. The isopycnal limits of RSW. (a) T-S diagram for the GoA with the median profile 577 
± one standard deviation; the boundary isopycnals (kg m-3) defined by L’Hégaret et al. (2021) 578 
are bolded. (b) The L’Hégaret et al. (2021) algorithm for RSW water mass detection on a 579 
vertical profile located at 55ºE, 13ºN on July 7th, 2018. The vertical spiciness trend to be 580 
removed is the dotted blue line. The bolded portion of the profile lies between the bolded 581 
isopycnals in (a) and below 600 m; the red circle denotes the maximum of the RSW while the 582 
red crosses represent the upper and lower minimums. 583 
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 Comparing to L’Hégaret et al. (2021) Figures 3b and 4b, we find that the NEMOv3.1 584 

model results in the GoA are on average 0.5 kg m-3 less dense at the peak density at depth (Fig. 585 

10a) with a much wider spread of salinity values in the intermediate layers. Regardless, the 586 

peak of the RSW still is encapsulated broadly by the 1026 kg m-3 and 1028 kg m-3 bounding 587 

isopycnals in the GoA. We use these values to repeat the L’Hégaret et al. (2021) water mass 588 

detection algorithm at each vertical profile. First each T-S profile is converted into spiciness 589 

following the Gibbs SeaWater (GSW) Oceanographic Toolbox of TEOS-10; this uses the 590 

McDougall and Krzysik (2015) formulation of spiciness. Then, the spiciness profiles are 591 

vertically detrended, and the previously defined isopycnals, combined with a minimum upper 592 

depth of 600 m, are used to define the range of possible depths within which we locate RSW. 593 

Within this range of values, a maximum, upper minimum, and lower minimum spiciness are 594 

defined (Fig. 10b). We therefore calculate the temporal averages of these values and determine 595 

the basin-wide maxima and minima (Fig. 11). 596 

 597 

Figure 11. (a) The maximum densities (kg m-3) within the RSW isopycnal bounds in our model. 598 
(b) the range width between the upper minimum and lower minimum bounds of RSW density 599 
within the isopycnal bounds defined above (kg m-3). 600 

 We find that the average RSW maximum decreases away from the strait of Bab-el-601 

Mandeb, scaling from 1027.2 kg m-3 at the strait to 1027.1 kg m-3 at the edge of the GoA and 602 

out to 1027.05 kg m-3 in the central and northern Arabian Sea (Fig. 11a). Overall, the vast 603 

majority of the RSW maximums (within 2 standard deviations) in our model are found between 604 

1026.95 and 1027.3 kg m-3. The opposite trend is seen in the density ranges, as the density 605 
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ranges are most constrained closer to Bab-el-Mandeb at 0.2 kg m-3, increasing rapidly to the 606 

edge of the Gulf and out to 0.6 and 0.7 kg m-3 in the northern and southern Arabian Sea 607 

respectively (Fig. 11b). We find that the density range width often follows bathymetry, with 608 

the shoaling of the Central Indian Ridge clearly visible as a decrease in density range. This 609 

reflects the propensity for the bottom minimum to lie literally on the bottom of the bathymetric 610 

model mesh throughout this region. The majority of the density range is the difference between 611 

the maximum and the bottom minimum, rather than the top minimum; the average difference 612 

between the top minimum and the maximum is 0.037 kg m-3, while the difference between the 613 

bottom minimum and the maximum averages 0.6 kg m-3. With these numbers in mind, we aim 614 

to capture eddy dynamics in the maximum of RSW, constricting our depth range enough that 615 

we do not average over too many layers. We therefore choose an isopycnal range between 616 

1026.95 kg m-3 and 1027.4 kg m-3 for the following analysis. This contains all RSW maxima 617 

to within 3 standard deviations, with an upper bound adhering to the findings of Prasanna 618 

Kumar & Prasad (1999). Across the Arabian Sea in the model domain and time period studied, 619 

the average depth of the former isopycnal is 633 m and the average depth of the latter isopycnal 620 

is 1034 m, encompassed by NEMO model levels 32 through 36. As our reference profile 621 

location typically does not display a major signature of RSW, we maintain its use for our results 622 

as described in Section 2f.  623 

We will now proceed to provide a brief overview of the results of our methodology. 624 

The total results as summarized below are best interpreted using our Movies S1 and S2 that 625 

present the PV and Spiciness of the Arabian Sea in conjunction with our detected eddies and 626 

their respective tracking numbers over time. We encourage the reader to examine these movies 627 

and note that, while many eddies are correctly identified, as noted by the spatial positive error 628 

from Fig. 5, our method is not perfect, but can, as demonstrated below, still provide a useful 629 

tool for characterizing subsurface eddies that exist within specific water masses. 630 

b. Red Sea Water Eddy Tracking 631 

We find that the largest number of eddies by category are CEs produced in the summer 632 

monsoons (Fig. 12i-j), with the largest generation sites at the mouth of the Gulf of Oman and 633 

along the Somali Current. By contrast, the winter monsoon CEs are detected most frequently 634 

along the West Indian Coastal Current (WICC) (Fig. 12a-b). While the summer monsoon CE 635 
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distribution is consistent with previous studies of surface eddies, such as Zhan et al. (2020), the 636 

winter CE distribution is unanticipated. The most likely explanation is Rossby wave activity 637 

radiating from the second annual downwelling coastal Kelvin wave each year, as the westward 638 

trajectories and phase speeds of these eddies suggest this origin (Brandt et al., 2002; 639 

Subrahmanyam et al., 2009). Additionally, Wang et al. (2021) demonstrate that the signals of 640 

baroclinic Rossby waves are visible in the vorticity balance even past 1000 meters, albeit 641 

weakly. Another reasonable source of these eddies might be a long-lasting meander in the RSW 642 

outflow tongue, as documented observationally by Meschanov & Shapiro (1998). AEs in the 643 

winter also are mainly found along the axes of what could be either Rossby waves or the RSW 644 

outflow tongue (Fig. 12f). AEs during the summers are more scattered, with a large number of 645 

AEs detected around both in the WICC region and around Socotra (Fig. 12 m-n). The 646 

prevalence of AEs in the eastern Arabian Sea during the summer is less supported by surface 647 

observations and may be assisted due to the deepening of the WICC undercurrent during the 648 

summer (Chaudhuri et al., 2021; Trott et al., 2018). If this is the case, then we will expect large 649 

levels of interannual variability in this region (as observed by Chaudhuri et al., 2021).  650 

Regardless of the season, the largest and most intense eddies are detected in the Somali 651 

Current and the GoA (Fig. 12c-d, g-h, k-l, o-p). Intense RSW eddies are expected in the GoA, 652 

as RSW both lies along the bottom and encounters waters from the south, subjecting it to 653 

mixing and bottom friction simultaneously (Al Saafani & Shenoi, 2007; de Marez et al., 2020). 654 

This spreading also corresponds to previous observations of eddies in the RSW, where 655 

instabilities in the spreading out of the GoA is indicated as the primary eddy formation 656 

mechanism (Shapiro & Meschanov, 1991). This may help explain the relative deficit of eddies 657 

directly in the mouth of the GoA versus the proliferation of eddies further east. Unusually, 658 

there is a small region where an above-average number of large, very intense Antarctic 659 

Intermediate Water  (AAIW) eddies are detected around 8ºS, 73ºE. This corresponds to the 660 

region around the Chagos Archipelago and has not been documented to this point (Trott et al., 661 

2017; Trott et al., 2019; de Marez et al., 2019).  662 

 663 
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 664 

Figure 12. The properties of each type of RSW eddy separated by monsoon in 2ºx2º bins: Winter 665 
CEs (a-d), Winter AEs (e-h), Summer CEs (i-l), and Summer AEs (m-p). Gen. Num. refers to 666 
where eddies are first detected. Radius and Amplitude (absolute value) are average values. 667 

c. A Chagos Eddy and its Potential Vorticity Evolution. 668 

To demonstrate the dynamical analysis that is more easily enabled with the PVISO/PVISO 669 

method, we investigate the anomalously intense AEs that form near the Chagos Archipelago 670 

as identified in Figure 12, hereafter referred to as the Chagos eddies. These eddies form 671 

frequently around the Chagos Archipelago during the southwest monsoon, and select one such 672 

eddy on May 29th, 2019 (eddy ID 998 in Movie S1 and Movie S2), which had first been 673 

identified 16 days earlier and would continue to remain identifiable as a high PV core until late 674 
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July, although our algorithm loses track of it after mid-June due to edge interference with the 675 

Chagos Archipelago (Fig. 13). 676 

 677 

Figure 13. The three dimensional structure of a Chagos eddy on May 29th, 2019 with NEMO 678 
levels 2, 29, 35, 38, 40, and 42 displayed. Column 1: the potential density (kg m-3) and current 679 
vectors on each level, with mesh grids marking the upper (1026.95 kg m-3) and lower (1027.4 680 
kg m-3) isopycnal bounds within which the eddy is defined in our algorithm. Column 2: the 681 
salinity (psu) and current vectors of the column. Column 3: The PV anomaly (s-1) and current 682 
vectors of the column with a mesh contour defining the algorithmically defined boundaries of 683 
the eddy within the layers of Column 1. A black line marks the center point of the eddy, with a 684 
solid line marking the target density layer and spaced triangles marking depths outside of the 685 
target density layer. 686 

We observe the deformation of the isopycnals downward in the water column (Fig. 13, 687 

Col. 1) between 600 and 1200 meters. This is accompanied by an anticyclonic vortex that is 688 

positioned between a high salinity water mass to the north and a low salinity water mass to the 689 

south, with a peak salinity at approximately 700 meters’ depth (Fig. 13, Col. 2). This is almost 690 

the exact depth of the identified eddy (743 meters maximum PV anomaly), which at this time 691 

possesses an average radius of 112 km (Fig. 13, Col. 3). As this lies in the southern hemisphere, 692 

this counterclockwise circulation is associated with the downwelling of water in the 693 

intermediate ocean. Furthermore, there is no sign of an eddy at the surface, indicating that this 694 

eddy is fully subsurface with a signature visible down to 2000 meters.  695 
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To determine how this eddy may have formed, we perform Lagrangian particle tracking 696 

as described by Assene et al. (2020). This takes 500 particles randomly seeded within the eddy 697 

radius and vertically within 100 meters of the maximum PV anomaly depth of the eddy core 698 

(Fig. 13, Col. 3) in regions with a vorticity greater than 1 × 10-6 s-1. We calculate the particle’s 699 

position, PV, and Richardson number (Ri) backwards in time to determine an initial position 700 

100 days prior. Since isopycnal PV is conserved adiabatically, the particles that have 701 

experienced the largest changes in PV have therefore undergone mixing, friction, or some other 702 

diabatic process. We use the same scheme as Assene et al. (2020) to classify particles as high 703 

(initial PV greater than 2 standard deviations above final PV), low (initial PV less than 2 704 

standard deviations above final PV), or medium (initial PV within 2 standard deviations of 705 

final PV) starting PV particles, where the standard deviations are calculated using all particles’ 706 

final PV. These are displayed as red crosses, blue triangles, and green diamonds, respectively. 707 

We begin by displaying all 500 particles’ evolution and general characteristics through time 708 

(Fig. 14). 709 

 710 
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Figure 14. (a) The beginning (February 18th, 2019, colored) and end (May 29th, 2019, black) 711 
locations of each type of particle as described in the text (red cross = high PV, blue triangle = 712 
low PV, green diamond = medium PV). The Chagos Archipelago is greyed out to the eddy’s 713 
northwest. (b) A T/S diagram of the initial (colored) and final (black) particles. (c) a density/PV 714 
diagram of the initial (colored) and final (black) particles. (d) the depth evolution of each type 715 
of particle by date with colors as in (a). (e) as in (d), but with PV.  716 

 We find that 56.4%, or 282 of the particles that formed the Chagos eddy were initially 717 

low PV, with only 28.6%, or 153 of the particles possessing moderate PV and the remaining 718 

15%, or 75 particles, having high in PV (Fig 14a). 80.6%, or 403 of the particles originate to 719 

the east of the Chagos Archipelago, while the remaining 97 particles originate to the west. Low 720 

PV particles are the most clustered, found primarily in an eastern grouping centered on 6ºS, 721 

77ºE and a western grouping around 7ºS, 70ºE. By contrast, moderate PV particles are found 722 

throughout the entire domain where particles are found, though with the smallest average 723 

movement from starting position to ending position, as a large number of moderate PV particles 724 

are scattered to the north of the eddy. Finally, the high PV particles are found both in the eastern 725 

cluster where the low PV particles are found, as well as the eastern edge of the Chagos 726 

Archipelago and the far western edge of the domain around 64.5ºE. The particles’ temperatures 727 

and salinities display two groupings roughly above and below 7.8ºC, with a notable scattering 728 

of low PV particles being the warmest around 9ºC and a tight grouping of high PV particles 729 

being the coldest at or below 6ºC (Fig. 14b). As seen by the highly concentrated final positions, 730 

particles remain grouped into two halves by temperature, with a range of salinities from 34.8 731 

psu to 34.87 psu. The density groupings in Fig. 14c further make apparent that there are two 732 

distinct clusters of density for all particles, regardless of initial PV. The original depths of the 733 

particles range from 450 meters to 1100 meters, with low PV particles dominating the layer 734 

closer to the surface and high PV particles being the most prevalent in the deepest layer (Fig. 735 

14d). The low PV particles sink by 200 meters around late April, while the high PV particles 736 

rise to 900 meters or above by early April. We observe that most particles are clustered around 737 

a PV of -1 × 10-5 s-1 for most of their lifetime (Fig. 14e). Many of the high PV particles are 738 

seen to rapidly vary PV up until the eddy formation in mid-May, while a distinct arc of low PV 739 

particles is seen between the end of February and early April; as discussed below, this follows 740 

the evolution of another eddy in the region. Overall, PVs are constrained down to their final 741 

levels as of early May, just prior to the eddy formation. 742 

 743 
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First, we consider the evolution of the low PV particles specifically (Fig. 15). We find 744 

that there are 226 low PV particles originating to the east of the Chagos Archipelago, and 56 745 

particles originating to the west. The eastern particles mostly originate in the deeper layers 746 

around 1027.15 kg m-3 (Fig. 15a, b). These are seen to rotate anticyclonically inside another 747 

subsurface eddy centered around 8ºS, 77.5ºE before losing PV and mixing with less dense 748 

water as they are entrained within the identified Chagos eddy. In fact, this is the result of eddy 749 

number 995 in Movie S1 merging with a core of low PV water that is not identified as an eddy 750 

until eddy 995 merges with it. This merger is clearly visible in the low Ri numbers around early 751 

May, as the two main circulations that eventually become the Chagos eddy merge and mix 752 

together. Interestingly, strong PV variations are also associated with low Ri (Fig. 15b, c) and 753 

occur at the same time of both the eddies merging and when the resulting structure interacts 754 

with the Chagos Archipelago. We observe another anticyclonic subsurface eddy originate in 755 

late February around 69ºE to the west of the Archipelago (Fig 19d). In contrast to the eastern 756 

eddy, this western eddy is primarily composed of less dense water around 1026.8 kg m-3 (Fig. 757 

15e). This eddy impacts the Archipelago as it translates eastward, forcing its particles through 758 

a narrow channel that causes substantial mixing and a rapid increase in PV as the particles are 759 

forced along the southeastern edge of the Archipelago before finally being entrained in the 760 

Chagos eddy late in their lifetime. This mixing is clearly visible in the span of low Ri numbers 761 

throughout all of April (Fig. 15f). Overall, the particles that make up the western eddy are the 762 

same low PV particles that are warmest and shallowest in Fig. 14.  763 

 764 
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 765 

Figure 15. The trajectories of eastern low PV particles, colored by PV anomaly (a), the density 766 
evolution of eastern low PV particles by date (b), and the Richardson numbers below 1 over 767 
time for eastern high PV particles (c). (d), (e), and (f) are as in (a), (b), and (c) but for western 768 
high PV particles. 769 

 770 

 We continue our analysis of the different types of particles with the particles that exhibit 771 

only a medium PV (Fig. 16). As with low PV particles, the majority (112 of 143) of medium 772 

PV particles are found to the east of the Archipelago, with only 31 particles found to the west 773 

(Fig. 16a). While around half of the eastern medium PV particles are found to be in the same 774 

eddy as identified in Fig. 15 or from a westward current to its east, the other half originate from 775 

the north of the final eddy, and are mostly the particles that form the core of the Chagos eddy 776 

before it is fully identified as an eddy. This explains their moderate changes in PV and density, 777 

as well as only a small amount of mixing around the beginning of May (Fig. 16b, c, d). By 778 



 
 

36 

contrast, only 4 of the western medium PV particles follow the same path as the western low 779 

PV particles. The remaining 27 particles are advected outside of eddies along an eastward 780 

current that is eventually forced along the southern edge of the Archipelago (Fig. 16d). These 781 

end up primarily on the southern extreme edge of the Chagos eddy, a delineation made clear 782 

from Figure 13, Column 2 as a fresher edge to the south of the eddy. These particles, advected 783 

and trapped along the edge of the eddy, most likely do not experience large amounts of mixing, 784 

with the exception of one particle in mid-May that experiences a rapid change in PV and density 785 

over the course of 3 days (Fig. 16f). 786 

 787 

Figure 16. As in Figure 15, but for medium PV particles. 788 

 789 

 790 
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 We conclude this analysis with an examination of the high PV particles (Fig. 17). The 791 

high PV particles lie almost exclusively to the east of the Archipelago, with 70 of 75 particles 792 

found eastward (Fig. 17a). Of the only 5 particles to originate from the west, every single one 793 

of them is found as a part of the eastward current identified previously from the medium PV 794 

particles in Fig. 16, and so provide no new information (Fig. 17d, e, f). By contrast, the high 795 

PV particles to the east of the Archipelago fall into three categories. First, there is a smooth 796 

procession of particles with a density of 1026.95 kg m-3 from the far eastern edge of the domain 797 

that are eventually entrained within the Chagos eddy. These particles only gain PV as they 798 

enter the vortex at the end of May. The second group of particles is the same eastern merging 799 

AE identified previously; several dense, high PV particles are entrained in this vortex to 800 

dramatic effect in early April (Fig. 17b). Finally, there is a grouping of particles that originate 801 

from the eastern coast of the Archipelago, many of which start with high PV but almost 802 

immediately spike to a PV of nearly -2.5 × 10-5 s-1 before eventually joining the low PV 803 

particles advected along the edge of the Archipelago and falling in PV around early May. It is 804 

these particles that exhibited the most startling changes in PV in Fig. 14e, as they are constantly 805 

experiencing friction with the bottom topography in this region until they are advected out of 806 

it (Fig. 17c).   807 
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 808 

Figure 17. As in Figure 15, but for high PV particles defined in Figure 14. 809 

 We combine our diagnostics above to provide a qualitative explanation of the likely 810 

processes that bring a Chagos eddy on the eastward side of the archipelago into being. First, in 811 

each southwest monsoon, the monsoonal winds and the Findlater Jet create the Somali Current 812 

and Southwest Monsoon Current (SMC), providing a strong eastward flow along the Equator 813 

and to its south (Schott & McCreary, 2001). At around 76ºE, as seen in Schott & McCreary 814 

(2001), Fig. 10, this flow encounters a westward current and bifurcates to the north and south. 815 

Part of this southern flow then bifurcates again to east and west, resulting in a clockwise loop 816 

around the Chagos Archipelago. When the currents to the northeast of the archipelago meet in 817 

the wake of the Central Indian Ridge, they are seen to create anticyclonic eddies that then may 818 

follow the westward branch back towards the archipelago. At the same time, subsurface eddies 819 

and a deep current from the west encounter the geometry of the archipelago and are deflected 820 
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northeastwards along its southern edge. Finally, as these eddies converge, they encounter the 821 

shallowing of the bathymetry, bringing them to the same depth. As a result, as seen in Fig. 13, 822 

Column 2, there is a high salinity, warmer water mass from the north impacting a lower salinity, 823 

cooler water mass to the south: given the density surfaces that they lie upon and previous 824 

models of water mass mixing in Indian Ocean, we hypothesize that this is diluted RSW 825 

impacting AAIW and mixing and being downwelled further into the subsurface intermediate 826 

layer (Schott & McCreary, 2001; You, 1998).  827 

5. Conclusions 828 

 In this study, we have demonstrated the feasibility of a novel optimization scheme for 829 

the development of subsurface eddy detection algorithms against existing surface tracking 830 

algorithms, in our case the widely-used winding angle SSH algorithm. We then present the 831 

favorable performance of the first eddy detection algorithm exclusively using the rescaled PV 832 

averaged across isopycnal layers in an operational forecast model. This detection scheme is 833 

tested using the RSW mass in the Arabian Sea and compared against surface and observational 834 

studies. We conclude with a Lagrangian analysis of an as of yet undescribed, completely 835 

subsurface, intense eddy that forms frequently around the Chagos Archipelago during the 836 

southwest monsoon. Through this analysis, we characterize its three dimensional structure, the 837 

water masses that form it, and the origin of the particles that comprise it, finding that a 838 

combination of instability driven mixing and bottom friction is most likely responsible for the 839 

merging of diluted RSW and AAIW. Ultimately, we establish our optimization procedure and 840 

resulting rescaled PV algorithm as a new methodology that automatically identifies eddies in 841 

isopycnal layers whose dynamics may be efficiently analyzed through further PV diagnostics. 842 

Future studies may expand upon our results, using different score weightings, initial 843 

comparison algorithms, other tracking algorithms, and other water masses to develop their own 844 

version of our method that is optimal for their region of the globe.  845 

Lastly, we would also like to acknowledge a few limitations of and questions raised by 846 

our results. Our chosen dataset contains data assimilation, which, when modifying the model 847 

fields, acts as a non-conservative process. The temporal continuity of the mesoscale circulation 848 

(vortex existence, position, shape and strength) can thus be spoiled. For the CMEMS fields 849 

used here, data assimilation is limited and, as shown by the  process studies we presented, does 850 

not seem to be a strong problem. The approach proposed here presents an opportunity for a 851 
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follow up study on the influence of data assimilation in terms of continuity of the PV dynamics 852 

and eddy detection algorithms.  853 

Furthermore, our choices of isopycnal bounds for both the surface layer and for the 854 

RSW can, as remarked in Section 4a, be slightly altered and still be said to fit their respective 855 

water masses. While we have carefully chosen our bounds to align with certain previous 856 

observations, our results would change in both quantitative and physically descriptive senses 857 

if we aligned our bounds with other descriptions of the layer. Although both the surface layer 858 

and RSW layer that we describe are relatively sharply defined (i.e. Fig. 10), such sensitivity to 859 

choice of bounds might need to be carefully evaluated for water masses with less distinct edges.  860 

Finally, our definition of subsurface eddies is one in terms of PV and renders visible 861 

eddies that might be normally difficult to detect through existing methods. However, due to 862 

this definition and the paucity of both suitable observational data and previous studies that 863 

examine subsurface eddies through this lens, we acknowledge that some of our results as 864 

demonstrated above currently lack validation. Indeed, while subsurface dynamics are more 865 

conservative than those at the surface due to fluxes across of the ocean-atmosphere interface, 866 

implying that our detected eddies at depth might be more physically consistent than those made 867 

at the surface, our detections may still yet be improved through a comparison to extensive 868 

manual detections in models or detections from appropriate observations in the relevant 869 

regions. Regardless, our results above demonstrate the current utility of our method as 870 

presented in this work. Given the public repository linked in the Data Availability Statement 871 

below, we hope that other researchers will continue to improve upon the foundation we have 872 

developed here. 873 
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 891 

APPENDIX 892 
 893 

Calculation of Averaged PV in the Surface Layer 894 
 895 

As explained above (see Morel et al, 2019), the generalized PV is closely linked to the 896 

quasigeostrophic PV and its vertical integration in a layer bounded by two isopycnals r1 and 897 

r2 is representative of the average dynamics (vorticity and velocity fields). In this case, the 898 

mean –generalized- PV representative of the dynamics is given by 899 

PVffffGHIJKLHM =	
1
ℎNO
NP	 		i PVGHIJKLHM	dz				

RNP

RNO
 900 

where 𝒉𝝆𝟏
𝝆𝟐	is the layer depth and 𝐏𝐕𝐫𝐞𝐬𝐜𝐚𝐥𝐞𝐝	is given by equation (6). 901 

The sea surface is a material surface in adiabatic conditions, but it is generally not an 902 

isopycnic surface. However, previous studies have shown that the vertical average of PV is still 903 

representative of the dynamics in the surface layer (that is a layer bounded by the sea surface 904 

at the top and a chosen isopycnic surface at depth), provided an additional term, associated 905 

with density variations at the surface, is added. Indeed, density variation along the surface is 906 

equivalent to a Dirac delta sheet of PV that is to be taken into account. Following Schneider et 907 

al (2003) and Morel et al (2019) it can be shown that in this case the proper calculation for the 908 

equivalent integrated rescaled PV is 909 

PVffffGHIJKLHM =	
1
ℎNO
NP	 		m	i PVGHIJKLHM	dz	 −	(∇ 	× 	𝑈RUV + 	𝑓)	𝑍(𝜌RUV)	

RUV

RNO
q 910 
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Where the additional term is calculated from velocity and density fields at the surface (z=0). 911 

We also recall that  𝑍(𝜌) is the depth at density r but associated with a reference profile, 912 

representative of the fluid at rest.  913 

This additional term has been proven to be very important for the understanding of the 914 

dynamics. Initially Bretherton (1966) discussed it for quasigeostrophic dynamics, which has 915 

led to the development of the surface quasigeostrophic theory and models (see Lapeyre et al, 916 

2006 and references therein). Schneider et al (2003) extended the concept to the general case.  917 
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