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Abstract

Following Barany et al. [3], who proved that large random lattice zonotopes converge to a determin-
istic shape in any dimension after rescaling, we establish a central limit theorem for finite-dimensional
marginals of the boundary of the zonotope. In dimension 2, for large random convex lattice polygons
contained in a square, we prove a Donsker-type theorem for the boundary fluctuations, which involves
a two-dimensional Brownian bridge and a drift term that we identify as a random cubic curve.

1 INTRODUCTION

The study of large convex lattice polytopes, starting with the famous question of their enumeration raised
by Arnold [1], has been a long-standing question where, in dimension ≥ 3, all natural problems regarding
their asymptotic shape remains essentially open.

In this context, the study of lattice zonotopes, a subclass of convex lattice polytopes whose definition is
given below, seems more tractable. In particular, an important result by Barany, Bureaux, and Lund [3] is
that in any dimension, in a given cone, the shape of large random zonotopes converges to a deterministic
limit after rescaling.

Following this result, it is natural to investigate the second order asymptotics. A convenient way to
proceed is to study the fluctuations of tangent points of the boundary away from their expected position.

We show that this leads to Gaussian limits with a renormalizing factor n
d+2

2(d+1) .
To be more precise, recall that a zonotope in Rd is defined as the Minkowski sum of a finite set E

of vectors ∈ Rd, the vectors in E being called the generators of the zonotope. A zonotope is a lattice
zonotope if the vectors have integer coordinates. If we restrict ourselves to vectors with nonnegative
integer coordinates and such that

∑
v∈E v = (n, n . . . n), we get a finite number of zonotopes and if we pick

one uniformly at random, we have:

Theorem 1. Let Z be a random, uniform lattice zonotope starting at the origin, ending at (n, n . . . n), and
with generators in Nd. Let u ∈ Rd and let Xn

u be the point of the boundary of Z tangent to the hyperplane
with normal vector u, as defined by (7). Then there exists a symmetric matrix Γu, given by (9) , such that

(n− d+2
d+1 Γu)−1/2 (Xn

u − E(Xn
u))

(d)−→
n→∞

N (1)

where N is a standard, d-dimensional Gaussian variable.

We point out that, while the boundary of a d-dimensional zonotope is a d− 1-dimensional object, the
fluctuations of the tangent point Xn

u are d-dimensional.
If H is a hyperplane and does not contain any generator of the zonogon, then there are two points

of the boundary tangent to H, and they are symmetric with respect to the center (n/2, . . . n/2) of the
zonogon. Consequently, the fluctuations of these two points away from their mean are the same. On the
other hand, if H does contain some generators of the zonogon, then the set of points of the boundary
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tangent to H is the union of two faces of the zonogon, the dimension of these faces being the dimension of
the vector space spanned by these generators contained in H. Again, these two faces are symmetric with
respect to the center of the zonogon. In that case, we have to choose a point on these faces, and we do so
using Formula (7).

Let us mention that we have an explicit expression, not only for Γu but also for E(Xn
u). In fact, the

result can be generalized to finite-dimensional marginals: if one takes a family u1, . . . uk of vectors and
looks at the tangent points Xn

u1
, . . .Xuk

, then the k-tuple (Xn
u1

− E(Xn
u1

), . . .Xn
uk

− E(Xn
uk

)) converges in
law to a Gaussian random vector with an explicit covariance structure, see Proposition 4. Moreover, the
result of convergence in distribution can be refined into a local limit theorem. See Section 3.

In the 2-dimensional case, zonogons are just centrally symmetric convex lattice polygons. Alternatively,
any convex lattice polygon can be viewed as the union of four arcs of zonogons. Moreover, if we pick a
random convex lattice polygon contained in a large square, each of these arcs converges into an arc of
parabola, as shown in the seminal papers of Barany [2], Sinai [16], and Vershik [18]. In this setting, our
result on fluctuations can be extended to a functional limit theorem as in Donsker’s theorem.

In order to state a rigorous result, let us introduce the following notation. Consider a random, uniform,
convex lattice polygon Pn contained in the square [−n, n]2. Let An = (An, A

′
n) be the southern-most

segment of Pn and Sn be the “south pole”, that is, Sn = (0,−n). Both A′
n and An should be close to Sn

and we would like to quantify this more precisely. Likewise, we can define Bn, B
′n,Cn, C

′
nDn, D

′
n, which

should be close respectively to En, Nn,Wn where E = (n, 0) etc. See Figure 1. Finally, we denote by
X : R2 → R, resp. Y , the projection on the first (resp. second) coordinate. Then we get the following
result:

Wn

Dn

D′
n

Sn

An A
′
n

Nn

CnC
′
n

En

B′
n

Bn

Figure 1: A random polygon in the square [−n, n]2, where the extremal segments are labeled by their
extremities, and the limit shape shown by Barany [2], Sinai [16], and Vershik [18].

Theorem 2. (i) The quadruple

n−2/3(Y (An − Sn), X(Bn − En), Y (Cn −Nn), X(Dn −W ′
n))

converges in probability to δ(0,0,0,0).
(ii) The quadruple

n−2/3(X(An − Sn), Y (Bn − En),−X(Cn −Nn) − Y (Dn −Wn))
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converges in distribution to a Gaussian random variable (R,S, T, U) with density

C1 exp

(
− 1

18
[(r − s)2 + (s− t)2 + (t− u)2 + (u− r)2] − 1

3
[r2 + s2 + t2 + u2]

)
for some normalizing constant C1 > 0.

(iii) For every t ∈ [0, 1], let Xn(t) be the point of the boundary of Pn with negative y-coordinate and
tangent to the vector (t, 1−t). Let Xn(t) = E(Xn(t)). Then there exists a continuous family of nonsingular
matrices (Q(t), 0 ≤ t ≤ 1) such that for all r, s ∈ R, denoting for each n the event

En(r, s) = {⌊n−2/3(X(An − Sn)⌋ = r, ⌊n−2/3(Y (Bn − En)⌋ = s}

we have the convergence of conditional processes(
n−2/3(Xn(t) −Xn(t))|En(r, s)), t ∈ [0, 1]

)
(d)→
(
r
0

)
+ (µr,s(t) + Q(t)βt, t ∈ [0, 1])

where (βt) is a standard 2-dimensional Brownian bridge and µr,s is a cubic curve parameterized by

µr,s(t) =

(
−2t(t− 1)2 t(2t2 − 5t + 4)
t2(2t− 1) −2t2(t− 1)

)(
s
−r

)
Of course, (iii) is only stated for one of the four arcs of the polygon but the result is true for each arc.

Note that Xn(0) = An and Xn(1) = Bn. As in Theorem 1, the tangent point in Theorem 2 (iii) is defined

by (7). Anyway, it follows from [6] that the edges of Pn have length of order n
1
3 . Therefore, even if the

set of tangent points is a whole edge, we could choose any point on this edge as Xn(t) and because of
the renormalizing factor n−2/3, this would not change the result. For the same reason, we could replace
(An, Bn, Cn, Dn) with (A′

n, B
′
n, C

′
n, D

′
n) in the statement of the theorem.

We could re-express (iii) by saying that (Q(t)βt) is a 2-dimensional Gaussian process with a continuous
family of covariance matrices (Covt). It follows from the computations in Section 4 that there exists a
continuous family of orthogonal matrices (Ot), with O0 = Id, such that

OtCovt =

(
ζ(2)

ζ(3)

)1/3(
2
(
4t2 − 6t + 3

)
(t− 1)3t

(
8t2 − 8t + 3

)
(t− 1)2t2(

8t2 − 8t + 3
)

(t− 1)2t2 −2
(
(4t2 − 2t + 1

)
t3(t− 1)

)
(2)

In particular, for small t, the fluctuations of the process are of order t1/2 in the x-coordinate and t3/2 in
the y-coordinate. We have similar estimates for t close to 1.

As a consequence, we could write informally that if t ≍ n− 1
3 ,

nXn(t) ≍

(
n

2
3

n
1
3

)
, n

2
3E|Q(t)βt| ≍

(
n

1
2

n
1
6

)
, n

2
3µr,s(t) ≍

(
n

1
3

1

)
where an ≍ bn means that there exist two positive constants c < C such that for each n, cbn < an < Cbn.
Note that in (iii), we state a conditional result. If we average over the law of X(An−Sn), Y (Bn−En),

we find that the mean of the asymptotic cubic curve is zero. That is, if we choose (R,S, T, U) according
to the Gaussian distribution given in (ii), then for every t ∈ [0, 1], E(µR,S(t)) = 0.

More details on µr,s, in particular the proof that it is a cubic curve, are also given in Section 4, see
Proposition 6, where we have to identify

µr,s(t) =

(
0 1
1 0

)
ν−r,s(t)

The curve µr,s has a cusp if −r/s /∈ [1/2, 2]. In particular, suppose that r < 0, s > 0 and −r/s > 2. Then
µr,s starts at (0, 0), ends in the positive quadrant, namely at (−r, s), and yet for t < (−r− 2s)/3(−r− s),
both coordinates of the speed µ′

r,s(t) are negative. This may seem counter-intuitive.
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The fact that for fixed r, s, the curve µr,s is cubic is in sharp contrast with the usual situation where
the drift is linear: if (Bt, 0 ≤ t ≤ 1) is a Brownian motion started at 0 and conditioned to end at a, then
(Bt) has the form Bt = at + βt where (βt) is a Brownian bridge. In dimension 1, Brownian motion with a
parabolic drift has been widely studied in connection with various problems such as statistical estimators,
random partitions, epidemics models, Burgers turbulence etc. See for instance [14, 15, 17, 12, 13]. On the
other hand, we are not aware of other instances of a cubic drift in the literature.

Let us also mention that other models of random polytopes have been studied in the literature. In
particular, Calka and coauthors [10, 9] consider the convex hull of Poisson point processes whose intensity
goes to infinity, thereby obtaining random polytopes that fill nearly all the space available, and look at the
fluctuations of the boundary. This, however, is very different from our setting where the geometry of the
underlying lattice plays a significant role and therefore, their results and ours are of a different nature.

The remainder of this paper is organized as follows. We introduce our main tools in the next section.
In particular, while the two results stated in the introduction deal with random zonotopes or polygons
with uniform distribution, a key tool we will use is Boltzmann distributions, which are defined in this part
of the paper. We state and prove our limit theorems in dimension d in Section 3. Section 4 is devoted to
the functional, Donsker-like result on zonogons in dimension 2. Finally, Section 5 extends these results to
polygons and gives the proof of Theorem 2.

2 GEOMETRIC AND PROBABILISTIC MODEL

The results of this paper are based on the limit theorems proved in Section 3, which are dealing with
zonotopes in cones of Rd, for any dimension d. Thereafter, the cone C is a closed convex salient and
pointed cone, which means that 0 ∈ C, no pair (x,−x) lies in C for some non zero vector x, and its interior
int C is not empty. Let k be vector of Zd ∩ C. The geometric and probabilistic models are the same as in
[3]; we tried to keep the same notation when possible to ease the readability of our results.

2.1 Zonotopes in cones

A zonotope is a convex geometric object defined as the Minkowski sum of k segments, called its generators.
More specifically, an integral zonotope Z is a polytope for which there exist k ∈ N and v1, ...,vk ∈ Zd such
that

Z =

{
k∑

i=1

αivi | (α1, ..., αk) ∈ [0, 1]k

}

= Conv

{
k∑

i=1

ϵivi | (ϵ1, ..., ϵk) ∈ {0, 1}k
}

4



(a) 2 dimensions (b) 3 dimensions

Figure 2: Zonotopes made from 4 red-colored generators.

The endpoint of Z is
∑k

i=1 vi. We define Z(C,k) as the set of integral zonotopes in C that end at k.
This set is clearly finite as the generators of the zonotopes of Z(C,k) are in Zd.

Given a multiset (an unordered set of elements with repetition allowed) V = {v1, ..,vk} ∈ (Zd \ {0})k

and the integral zonotope Z determined by V , the set of generators uniquely defines a zonotope but the
converse is not true. To determine a multiset uniquely from an integral zonotope, we define the set Pd

of primitive vectors of Zd. A vector (z1, ...zd) ∈ Zd is primitive if gcd(z1, ..., zd) = 1, and therefore notice
that 0 /∈ Pd (we prefer the notation Pd rather than Pd because Pd is very different from (P1)

d). There is a
unique multiset W = {w1, ...,wl} ∈ Pl

d of elements of Pd that determines Z, constructed that way: given
a generator v ∈ Zd of Z, v can be uniquely written as miw, with w ∈ Pd. Then add mi copies of w in W .
For two different multisets U and V that determine Z, U and V give the same W with the construction
above.

We have now a one-to-one correspondence between integral zonotopes in C and finite multisets of Pd∩C.
We denote the endpoint k of Z (and we say that Z ends at k) as

k =

l∑
i=1

wi.

A multiset of Pd ∩ C describing a zonotope such as W is called a strict integer partition (see Section 2
in [3]) of the vector k from C. Notice that for a given k ∈ Zd ∩ C, any strict integer partition of k from
C is finite and can be encoded as a function with finite support. Indeed, for a strict integer partition W ,
we define the function of multiplicities ω : Pd ∩ C → Z+ where ω(x) = card{i ∈ {1, ..., l} |wi = x} for any
x ∈ Pd ∩ C.

Let Ω(C) be the set of nonnegative integer-valued functions ω : Pd∩C → Z+ with finite support. There
is a one-to-one correspondence between Ω(C) and the set of integral zonotopes in C. Additionally, we
naturally define the endpoint of ω

X(ω) =
∑

x∈Pd∩C
ω(x)x. (3)

Picking a random zonotope in Z(C,k) is equivalent to picking ω ∈ Ω(C) such that X(ω) = k. In the
sequel, Z(ω) denotes the zonotope that corresponds to ω, and ω(Z) the element of Ω(C) that corresponds
to Z.

2.2 The probabilistic model

Fix k ∈ int C ∩Zd. We will use the correspondence between integral zonotopes and strict integer partitions
described above to define the probability distribution on the set of zonotopes. For ω ∈ Ω(C), we denote
Z(ω) the associated zonotope.

5



We define the probability distribution Pn for all ω ∈ Ω(C), depending on the parameters βn ∈ R+ and
a ∈ Zd ∩ intC (respectively made explicit in (4) and in (6)) by

Pn(ω) =
1

Zn(a)
e−βna·X(ω), where Zn(a) =

∑
ω∈Ω(C)

e−βna·X(ω).

This probability distribution is known as the Boltzmann probability distribution, as it is directly
inspired by the Boltzmann distribution in statistical physics. Zn(a) is called the partition function of the
model. In the sequel, we fix βn throughout the paper to be

βn = d+1

√
ζ(d + 1)

ζ(d)n
(4)

The key point is that Pn(ω) only relies on the endpoint X(ω), hence two zonotopes ending at the same
point have the same probability, and in particular, we define the uniform distribution Qn on the elements
Ω(C) ending at nk by

Qnk(ω) = Pn (ω |X(ω) = nk)

The parameters a and βn are determined in order for Pn to be close to Qnk when n grows large. The
point of using Pn to approximate Qnk is that Pn has a much simpler structure. Remind the definition of
X(ω) in 3 as a sum over Pd ∩ C; therefore the exponential becomes

e−βna·X(ω) =
∏

x∈Pd∩C
e−βna·ω(x)x.

This product structure is passed along to Zn(a) and Pn:

Zn(a) =
∏

x∈Pd∩C

1

1 − e−βna·x , and Pn(ω) =
∏

x∈Pd∩C
e−βna·ω(x)x

(
1 − e−βna·x

)
(5)

We deduce that (ω(x))x∈Pd∩C is a mutually independent set under Pn, and that the variable ω(x) has
a geometric distribution of parameter 1 − e−βna·x. The simplicity of Pn lies in the fact that under Pn, a
random zonotope is a product of geometric independent variables for each possible primitive generator.

2.3 Useful formulas about cones.

This part is dedicated to recalling a few results from Bárány Bureau and Lund [3] about cones, more
precisely Theorem 3.1, and Proposition A.1. We keep the d-dimensional cone C and k ∈ Zd∩C from above.
For a given a ∈ Zd, we denote the section C(b = t) and the cap C(b ≤ t) by

C(b = t) = {x ∈ C|x · b = t} ,
C(b ≤ t) = {x ∈ C|x · b ≤ t} .

The following proposition (Theorem 3.3 in [11]) fixes a in the distribution Pn:

Proposition 1. Given C and a vector v ∈ int C, there is a unique a′ = a′(C,v) such that a′ is the center
of gravity of the section C(v = 1) and that the cap C(a′) is the unique cap that has minimal volume among
all caps of C that contains v.
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It immediately follows that d
d+1a

′ is the center of gravity of C(v ≤ 1), and therefore

d

d + 1
a′ =

1

VolC(v ≤ 1)

∫
C(v≤1)

xdx.

In the probability distribution Pn, given a′(C,k) obtained by Proposition 1, we define a ∈ Zd ∩ C the
unique vector a = λa′(C,k) for some λ > 0 such that

(d + 1)!

∫
C(a≤1)

xdx = k. (6)

This value will make sense in the proof of Theorem 3. The next proposition is a version of the density
of the primitive vectors for cones and homogeneous functions, and will be used hereafter for calculations
on Pn:

Proposition 2. For d > 1, let f : C → R be a continuously differentiable homogeneous function of degree
h, i.e. f(λx) = λhf(x) for all x ∈ C and λ ≥ 0. For every a ∈ Rd such that a · x > 0 for all x ∈ C (that
is, an element in the interior of the dual cone):

βd+h
∑

x∈C∩Pd

f(x)e−βa·x =
1

ζ(d)

∫
C
f(x)e−a·xdx + O(β)

This is Proposition A.1 in [3]. It is written under the assumption d ≤ 3, but their proof still stands for
d = 2. At some point hereafter, we will need to highlight that the term O(β) is independent of C. For this
purpose, we highlight some elements of the proof of Proposition 2 that give the following corollary:

Corollary 1. For d ≥ 2, if f is a continuously differentiable homogeneous function of degree h and C ⊂ Rd
+:

β2+h
∑

x∈C∩P2

f(x)e−βa·x ≤ 1

ζ(d)

∫
C
f(x)e−βa·xdx + ϵ(a)β

where ϵ(a) is independent of C.

Proof. Recall that a ∈ Int Rd
+, as it is proportional to the center of gravity of C(u ≤ 1). Let A be a

compact subset of Int Rd
+ (which is the dual of R2

+, {v ∈ Rd,∀x ∈ Rd
+,v ·x > 0}). Since A is compact and

since C(u ≤ 1) ⊂ {x ∈ Rd
+,u · x > 0}, there exists L > 0 such that for any cone C, C(u ≤ 1) is contained

in [0, L]d. Therefore the same arguments as in the proof of Corollary A.3 in [3] lead to the existence of a
constant γL,f > 0 such that

sup
a∈A

∣∣∣∣∣∣
∑

x∈C∩P2

f(x)e−βa·x − 1

ζ(d)

∫
C
f(x)e−βa·xdx

∣∣∣∣∣∣ ≤ γL,f
β2+h

.

This constant γL,f is independent of C.

The following relation is widely used in this paper to compute integral values.∫
C
e−a·xdx = (d + 1)!

∫
C(a≤1)

xdx,
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3 LIMIT THEOREMS IN DIMENSION d

This section improves the results of [3, Section 4.2] on the asymptotic behavior of random zonotopes after
rescaling. First, we extend the central limit theorem to any point of the boundary of the zonotope tangent
to a given hyperplane. Then we prove a local limit theorem for these points. Let u and v be two vectors of
Rd, and Z a zonotope in Z(C, nk) drawn under Pn or Qnk. Denote Hu, respectively Hv, the hyperplane of
normal vector u, respectively v. We define Xn

u the furthest point from the origin of the face of Z tangent
to Hu that is maximizing the scalar product with u. Namely,

Xn
u = max

(
arg max

x∈Z
(x · u)

)
. (7)

We similarly define Xn
v. We can reformulate the definition of Xn

u based on the structure of a zonotope:
Xn

v is the endpoint of the zonotope generated by the generators x of Z such that x · u ≥ 0.

3.1 Central Limit Theorem for Xu

Due to the independence between the generators under Pn, the point Xn
u(ω) is distributed according to:

Pn,u(ω) =
∏

x∈Pd∩C(u≥0)

e−βna·ω(x)x(1 − e−βna·x) =
1

Zn,u(a)
e−βna·Xn

u(ω),

where Zn,u(a) is the partition function of Pn,u. For exponential distributions like Pn,u and Pn, the
expectation and the covariance matrix are known to be written in terms of the derivative of the logarithm
of this function, that is for the expectation µn

u and the covariance Γn
u of Xn

u :

µn
u = En [Xn

u] = −∇ logZn,u(a) and Γn
u = Cov(Xn

u) = ∇2 logZn,u(a).

Actually, C(u ≥ 0) is a d-dimensional cone, and the theorems proved are still true for more complex
cones. More generally, given a d-dimensional closed convex salient and pointed cone C1 such that C1 ⊂ C,
we define Xn(C1), Pn,C1 , µn(C1), and Γn(C1) analogously:

Xn(C1) =
∑

x∈Pd∩C1

ω(x)x and Pn,C1 =
∏

x∈Pd∩C1

e−βna·ω(x)x(1 − e−βna·x)

µn(C1) = −∇ log

 ∏
x∈Pd∩C1

1

1 − e−βna·x

 and Γn(C1) = ∇2 log

 ∏
x∈Pd∩C1

1

1 − e−βna·x

 (8)

In particular, we have µn(C(u ≥ 0)) = µn
u and Γn(C(u ≥ 0)) = Γn

u. Denote also the rescaled limits
µ(C1) (with µ(C(u ≥ 0)) = µu ) and Γ(C1) (with Γ(C(u ≥ 0)) = Γu) respectively as:

µ(C1) = (d + 1)!

∫
C(a≤1)∩C1

xdx, Γ(C1) =

(
ζ(d)

ζ(d + 1)

) 1
d+1

(d + 1)!

∫
C(a≤1)∩C1

xx⊺dx (9)

Proposition 3 (Central limit theorem). Let Z ∈ Z(R2, n1) be a random zonotope drawn under Pn, C1 ⊂ C
be a d-dimensional cone with 0 ∈ C1, and Xn(C1) be the endpoint of the generators of Z in C1. Then Xn(C1)
satisfies a central limit theorem in the sense that

(Γn(C1))−1/2 (Xn(C1) − µn(C1))
(d)−→

n→∞
N (0, Id),

with lim
n→∞

1
nµ

n(C1) = µ(C1) and lim
n→∞

n− d+2
d+1 Γn(C1) = Γ(C1).
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In particular, this central limit theorem gives the generalization of the asymptotic rescaled mean and
variance of Xn

u, as the definition (9) is almost identical to the rescaled asymptotic mean and variance of
X(ω): we only restrict the integral on C1.

Corollary 2. Let Z ∈ Z(C, nk) be a random zonotope drawn under Pn, and Xn
u the tangent point of the

boundary of Z to Hu. Then Xn
u satisfies a central limit theorem in the sense that

(Γn
u)−1/2 (Xn

u − µn
u)

(d)−→
n→∞

N (0, Id),

with lim
n→∞

1
nµ

n
u = µu and lim

n→∞
n− d+2

d+1 Γn
u = Γu.

Proof. Proposition 3 is totally analogous to Proposition 4.1 in [3] with the cone C1, except that k, which
is the expected endpoint of a re-scaled zonotope drawn under Pn and which gives the vector a in Pn, does
not belong to the cone C1. The proof relies on the Lyapunov condition that is a direct consequence of
Lemma 1.

We start with writing the expectation. After the expansion of the quotient as a series, the Fubini-Tonelli
theorem yields:

µn(C1) =
∑

x∈Pd∩C1

xe−βna·x

1 − e−βna·x =
∑
i≥1

∑
x∈Pd∩C1

xe−iβna·x.

For i ≤ 1/βn, we use Proposition 2 to approximate the i-th summation over Pd∩C1 into a d-dimensional
integral. Denoting i0 the first integer such that i0 > 1/βn, there exists a > 0 independent of x such that∑

i>1/βn

xe−iβna·x ≤ xe−i0βna·x a

βn
(10)

Therefore, using again Proposition 2 on the summation over Pd ∩ C1 of the right-end term of 10, we
obtain that the terms with i > 1/βn only contribute for O(1/βn). We obtain, as n goes to +∞,

µn(C1) =
ζ(d + 1)

βd+1
n ζ(d)

∫
C1

xea·xdx + O

(
1

βd+1
n

)
.

After simplification of the prefactor of the integral, the change of variable x = tx′ with t = a · x gives

1

n
µn(C1) = (d + 1)!

∫
C(a≤1)∩C1

xdx + O
(
n

−1
d+1

)
.

The details of the calculation of the asymptotic behavior of the variance are exactly the same, namely

Γn(C1) =
∑

x∈Pd∩C1

xx⊺ e−βna·x

(1 − e−βna·x)
2 = n

d+2
d+1

(
ζ(d)

ζ(d + 1)

) 1
d+1

(d + 1)!

∫
C(a≤1)∩C1

xx⊺dx + O (n) . (11)

The central limit theorem is obtained by ensuring that the Lyapunov ratio Ln,C1 , defined just below,
tends to 0 as n grows large:

Ln,C1 =
∑

x∈Pd∩C1

E
[∥∥∥Γn(C1)−1/2 (ω(x) − E[ω(x)])x

∥∥∥3] .
The Lyapunov ratio tends to 0 as it is bounded from above by the Lyapunov ratio of the endpoint of

the zonotope Z in the proof of [3, Proposition 4.1]. It is also a direct consequence of the following lemma.
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In order to state a local limit theorem for Xn(C1) (Subsection 3.2), we compute the order of approxi-
mation of the Lyapunov ratio:

Lemma 1.
Ln,C1 = O

(
n
− d

2(d+1)

)
Proof. We start by bounding the Lyapunov ratio with the operating norm of Γn(C1)−1/2, denoted ||Γn(C1)−1/2||:

∑
x∈Pd∩C1

E
[∥∥∥Γn(C1)−1/2 (ω(x) − E[ω(x)])x

∥∥∥3] ≤ ||Γn(C1)−1/2||3
∑

x∈Pd∩C1

||x||3E
[
|(ω(x) − E[ω(x)])|3

]
We respectively compute the second and fourth moments of ω(x) = ω(x) − E[ω(x)]:

E
[
|ω(x)|2

]
=

e−βna·x

(1 − e−βna·x)
2

E
[
|ω(x)|4

]
=

e−βna·x
(
1 + 7e−βna·x + e−2βna·x

)
(1 − e−βna·x)

4 ≤ 9e−βna·x

(1 − e−βna·x)
4

Therefore by applying the Cauchy-Schwarz inequality, we obtain

E
[
|(ω(x) − E[ω(x)])|3

]
≤ 3e−βna·x

(1 − e−βna·x)
3

It is already known that ||Γn(C1)−1/2|| is of order n
− d+2

2(d+1) , therefore the end of the proof is obtained
using the same arguments as in the computation of the asymptotic mean in the proof of Proposition 3,
namely

∑
x∈Pd∩C1

||x||3 3e−βna·x

(1 − e−βna·x)
3 = O

(
n

d+3
d+1

)
.

We extend the central limit theorem to the weak convergence of a k-tuple of rescaled tangent points to
a Gaussian k-tuple. Let us introduce the rescaled point X̃

n
u of the boundary of the zonotope Z tangent to

the hyperplane Hu:

X̃
n
u = n

− d+2
2(d+1) (Xn

u − E[Xn
u]) (12)

Corollary 3 (Limit of a k-tuple of tangent points.). Let Z be a zonotope drawn under Pn, and let

(u1, ...,um), respectively
(
X̃

n
u1
, ..., X̃

n
um

)
, be an m-tuple of vectors of Rd \ {0}, respectively the rescaled

m-tuple of the points of contact between Z and the hyperplanes Hui, with 1 ≤ i ≤ m.

Then (
X̃

n
u1
, ..., X̃

n
um

)
Pn−→

n→+∞

(
X̃u1 , ..., X̃um

)
where

(
X̃u1 , ..., X̃um

)
is a centered Gaussian vector with covariance structure given by

Cov(X̃ui , X̃uj ) = Γ(C(ui ≥ 0,uj ≥ 0)), for 1 ≤ i, j ≤ m.

10



Proof. For 1 ≤ i ≤ k, we write X̃
n
ui

as the sum of all the generators contributing, that is:

X̃
n
ui

= n
− d+2

2(d+1)

∑
v∈Pd∩C(ui≥0)

(ω(v) − E[ω(v)])v.

We introduce the sets (CI)I⊂J1,mK and (An
I )I⊂J1,mK, respectively defined by, for I ⊂ J1,mK:

CI =
⋂
i∈I

C(ui ≥ 0)
⋂
j /∈I

C(uj < 0), and An
I = n

− d+2
2(d+1)

∑
v∈Pd∩CI

(ω(v) − E[ω(v)])v. (13)

The cones (CI)I⊂J1,mK are partitioning the cone C, in particular they are mutually disjoint. As a
consequence, the product form of Pn given in (5) implies that the random variables (An

I ) are independent.
Therefore, using Proposition 3,

(An
I )I⊂J1,mK

Pn−→
n→+∞

(AI)I⊂J1,mK ,

where (AI)I are independent Gaussian variables of covariance Γ(CI). For 1 ≤ i ≤ m, notice that we
can write X̃

n
ui

as a sum of An
I :

X̃
n
ui

=
∑

I⊂J1,mK
i∈I

An
I .

Hence, for any i, j between 1 and m, the covariance of X̃
n
ui

and X̃
n
uj

is the variance of
∑

I⊂J1,mK
{i,j}⊂I

An
I .

The weak convergence of the
(
X̃

n
ui

)
i

follows.

3.2 Local limit theorem

The central limit theorem is enough to obtain the limit shape of uniformly distributed zonotopes ([3]),
but not to ensure a Donsker theorem for the integral zonotopes. The local limit theorem below refines the
approximation of the asymptotic behavior of the endpoint of generators in a d-dimensional subcone under
Pn.

Theorem 3 (Local Limit Theorem). Let Z be a random integral zonotope drawn under the law Pn. Let
C1 ⊂ C be a d-dimensional cone with 0 ∈ C1, and Xn(C1) be the endpoint of the generators of Z in C1.
Then the random variable Xn(C1) satisfies a local limit theorem of rate n

− d
2(d+1) . Formally:

lim sup
n→+∞

sup
x∈Zd

+

n
d

2(d+1)

∣∣∣∣∣Pn(Xn(C1) = x) −
gd
(
(x− µn(C1))⊤Γn(C1)−1(x− µn(C1))

)√
det Γn(C1)

∣∣∣∣∣ < +∞,

where gd is the density of a standard normal d-dimensional variable.

This theorem is proved using the framework developed by J. Bureaux in [7]. The idea of this framework
is to use the inversion formula of the characteristic function on the probability Pn(Xn

u = x), and decompose
the difference onto 3 different domains, which involves satisfying 3 different conditions (among which is
Lemma 1). Additionally to the previous notation, we denote σn(C1)2 the smallest eigenvalue of Γn(C1).

Lemma 2. With the notation above, the inverse of the minimal eigenvalue of the covariance matrix satisfies

1

σn(C1)
√

det Γn(C1)
= O

(
n
− 3(d+2)

2(d+1)

)
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Proof. This lemma directly comes from the asymptotic estimate of Γn(C1). As seen in the central limit
theorem, the covariance matrix estimate is

Γn(C1) = n
d+2
d+1

(
ζ(d)

ζ(d + 1)

) 1
d+1

(d + 1)!

∫
C(a≤1,u≥0)

x⊺xdx + O (n) .

Hence, with a diagonalization of n− d+1
d+2 Γn(C1), we obtain σn(C1)2 ≍ n

d+2
d+1 , it follows that:

σn(C1)
√

det(Γn(C1)) = O

(
n

3(d+2)
2(d+1)

)
.

The last condition of the local limit theorem consists in bounding the characteristic function out of an
ellipsoid denoted ϵn,u and defined as:

ϵn,C1 =

{
t ∈ Rd : ||Γn(C1)1/2t|| ≤

1

4Ln,C1

}
Lemma 3. If the cone C1 has dimension 2 or more,

sup
t∈[−π,π]2\ϵn

∣∣∣E [eit·Xn
u

]∣∣∣ = O(n−1)

Proof. The outline of the proof is quite standard and can be found in [7]. For any complex number z, the
following inequality holds: ∣∣∣∣1 − |z|

1 − z

∣∣∣∣ ≤ exp (ℜ(z) − |z|)

We apply it to the characteristic function:

∣∣∣E [eit·Xn(C1)
]∣∣∣ =

∏
x∈Pd∩C1

∣∣∣∣ 1 − e−βna·x

1 − e−(βna−it)·x

∣∣∣∣ ≤ exp

ℜ

 ∑
x∈Pd∩C1

e−(βna−it)·x

−
∑

x∈Pd∩C1

e−βna·x

 .

This can be rewritten using the cosine as

∣∣∣E [eit·Xn(C1)
]∣∣∣ ≤ exp

 ∑
x∈Pd∩C1

e−βna·x(cos(t · x) − 1)

 . (14)

To bound the summation of the right-hand side of (14), we construct a sequence of x such that x · t
is small enough to be well approximated. Using the diagonalization of Γn(C1)1/2, there exists a positive

constant c1 such that ||Γn(C1)1/2t|| ≤ c1n
d+2

2(d+1) ||t||. Furthermore, since Ln,C1 = O
(
n
− d

2(d+2)

)
, for every

t /∈ ϵn, there exists a second positive constant c2 such that ||Γn(C1)1/2t|| ≥ c2n
d

2(d+1) . We deduce that there
is a constant A > 0 such that

max
1≤i≤d

(|ti|) ≥ An− 1
d+1

In the sequel, we denote ei the canonical standard basis vector of the ith coordinate. Using the

symmetry, we may assume that |t1| ≥ an− 1
d+1 , which means t1 ∈ [−π,−An− 1

d+1 ] ∪ [An− 1
d+1 , π]. Notice

that such t1 with the condition e1 /∈ C⊥
1 exists because the characteristic function would not depend on

12



t1. The rest of the proof consists in finding 2 arithmetic sequences of primitive vectors, whose common
differences are far enough from each other to ensure the convergence of the scalar product of one sequence
with t towards a polynomial limit.

C1 is at least of dimension 2, so we state that e2 /∈ C⊥
1 without loss of generality. Therefore, there exists

in the interior of the cone C1 a primitive vector x1 such that:
x1 · e1 = p,x1 · e2 = q, with p ∧ q = 1 and (p + 1) ∧ q = 1
x2 = x1 + e1 ∈ Pd ∩ C(u ≥ 0)
x1 + 2e1 ∈ C(u ≥ 0)

The arithmetic sequences (x1,i)i≥1 and (x2,i)i≥1 defined by xα,i = iqxϵ + e1 (for α ∈ {1, 2}), are both
sequences of primitive vectors, due to the coprimality of p and q on one side, and p+ 1 and q on the other.
The term cos(t · (iqxϵ + e1)) is periodic with respect to i, and its period is 2π

|t·(qxα)| . We compute a lower

bound for the difference between the two periods t1 and t2 of respectively (x1,i) and (x2,i). We have

2π

t · (qx1)
− 2π

t · (qx2)
=

2π(qt1)

q2(t · x1)(t · x2)x1
≥ A′ n− 1

d+1

q2||x2|| × ||x1||
,

with A′ ≥ 0. Therefore we have a constant Ax1 ≥ 0, depending only on the choice of x1, such that at

least one of these sequences has a period that differs from 1 by
Ax1
2 n− 1

d+1 or more. Similarly, both periods

cannot be greater than 4π
A n

1
d+1 at the same time. For if we suppose that |t · x1| ≤ A

2 n
1

d+1 , then

|t · x2| ≥ q|t1| − |t · x1| ≥
A

2
n

1
d+1 .

Suppose x1 verifies these conditions. We can finally compute an upper bound for the argument of the
exponential in 14: ∑

x∈Pd∩C1

e−βna·x(cos(t · x) − 1) ≤
∑
i≥1

e−βna·x1,i(cos(x1,i · t) − 1).

Denote Amax = max( 2
Ax

, 4πA ). The inequality cos(it · qx1 + t1) ≤ 1
2 stands in the window of length

three-quarters of the length of the period. The condition on the upper bound and the condition on the
difference to 1 implies that the kth term of (x1,i)i≥1 that verifies cos(t · x1,i) ≤ 1

2 is in the first 2k terms,

for 2k ≥ Amaxn
1

d+1 . This leads to:∑
i≥1

e−βna·x1,i(cos(x1,i · t) − 1) ≤
(
−1

2

) ∑
i≥Amaxn

1
d+1

e−βna·x1,2i .

Ultimately, a manipulation over the indicial notation gives:

−1

2

∑
i≥Amaxn

1
d+1

e−βna·x1,2i ≤ −1

2
exp

(
−βna · (Amaxn

1
d+1 qx1 + e1)

)∑
i≥0

e−βniqa·x1 .

We recall that βn =
(
ζ(d+1)
ζ(d)n

) 1
d+1

, hence the first exponential asymptotically converges to a constant.

A quick asymptotic analysis of the sum gives∑
i≥0

e−βniqa·x1 =
1

1 − e−βnqa·x1
≍ n

1
d+1 .

Thus the biggest x1 over all possible combinations of coordinates gives a constant γ > 0, depending
only on C1, such that
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∣∣∣E [eit·Xn(C1)
]∣∣∣ ≤ exp

(
−γn

1
d+1

)
,

which concludes the proof.

Proof of the Theorem. Let (an)n∈N be the sequence given by an = n
− d

2(d+1) . Then, with Lemma 1, 2, and
3, the assumptions for Proposition 7.1 from [7] are satisfied and there is a local limit theorem of rate (an)
for the variable Xn

u under Pn.

The following proposition gives the weak convergence of finite-dimensional distribution of the process
of tangent points under Qnk, leading to Theorem 1 and the Donsker theorem (Theorem 4). Recall that
Qnk is the uniform distribution over integral zonotopes ending at nk ∈ Zd

+. The connection between Qn

and Pn, for any A ⊂ Ω:

Qn[A] = Pn [A |X(ω) = nk, ω ∈ A] =
Pn [A ∩ {X(ω) = nk, ω ∈ A}]

Pn [X(ω) = nk, ω ∈ A]
.

Proposition 4 (Weak convergence of finite-dimensional marginals). For k ∈ int C∩Zd, let (u1, ...,um) an

m-tuple of Rd, let Z be a random zonotope drawn under Qnk, and
(
X̃

n
u1
, ..., X̃

n
um

)
be the rescaled position

of the tangent points of Z and Hu1, ..., Hum. Then there is an independent family of Gaussian centered
random variables (GI)I⊂J1,mK such that

(
X̃

n
u1
, ..., X̃

n
um

)
(d)−→

n→+∞
(Nu1 , ...,Num), (15)

where Nui =
∑

I⊂J1,mK
i∈I

GI and

Cov(GI) =

(
Γ( ∩

i∈I
C(ui ≥ 0) ∩

j /∈I
C(uj < 0))−1 + Γ( ∩

i∈I
C(ui < 0) ∩

j /∈I
C(uj ≥ 0))−1

)−1

When Cui is d-dimensional, Nui is a centered Gaussian variable of variance
(
Γ −1
u1

+ Γ −1
−ui

)−1
.

Proof. We still denote ω as the function of multiplicities of Z. Starting with u1, ...,um vectors of Rd, we
denote um+1 a vector in the dual cone of C (that is a vector v such that v · x > 0 for all x ∈ C), hence
X̃

n
um+1

is the rescaled endpoint of the zonotope Z.

Using the same argument as in Proposition 3, the probability measure Pn is constructed as a product of
geometric distributions of the primitive vectors in C, and the occurrences of the primitive vectors (that is the
set {ω(x)}x) are mutually independent. Therefore we introduce again the family of variables (AI)I⊂J1,mK
defined in (13).

(AI)I⊂J1,mK denotes the vertices of Z at the end of a path starting at the origin and composed of
all generators contributing to the elements of I, but not contributing to the others, after recentering and
renormalizing by n−(d+2)/(2d+2). The family of cones (CI)I⊂J1,mK is mutually disjoint, hence the variables
(AI)I⊂J1,mK are mutually independent under Pn.

The family
(
X̃

n
ui

)
is generated by the family (AI)I⊂J1,mK, I ̸=∅, as X̃

n
ui

=
∑

I⊂J1,mK,i∈I AI . Under Pn,

the probability for the (2m − 1)-tuple of variables AI , with I ̸= ∅ to be equal to (xI)I⊂J1,mK, I ̸=∅ is, based
on Bayes’ theorem:
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Qn

[
(AI)I ̸=∅ = (xI)I ̸=∅

]
=

Pn

[
(AI)I = (xI)I ∩ X̃

n
um+1

= 0
]

Pn

[
X̃

n
um+1

= 0
] . (16)

Under the distribution Qn, the condition that the endpoint of the zonotope Z is at nk can be considered
as a condition on A∅, that is A∅ = x∅ with x∅ = −

∑
I⊂J1,mK, I ̸=∅ xI . Therefore, denoting P(E) the set of

all subsets of E, it follows that

Pn

[
(AI)I⊂J1,mK, I ̸=∅ = (xI)I⊂J1,mK, I ̸=∅ ∩ X̃

n
um+1

= 0
]

= Pn [AI = xI , I ∈ P (J1,mK)]

=
∏

I∈P(J1,mK)

Pn(AI = xI). (17)

All the variables AI satisfy Theorem 3 with mean 0 and covariance Γ(CI), and so does X̃
n
um+1

with
covariance ΓC . Hence, (16), (17), and the local limit theorem lead to

sup
(xI)I⊂J1,mK

I ̸=∅
∈(Rd)

2m−1

∣∣∣∣∣∣∣Qn

[
(AI)I ̸=∅ = (xI)I ̸=∅

]
−

∏
I⊂J1,mK

gd(x⊤
I (Γ(CI))−1xI)
det Γ(CI)1/2
1

(2π)d/2 det Γ(C)1/2

∣∣∣∣∣∣∣ −→
n→+∞

0, (18)

where gd is the density of the d-dimensional standard Gaussian variable. (AI)I⊂J1,mK, I ̸=∅ satisfies a local
limit theorem of rate 1 to a Gaussian family of variables named (GI)I⊂J1,mK, I ̸=∅. The weak convergence
follows. The covariance of the (GI) is given by inverting the matrix of the quadratic form in the exponential.

Since X̃
n
ui

=
∑

I⊂J1,mK,i∈I XI ,
(
X̃

n
ui

)
1≤i≤m

weakly converges to

(∑
Ii⊂J1,mK

i∈Ii
GIi

)
1≤i≤m

. When consid-

ering this limit with only one variable X̃
n
ui

, we deduce that it weakly converges to the Gaussian random
variable Nui with mean 0 and covariance

Cov (Nui) =
(
Γ(C(ui ≥ 0))−1 + Γ(C \ C(ui ≥ 0))−1

)−1
=
(
Γ−1
ui

+ Γ−1
−ui

)−1
. (19)

Proof of Theorem 1. Theorem 1 is a direct consequence of Proposition 4, taking only one vector u.

4 A DONSKER-LIKE THEOREM IN DIMENSION 2

This part is dedicated to proving the weak convergence of the rescaled process of the fluctuations around
the limit shape of a random zonogon to a Brownian bridge, in the same vein as Donsker’s theorem. This
will be used in the next section to prove Theorem 2 on random polygons.

Recall that the results of the previous section were true in any dimension. On the other hand, ex-
tending the functional results of this section to higher dimension would require more involved tightness
estimates, such as those appearing in Theorem 4 of [4]. We will not handle this question here. In any case,
in dimension ≥ 3, the only results we could obtain using our method would be valid for zonotopes and not
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for polytopes, whereas in dimension 2, the study of polygons follows readily from the case of zonogons.

So in this section, d = 2 and C = R2
+. The boundary of a zonogon Z of endpoint nk is divided into two

polygonal lines, identical up to central symmetry, denoted Z+, resp. Z−, for the upper polygonal line of
Z, resp. for the lower line. The tangent point of Z to the plane Hu belongs to Z+ if u ∈ R− ×R+, to Z−

if u ∈ R+ × R−, and it is nk if u ∈ R2
+ and 0 if u ∈ R2

−. We restrict the study to Z+ and u ∈ R− × R+,
and we define the process (Bn

t , 0 ≤ t ≤ 1) of fluctuations of tangent points of Z+ away from their mean
position, where Bn

t = X̃
n
(t−1,t).

n

n

u = (t− 1, t)

Xn
u

E [Xn
u]

Figure 3: Upper polygonal line of a zonotope and its limit shape in the square [0, n]2

Theorem 4. Let Z be a random, uniform zonogon in Z(R2
+, (n, n)). For t ∈ [0, 1], put Bn

t = X̃
n
(t−1,t) with

X̃
n
(t−1,t) as defined in (12). Then we have the convergence of processes

(Bn
t , 0 ≤ t ≤ 1)

(d)→ (Pt)

on the space D[0, 1] of càdlàg functions on [0, 1] equipped with the Skorokhod topology, where (Pt) is a
Gaussian processus with covariance matrix given by (20). Alternatively, (Pt) can be written as Pt =
P (t)D(t)Bt, where D(t) is a non-degenerate diagonal matrix, P (t) is an orthogonal matrix and (Bt)t∈[0,1]
is the 2-dimensional standard Brownian bridge.

Proof. The weak convergence of the finite-dimensional distributions to those of (Pt) is given by Proposition
4, for d = 2. For 0 < t < 1, the covariance of Pt is (Γ−1

(t−1,t) + Γ−1
(1−t,−t))

−1, that is

Cov(Pt) =

(
ζ(2)

ζ(3)

)1/3(−2
(
(4t2 − 2t + 1

)
t3(t− 1)

(
8t2 − 8t + 3

)
(t− 1)2t2(

8t2 − 8t + 3
)

(t− 1)2t2 −2
(
4t2 − 6t + 3

)
(t− 1)3t

)
. (20)

Using the spectral theorem, we compute the orthogonal matrix P (t) such that P (t)Cov(Pt)P (t)⊺ is
diagonal. We define the two polynomials f(x) = −8x2 − 8x − 1/2 and g(x) = 64x4 + 128x3 + 69x2 +
19/2x + 1/16, and we obtain
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P (t)Cov(Pt)P (t)⊺ = t(1 − t)

(
Q−(t) 0

0 Q+(t)

)
,

where Q±(t) = f
(
(t− 1

2)2
)
±
√

g
(
(t− 1

2)2
)
.

We only need to prove that (Bn
t , 0 ≤ t ≤ 1) is tight, which is a consequence of the following proposition,

using a result of Billingsley (Theorem 13.5 in [5]).

Remarkably, Q−(t)Q+(t) = 3t(1− t). These functions are both symmetrical to t = 1/2, and Q1 cancels
out at 0 and 1 while Q2 cancels out at 1/2. We don’t have any interpretation yet for these terms. We shall
not give the explicit formula of the orthogonal matrix P (t) here but we display the asymptotic behavior
at t = 0 and t = 1:

P (t) =

(
−1 + 1

8 t
2 1

2 t + 1
6 t

2

1
2 t + 1

6 t
2 1 − 1

8 t
2

)
+ o(t2), (21)

P (t) =

(
1
2(t− 1) + 1

6(t− 1)2 −1 + 1
8(t− 1)2

1 − 1
8(t− 1)2 1

2(t− 1) + 1
6(t− 1)2

)
+ o

(
(t− 1)2

)
.

Proposition 5 (Tightness). For 0 ≤ r < s < t ≤ 1, and α > 1
2 , and β > 0

E
[
||Bn

s −Bn
r ||

2
1 ||B

n
t −Bn

s ||
2
1

]
≤ |F (t) − F (r)|2α ,

with F is a non-decreasing, continuous function on [0, 1]

Proof. Let 0 ≤ r ≤ s ≤ t ≤ 1, and . It is sufficient to prove that there exists a constant C > 0 such that

E
[
||Bn

s −Bn
r ||

2
1 ||B

n
t −Bn

s ||
2
1

]
≤ C

(
t3 − r3

)2
.

We denote E(r, s, t) the left term of this inequality. Since {Bn
t } is a variable on a random zonotope that

end at (n, n), the first step is to broaden to random zonotopes drawn under Pn. As we are in 2 dimensions,
we will write in the following Xn

t instead of Xn
(1−t,t), referring to the point of the boundary of Z that is

tangent to the hyperplane H(1−t,t). We have

E(r, s, t) =
1

n8/3
E
[
||Xn

s −Xn
r − E [Xn

s −Xn
r ]||21 ||X

n
t −Xn

s − E [Xn
t −Xn

s ]||21
∣∣Z ∈ Z

(
N2, (n, n)

)]
.

Denoting Cr,s (resp. Cs,t) the cone of vectors contributing to Xn
s −Xn

r (resp. Xn
t −Xn

s ). The first cone
formally is {x ∈ R,x · (r − 1, r) ≤ 0 ≤ x · (s− 1, s)}. We can write the right term of the equation above
as:

E(r, s, t) = E
[∣∣∣∣∣∣X̃n

(Cr,s)
∣∣∣∣∣∣2
1

∣∣∣∣∣∣X̃n
(Cs,t)

∣∣∣∣∣∣2
1

∣∣Z ∈ Z
(
N2, (n, n)

)]
.

After writing each variable as a sum over the generators and expanding the product of the norms, one
can notice that this expectancy will result in a sum over quadruplets primitive generators {x1,x2x3,x4}.
Given such a quadruplet {x1,x2,x3,x4}, the probability for the generators to respectively occur k1, k2, k3,
and k4 is

Qn(k1, k2, k3, k4) =

4∏
i=1

Pn (ω(xi) = ki)
Pn

(
Xn

1 \ {x1,x2,x3,x4} = (n, n) −
∑4

i=1 kixi

)
Pn (Xn

1 = (n, n))
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Yet the local limit theorem ensures that there exist n1 large enough such that for n > n1, for any
{x1,x2,x3,x4}, the ratio is bounded :

Pn

(
Xn

1 \ {x1,x2,x3,x4} = (n, n) −
∑4

i=1 kixi

)
Pn (Xn

1 = (n, n))
≤ 2

Therefore, it remains

E(r, s, t) ≤ 2 E
[∣∣∣∣∣∣X̃n

(Cr,s)
∣∣∣∣∣∣2
1

∣∣∣∣∣∣X̃n
(Cs,t)

∣∣∣∣∣∣2
1

]
= 2 E

[∣∣∣∣∣∣X̃n
(Cr,s)

∣∣∣∣∣∣2
1

]
E
[∣∣∣∣∣∣X̃n

(Cs,t)
∣∣∣∣∣∣2
1

]
This expectancy can be split into two parts due to independence. In order to expand the 1-norm, let

a and b be real numbers such that X̃
n
(Cr,s) = (a, b). Therefore, ||X̃n

(Cr,s)||21 = a2 + b2 + 2|ab| ≤ 2a2 + 2b2.
Hence, we have, writing x = (x1, x2):

E
[∣∣∣∣∣∣X̃n

(Cr,s)
∣∣∣∣∣∣2
1

]
≤ 2

n4/3
E

 ∑
x∈P2∩Cr,s

x1(ω(x) − E[ω(x)])

2+
2

n4/3
E

 ∑
x∈P2∩Cr,s

x2(ω(x) − E[ω(x)])

2
The 2 terms on the right-hand side are the diagonal terms of Γn(Cr,s). Using the bounding given by

Corollary 1 in the same way we previously explicitly calculated in the proof in Proposition 3, we have

E

 ∑
x∈P2∩Cr,s

x1(ω(x) − E[ω(x)])

2 ≤ 6n4/3

(
ζ(2)

ζ(3)

) 1
3
∫

P2∩Cr,s
x·(1,1)≤1

x21dx + ϵ(n)n,

with ϵ(n) tending to 0 as n grows to +∞, and ϵ(n) is independent of Cr,s Therefore for n2 large enough,
and n ≥ n2, there exists a constant A > 0 such that

E
[∣∣∣∣∣∣X̃n

(Cr,s)
∣∣∣∣∣∣2
1

]
≤ A(s3 − r3)

Finally, the inequality (s3 − r3)(t3 − s3) ≤ (t3 − r3)2 concludes the proof.

In the proof of the convergence of the variations of a polygon uniformly drawn in a square, we need to
extend Theorem 4 to zonogons ending at (n+r2/3, n+sn2/3). This is handled by the following proposition.

Proposition 6. Let r, s ∈ R and let Z be a random, uniform zonogon in Z
(
R2
+,
(
⌊n + rn2/3⌋ , ⌊n + sn2/3⌋

))
.

Let Bn
t be, as in Theorem 3, the rescaled position of the point of Z tangent to the hyperplane normal to

(t− 1, t). Then we have the convergence of processes

(Bn
t , 0 ≤ t ≤ 1)

(d)→ Pt + νr,s(t)

in the space D[0, 1] of càdlàg functions on [0, 1] equipped with the Skorokhod topology, where (Pt) is the
same process as in Theorem 4 and νr,s(t) is a drift term given by (23).
Denoting a = r − s and b = r − 2s, (νr,s(t))0≤t≤1 is a parametric cubic curve starting at (0, 0), ending at
(r, s) and satisfying the equation:

4a(X + Y )3 = 28b3X + 7b2(X + Y )2 + 54abX(X + Y ) + 27a2X2 (22)
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Proof. Both finite-dimensional distribution and tightness proofs are totally analogous to the proofs of
Proposition 4 and 5. Given Γ(t−1,t) and Γ−(t−1,t) the covariances of X̃(t−1,t) and X̃−(t−1,t), the local limit
theorem gives the following drift νr,s(t):

νr,s(t) =
(

Γ −1
(t−1,t) + Γ −1

−(t−1,t)

)−1
Γ −1
−(t−1,t)

(
r
s

)
=

(
t2(2t− 1) −2t2(t− 1)
−2t(t− 1)2 t(2t2 − 5t + 4)

)(
r
s

)
(23)

All that remains is to analyze to find the equation of the curve νr,s. Notice that the coordinate of νr,s,
X(νr,s) and Y (νr,s) are polynomials of t of degree 3, but their sum is a polynomial of degree 2, that is
X(νr,s)(t) + Y (νr,s)(t) = 3at2 − 2bt denoting a = r − s and b = r − 2s.

In order to get an equation of the curve, one can resolve the polynomial of degree 2 and inject the
solution in X(νr,s)(t). After simplification, we obtain the equation (22)

4a(X + Y )3 = 28b3X + 7b2(X + Y )2 + 54abX(X + Y ) + 27a2X2

which is verified by (X(νr,s), Y (νr,s). When r = s, the curve is the parabola that is the limit shape of a
uniform integral zonogon ending at (r, s); otherwise, νr,s(t) is a cubic curve. There are 2 different shapes,
depending on r

s belonging to [1/2, 2] or not. The derivatives of X(νr,s) and Y (νr,s) with respect to t are:

X(νr,s)
′(t) = 6at2 − 2bt, and Y (νr,s)

′(t) = −6at2 + (6a + 2b)t− 2b

If r
s ∈ [1/2, 2], there is a cusp of multiplicity 2 at t0 = b

3a = r−2s
3(r−s) . See Figure 4 for some examples of

(r, s).

(a) r = 0.1, s = 1 (b) r = 1, s = 1 (c) r = 1, s = 0.5

(d) r = 1, s = 0.2 (e) r = 1, s = −0.4

Figure 4: The curve νr,s(t) for 0 ≤ t ≤ 1, for different values of (r, s).
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5 BROWNIAN FLUCTUATIONS OF LARGE POLYGONS

The aim of this section is to prove Theorem 2. We first recall that at the first-order level, the polygon Pn

converges to a deterministic shape, namely

• The distance d(An, Sn)/n converges in distribution to 0 (and likewise for d(Bn, En)/n etc.)

• The part of the boundary of Pn between An and Bn, converges, after renormalization, to an arc of
parabola (and likewise between Bn and Cn etc.)

A formal statement can be found in Barany [2].
Theorem 2 gives the second-order asymptotics. We shall need an estimate on the number of convex

lattice chains from (0, 0) to (n + δn, n + δ′n), contained in [0, n + δn] × [0, n + δ′n]. The logarithm of this
number is given by (see the proof of Lemma 2.1 in Bureaux-Enriquez [8])

ζ(3)

ζ(2)

1

β1β2
+

1

2iπ

∫ 1+δ+i∞

1+δ−i∞

Γ(s)ζ(s + 1)

ζ(s)
χ(s;β) ds.

where

χ(s;β) :=
∑

v∈Z2
+\{0}

1

(β · v)s
, ℜ(s) > 2.

and β = (β1, β2) = (1/(n + δn), 1/(n + δ′n)). Moreover, by the same lemma, for all nonnegative integers
k1, k2, all ϵ > 0 and all β = (β1, β2) ∈ (0,+∞)2, such that ϵ < β1

β2
< 1

ϵ ,

∂k1+k2

∂βk1
1 ∂βk2

2

logZ(β1, β2) ∼
β→0

(−1)k1+k2 ζ(3)

ζ(2)

k1!k2!

βk1+1
1 βk2+1

2

.

Bureaux and Enriquez use these estimates to study the function χ near (0, 0) along the diagonal, that is, in
the case when δn = δ′n = 0. However, they point out that this can be extended to a more general setting.
The case when δn and δ′n are o(n) corresponds to studying χ in the neighbourhood of (0, 0) and near the
diagonal. Using exactly the same arguments as in Lemma 2.2 leads to the following estimate. There exist
C,K > 0 such that for all sequences (δn), (δ′n) satisfying δn = o(n), δ′n = o(n), the number of convex lattice
chains from (0, 0) to (n + δn, n + δ′n), contained in [0, n + δn] × [0, n + δ′n] and without vertical steps (it is
easy to see that this last additional condition on vertical steps does not change the form of the estimate)
is given by

exp(C(n + δn)1/3(n + δ′n)1/3 + H(n + δn, n + δ′n) + K log n + o(1)) (24)

where H is a corrective term such that, uniformly over all s, t ∈ R,

|H(n + sn2/3, n + tn2/3)| = o(n1/3) (25)

On the other hand, by the same arguments, for fixed reals s, t > 0, the number of convex lattice chains
from (0, 0) to (sn, tn), contained in [0, sn] × [0, tn] and such that (sn, tn) is the only point in the chain
whose x-coordinate is sn is given by

exp(C(sn)1/3(nt)1/3 + o(n1/3) (26)

We are now ready to prove Theorem 2.
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(i) We use the same arguments as in [2]. A convex lattice polygon can be seen as the union of 4 lattice
convex chains. In particular the number of polygons of this kind contained in [−n, n]2 is at least the
number of such polygons satisfying An = Sn, Bn = En etc. which, according to (24), has the form

exp(4Cn2/3 + 4K log n + 4H(n, n) + o(1)) (27)

If c > 0, if we want to count the number of convex lattice polygons contained in the rectangle Rn :=
[−n, n] × [−(n − cn(1/3)+δ), n], we can choose the points An, Bn, Cn, Dn and count the lattice chains in-
between. Comparing (24) and (26), we see that this number is maximized when An, Bn, Cn, Dn lie near the
middle of the segments of Rn. For such a choice of An, Bn, Cn, Dn, this number of convex lattice polygons
is bounded above by

exp(4Cn1/3(n− (c/2)n2/3)1/3 + 4H(n, n− (c/2)n2/3) + 4K log n + o(1))

On the other hand, the number of choices of (An, Bn, Cn, Dn) is bounded (2n)4, so that the number of
convex lattice polygons contained in Rn is bounded by

exp(4Cn2/3 − 2

3
Ccn1/3 + 4H(n, n− (c/2)n2/3) + (4K + 16) log n + o(1))

Using (25), we obtain
4H(n, n)

−2
3Ccn1/3 + 4H(n, n− (c/2)n2/3)

→ ∞ (28)

as n → ∞, which entails that that the probability that a random, uniform convex lattice polygon contained
[−n, n]2 lies in Rn tends to 0 as n → ∞. So for every ε, with probability going to 1, n−2/3|Y (An−Sn)| < ε
and we have the same estimates for Bn, Cn, Dn.

(ii) From (i), we know that there exists a sequence (Dn) of integers such that Dn = o(n2/3) and that
with probability going to 1, |Y (An)+n| < Dn, |X(Bn)−n| < Dn etc. Let now (δn, δ

′
n, δ

′′
n, δ

′′′
n ) be sequences

of integers such that for each n, 0 < δn < Dn etc. We want to study the law of

n−2/3(X(An − Sn), Y (Bn − En),−X(Cn −Nn) − Y (Dn −Wn))

conditionally on the event

En = {Y (An − Sn) = δn, X(Bn − En) = δ′n, Y (Cn −Nn) = δ′′n, X(Dn −W ′
n) = δ′′′n }

Fix r, s, t, u ∈ R. For simplicity, we shall omit the integer part notation in the sequel. We want to estimate
the number of 4-tuple of convex chains such that

X(An − Sn) = rn2/3, Y (An − Sn) = δn

Y (Bn − En) = sn2/3, X(Bn − En) = δ′n

etc. Let Ln(r, s, t, u) denote the logarithm of the number of such 4-tuples of chains. The number of chains
going from An to Bn is the same as the number of chains from (0, 0) to (n − δ′n − rn2/3, n − δn + sn2/3).
According to (24), this leads to

 Ln(r, s, t, u) = Cn2/3

((
1 − r

3n1/3
− 2r2

9n2/3
− δ′n

n
+ O(1/n)

)(
1 +

s

3n1/3
− 2s2

9n2/3
− δn

n
+ O(1/n))

))
+H

(
n− rn2/3 − δ′n, n + sn2/3 − δn

)
+ k log n + . . .

where we only wrote the term corresponding to the chain from An to Bn but of course, there are 3 other
terms. Summing up, we see that terms of the form r/n1/3 cancel out and we get

Ln(r, s, t, u) = Cn2/3

(
4 + 2

(
δn
n

+
δ′n
n

+
δ′′n
n

+
δ′′′n
n

)
− 4

9

(
r2 + s2 + t2 + u2

n2/3

)
− 1

9

(
rs + st + tu + ur

n2/3

))
+4K log n + H

(
n− rn2/3 − δ′n, n + sn2/3 − δn

)
+ . . . + O(1/n)
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where again, in the last line, we have 3 additional terms involving the function H. In particular, we get

Ln(r, s, t, u)

Cn2/3
=

Ln(0, 0, 0, 0)

Cn2/3
− 1

18
[(r − s)2 + (s− t)2 + (t− u)2 + (u− r)2] − 1

3
[r2 + s2 + t2 + u2] + o(1)

using the following fact that follows from (25):

|H
(
n− rn2/3 − δ′n, n + sn2/3 − δn

)
−H

(
n− δ′n, n− δn

)
| = o(n2/3) (29)

etc. This is true for all sequences (δn, δ
′
n, δ

′′
n, δ

′′′
n ), which completes the proof.

(iii) This part is a reformulation of Proposition 6 in Section 4. In Theorem 2 (iii), we are looking at the
southeast arc of the polygon whereas Proposition 6 deals with what would be the northwest arc. Hence
the identification

µr,s(t) =

(
0 1
1 0

)
ν−r,s(t)

The matrix Q(t) in Theorem 2 (iii) corresponds to P (t)D(t) in Proposition 6. Finally, the matrix Ot men-
tioned in the comments after the statement of Theorem 2 corresponds to the orthogonal matrix appearing
in (21).
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