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From graph theory and geometric probabilities to a representative
width for three-dimensional detonation cells
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Institut Pprime, UPR 3346 CNRS, Fluid, Thermal and Combustion Sciences Department,

ENSMA, Téléport 2, 1 Av. Clément Ader, Chasseneuil-du-Poitou, 86360, France

Abstract

We present a model for predicting a representative width for the three-dimensional cells
observed on detonation fronts in reactive gases. Its physical premise is that the dynamics
of the transverse waves of irregular cells obeys a stochastic process both stationary and
ergodic and produces the same burnt mass per unit of time as the average planar steady
ZND process. Graph theory then defines an ideal cell whose grouping is equivalent to the
actual 3D cellular front, geometric probabilities determine the mean burned fraction that
parameterizes the model, and ZND calculations close the problem with the time-position
relationship of a fluid element in the ZND reaction zone. The model is limited to detonation
reaction zones whose sole ignition mechanism is adiabatic shock compression, such as those of
the mixtures with H2, C3H8 or C2H4 as fuels considered in this work. Indeed, the comparison
of their measured and calculated widths shows an agreement better than or within the
accepted experimental uncertainties, depending on the quality of the chemical kinetic scheme
used for the ZND calculations. However, the comparison for CH4:O2 mixtures shows high
overestimates, indirectly confirming that the detonation reaction zones in these mixtures
certainly include other ignition mechanisms contributing to the combustion process, such as
turbulent diffusion. In these situations, the cell mean width derived from longitudinal soot
recordings shows a very large scatter and may thus not be a relevant detonation characteristic
length. The model is easily implementable as a post-process of ZND profiles and provides
fast estimates of the cell width, length and reaction time.

∗Corresponding author: vianney.monnier@ensma.fr March 30, 2023



1. Introduction

First identified experimentally in the late 1950s [1], the cellular structure of the detonation
reaction zone in gases is viewed today as an example of nonlinear instability of combustion
waves in compressible reactive fluids, e.g. [2]. It is now recognized that its physical repre-
sentation can only be three-dimensional. Experiments on constant-velocity detonations in
straight tubes are the usual method to characterize the basic phenomenology of this struc-
turing, namely a grouping of Mach waves consisting of forward propagating convex shocks
bounded by transversely propagating shocks, respective to the tube axis. Experimental and
numerical analyses, e.g. [3, 4], evidence that the front views of these detonation cells usually
form irregular polygonal patterns, in particular, if their number on the front surface is suf-
ficiently large. That is observed typically in tubes with cross sections large enough because
the usual cell descriptor, namely a mean width λ̄C, decreases as the initial pressure p0 of the
gas increases. The modelling framework then often includes hydrodynamics and chemical
kinetics solely and neglects viscosity, for example from boundary layers and turbulence. A
topic of debate is whether a single characteristic length is sufficient to characterize these 3D
irregular cells. In the following, we assume that such is λ̄C, and we propose a model for
predicting it based on the analysis outlined from our experimental recordings of detonation
cells [3, 5].

Classically, investigations rest on recordings on soot-coated foils placed longitudinally
against the inner wall(s) of the tube. The erosion of the coating by the moving intersections of
the transverse and longitudinal shocks with the foil draws lozenges whose statistical analysis
defines the mean width λ̄C. Mixtures of light fuels and oxygen highly diluted with a mono-
atomic inert gas, such as argon, give regular lozenges, and heavy fuels diluted with nitrogen
irregular ones [6–9]. The χ parameter measures this longitudinal irregularity, i.e., the higher
χ, the more irregular the lozenges [2, 10, 11]. Front-view recordings can be easily obtained
from the impact of the detonation on a soot-coated foil placed perpendicular to the tube
axis [1]. They show polygonal patterns whose edges represent the positions of the transverse
waves at the instant of impact. The observations indicate that these geometric properties
depend markedly on the initial pressure p0, temperature T0 and composition of the mixture
[12–14], and the cross-section shape of the tube. Thus, the regularity of the lozenges should
be considered a relative notion because of this dependence and the possible contradictory
information from longitudinal and front-view recordings.

For example [3], for the mixture 2 H2 +O2 +2 Ar, the front-view recordings show irregular
polygons at large-enough p0 regardless of the cross-section shape, but alternate square and
rectangular regular patterns at small-enough p0 in a square cross section. The longitudinal
recordings show regular cells regardless of p0 and the cross-section shape. As p0 decreases,
the regular arrangement on the longitudinal recordings remains qualitatively the same in the
round cross section, whereas lines emerge between the cell rows in the square cross section,
representing the impacts of transverse waves propagating perpendicular to the recording
wall, coherently with the information from the front views.

The cell widths λ̄C decrease with increasing p0 and become independent of the cross-

2



section shape if the number of cells per surface area is large enough, that is, when p0 is
greater than a limit that may depend on the cross-section area. Below this limit, the values
of λ̄C are smaller in the square cross section at the same p0, with a difference that increases
with decreasing p0. The cross-section shape has no apparent effect on the cell aspect ratio
above the limiting p0, but the cells are slimmer in the square cross section below it. Thus,
the cell dynamics at the walls of a tube at large-enough p0 or cell number may not represent
that on the entire detonation front, and information from longitudinal recordings may not
be sufficient alone to describe the geometric properties of the cellular structure.

Marginal detonation regimes are observed for tube transverse dimensions or p0 sufficiently
small so that the number of cells on the front is not too large. Therefore, regular patterns
on front-view recordings are exclusive of marginal detonations in mixtures with light fuels
contained in tubes with square or rectangular cross sections. Irregular patterns on front-
view recordings do not necessarily indicate multi-cellular regimes, e.g., Chapman-Jouguet
(CJ), since this irregularity depends on the cross-section shape at sufficiently small p0 and
is inherent to numbers of cells sufficiently large.

Nevertheless, the mean width λ̄C is still considered to be a useful characteristic length
for the analysis of detonation dynamics, and we propose a heuristic model for predicting
it for constant-velocity detonations in constant cross-section tubes if the number of cells
or p0 is sufficiently large. Its three ingredients are graph theory, geometric probabilities
and the Zel’dovich-Von Neuman-Döring (ZND) model of planar detonation. Its principle
assumes a global equivalence of the ZND and cellular combustion processes, relative to
their respective reaction times, expressed by basic conservation and action laws, with the
limitation that both processes should be adiabatic. As is discussed in Section 5, this limits
the predictive capacity of the model to detonation cells whose longitudinal soot recordings
show longitudinally regular to irregular lozenges, i.e. excludes the cases of highly irregular
lozenges.

The model is not intended to explain how detonation reaction zones become unstable.
This still poses difficulties for theoretical approaches based on perturbation techniques (Sect.
5), e.g., [15], while numerical simulations still require large computational resources. We have
considered a global approach that could readily provide a mean width sufficiently accurate for
practical purposes without detailing the complex wave interactions of the cellular structure.

In Section 2, we express the physical premise that the unsteady 3D process for irregular
cells is stochastic and should produce on average the same burnt mass as the steady planar
ZND process per unit of time. In Section 3, we implement graph theory to define an ideal
cell whose grouping is equivalent to the real 3D cellular front [3], geometric probabilities
to determine the mean burnt fraction that parameterizes the model, and the ZND model
with detailed schemes of chemical kinetics to compute the relation time-position of a fluid
element in the ZND steady reaction zone, which closes the problem of determining λ̄C. In
Section 4 we compare measured and calculated λ̄C depending on the reactive mixture and
the chemical kinetics scheme. In Section 5, we discuss the model, and we conclude. We
describe the ZND model equations and their numerical integration in the Appendix A, and
we collect the notation in the Appendix B.
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2. Model

The basic assumption is that the cellular and ZND processes burn the fresh mixture at
the same mass rate for sufficiently long periods and with the same projected area of the
detonation front. The ZND model of this work is that for constant-velocity detonation, i.e.
a steady planar reaction zone induced by a planar shock of constant velocity D. This ZND
process is a valid average of the cellular process if the number of cells is very large. We
choose as the origin of distances x in the reference frame of the laboratory an arbitrary
initial position L0 = 0 of the ZND front and as the origin of times t the instant t0 = 0 when
the fluid elements enter the ZND reaction zone. Thus, at an instant t > 0, the position of
the front is L(t) = Dt and the distance measured from the front is z = Dt−x. Steadiness is
the invariance of any variable f with respect to L(t) at a constant relative distance z in the
reaction zone, so f is function of a single independent variable, namely t or z. The relative
position zm(t) of a fluid element, or the period tm(z) elapsed from the front to this position,
are calculated by integrating the material speed with the ZND equations (App. A).

We refer to below as a complete reaction time the period necessary to completely burn all
fluid elements captured by a front at t0 = 0 and through the same reference surface area. Let
∆tC the period during which the ZND front travels the distance L̄C representing the length
of the mean cell. For the self-sustained detonation propagating at the Chapman-Jouguet
(CJ) velocity DCJ,

L̄C = DCJ∆tC. (1)

Figure 1: Left: ZND process. Right: cellular model process
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In the ZND process, denoting by tZR its complete reaction time, the fluid elements entered
in the reaction zone during the period 0 < t ⩽ tZR can only be partially burnt at tZR (Fig.
1-left). That results in the mean ZND burnt fraction ȳZ and reaction rate ȳZ/tZR. In the
cellular process, the front is a grouping of forward-convex waves whose forefront velocities
for irregular cells randomly vary about the ZND mean velocity, such as DCJ, e.g. [16]. Their
boundaries are the intersections with transverse waves that sweep the surfaces of the slower
forward waves. For mixtures whose longitudinal soot recordings show lozenges with not
too high irregularity, such as those with the light fuel H2 or the heavier hydrocarbon fuels
C2H4 or C3H8, the high-speed recordings indicate that the local combustion rate is much
more rapid in the regions behind the transverse waves and the faster forward waves, that is,
much faster than the mean cellular rate for mixtures, e.g., [17–20]. The dominant ignition
mechanism is then the adiabatic shock compression, and a limiting symmetry argument then
suggests that the complete reaction time, as defined above, of the ideal cell should be half
the cell time ∆tC/2. Indeed, the period [0,∆tC/2] is that necessary, on average, for the
transverse waves to sweep a projected front area equivalent to the maximum area of the
ideal cell, which, by symmetry, occurs every cell half length L̄C/2. Thus, during this period,
they cover the surface of the ideal cell, and they can capture and burn all the fluid elements
that have crossed the lower-velocity front surfaces since t0 (Fig. 1-right). That results in the
mean cell burnt fraction ȳC and reaction rate 2/∆tC – and not ȳC × 2/∆tC. The means of
the mass fractions yZ and yC are relative to periods elapsed since t0 = 0. They write

ȳZ =
1

tZR

∫ tZR

0

yZ(t)dt, ȳC =
2

∆tC

∫ ∆tC/2

0

yC(t)dt, (2)

where the subscripts Z and C denote the ZND and the cellular processes. The first time av-
erage above also applies to any variable, for example, the material speed UZ (t) = dzm (t) /dt
at the instant t or the position zm (t) of a fluid element in the ZND reaction zone. This
defines the ZND complete reaction length ℓZR by

ℓZR =

∫ tZR

0

UZ(t)dt = ŪZtZR, ŪZ =
ℓZR

tZR
, (3)

where ŪZ denotes the mean of UZ (t). With v denoting the specific volume, and v0 its initial
value, the relation of mass conservation (App. A)

vZDCJ = v0UZ (4)

considered at any position zm(t) can also be averaged, and (3) rewrites

ℓZR =
v̄Z

v0
DCJ × tZR, (5)

v̄Z (ȳZ) = (1− ȳZ) vH + ȳZvCJ. (6)

The relation (6) results from (4) and the averaging of the volume additivity relation v =∑
yivi, where vi and yi denote the specific volume and the mass fraction of the chemical
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species i, and vH and vCJ denote the specific volumes at the ZND shock (subscript H) and
the reaction end positions (subscript CJ for a self-sustained reaction zone, i.e. this work).
The ZND reaction zone thus reduces to an induction layer without chemical reactions and a
main reaction layer that concentrates the burnt mass. Per unit of surface area, these masses
are MH = (UH/vH)tZI and MB = (UCJ/vCJ)δtZR respectively, where tZI and δtZR are the
crossing times of these layers (tZR = tZI + δtZR). The mean fraction ȳZ is the ratio MB/MZ,
where MZ = MH +MB = (ŪZ/v̄Z)tZR is the total mass in the ZND reaction zone, and it is
also the ratio δtZR/tZR since U/v is constant (4).

The equality of the cellular and ZND average reaction rates implies that of their average
reaction progress variables ȳC and ȳZ with respect to their reaction times ∆tC/2 and tZR, so

2

∆tC
=

ȳ

tZR
, (7)

where ȳ denotes ȳC = ȳZ. The combination of (1) with (7) gives the relation (8) between
the cell mean length L̄C and the ZND complete reaction time tZR, which, with (5) and (6),
gives the relation (9) between L̄C and the ZND complete reaction length ℓZR,

L̄C (ȳ, tZR) = k1 × tZR, k1 (ȳ) =
2

ȳ
DCJ, (8)

L̄C (ȳ, ℓZR) = k2 × ℓZR, k2 (ȳ) =
2

ȳ

v0
v̄Z (ȳ)

. (9)

In the next section, graph theory is used to define a cellular pattern statistically equivalent
to those on an irregular 3D cellular front, hence the ideal cell to which geometric probabilities
are applied to obtain ȳ (Fig. 2). The cell length L̄C is then determined by the intersection
of the curves L1 (z) and L2 (z),

L1 (z) = k1 × tm(z), (10)
L2 (z) = k2 × z, (11)

which represent the functional dependencies of the front position L(t) = DCJt (1) on the
distance zm(t) of a fluid element in the ZND reaction zone. The function tm(z) in (10) is
the relation time-position of a fluid element in the ZND reaction zone, which is determined
by classical ZND numerical calculations with a detailed chemical kinetic scheme (App. A).
The intersections thus also determine tZR and ℓZR. The cell mean width λ̄C is obtained from
additional geometry considerations (Sect. 3) that define the width-to-length aspect ratio
a = λ̄C/L̄C. Figure 6 shows this principle as the intersection of the transverse-wave mean
distances λ1(z) = aL1(z) and λ2(z) = aL2(z).
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Figure 2: Front views of the cellular structure. Top: soot recording for the 2 H2 + O2 + 2 Ar mixture at
p0 = 30 kPa in a 16 cm2 round tube. Middle: schematic with randomly distributed face colors representing

randomly distributed burnt mass fraction y(t). Bottom: equivalent hexagon-patterned tesselation with
burnt mean mass fraction ȳ = 0.38498 (Sect. 3).
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3. Graph theory and geometric probabilities

In our preliminary analysis [3], we considered the distribution of a same pattern on the
detonation front surface, for example, rectangle, pentagon, hexagon, etc., to be independent
of the front position if the cell number F , that is the initial pressure p0, is sufficiently
large. Indeed, several experiments carried out in the same conditions should return the
same distribution. We used elements from planar graph theory to show that these front
views are equivalent to tessellations of hexagons. This was obtained by combining the
physical condition that only three transverse waves can intersect with the mathematical
limit at large F of the Descartes-Euler-Poincaré relation F − E + V = 2 that connects the
numbers of faces F (the cells), edges E (the transverse waves) and vertices V (the edge
intersections) in a tessellation. For three-edge vertices, 2E = 3V , so the limit at large F of
the edge number per face 2E/F is 6 (Fig. 2). One consequence is that a cell counting on an
experimental recording gives the estimate of the cell mean width

λ̄C =
3 ln 3

π

√
3

2
dx, dx =

√
8

3
√
3
AC, AC =

AT

F
, (12)

where dx and AC are the outer diameter and the area of the hexagon, and AT the cross-section
area of the tube. Another consequence, detailed below, is that a combination of properties of
this tessellation of hexagons and geometric probabilities predicts the mean reaction progress
variable ȳ and hence the cell mean width λ̄C (Sect.2). The premise is that the dynamics
of the transverse waves for irregular cells obeys a stochastic process both stationary and
ergodic. We substantiate the hexagon limit and the process dynamics in Section 5.

First, we define a control volume with the surface area AC and the half length L̄C/2 of
the ideal cell (1). We denote by MC the mass contained in this volume, M (t) the mass that
has crossed this surface during the period 0 ⩽ t ⩽ ∆tC/2, i.e. when the front has travelled
the distance L (t) = Dt ⩽ L̄C/2, and, respectively, AB (t) and MB (t) the area swept and the
mass burnt by the transverse waves during this period (Fig. 1-right). They write

MC = ρ0AC
L̄C

2
, M (t) = ρ0ACL (t) , MB (t) = ρ0AB (t)L (t) , (13)

where ρ0 denotes the initial specific mass. Thus, the burnt mass fraction yC is

yC (t) =
MB (t)

M (t)
=

AB (t)

AC
, (14)

so its mean ȳC (2) is the mean combustion area respective to the cell area AC.
Next, we express the stationary ergodicity of the transverse waves viewed as a large set

of line segments of different lengths. We assume the successive orientations and lengths
of the transverse waves over the propagation period ∆tC/2 in the same experiment to be
statistically identical to those from one experiment to another at the same front position.
That ensures that the combustion efficiency is, on average, independent of the experiment
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and the front position, which is tantamount to admitting that the transverse waves behave
like line segments randomly dropped on the front surface. Thus, ȳC is the probability that the
segments are entirely contained in the cell surface, i.e. the non-intersection probability. Its
calculation is a classical problem of geometric probabilities, namely Buffon’s needle problem
extended to a surface with a polyhedral tiling and needle lengths varying between 0 and the
largest width of the polyhedron, here for example, the outer diameter dx of the hexagon.

Many accounts of such problems express a non-intersection probability as a ratio µC/µ of
measures. The measure µ is the hyper-volume of the space of all possible random values of
the independent variables, and µC is that of the subspace of those values that ensure the non-
intersection of the segments with the edges of the polyhedron. The independent variables are
the orientation angle, the maximum length and the center coordinates of the segment, given
the polyhedron. The non-intersection constraint confines the segment center to a smaller
polyhedron whose shape and area depend on the segment orientation and length. For the
hexagon, we extend below to a variable-length segment the solution of Vassallo [21] for a
constant-length segment. Because of the clarity of his presentation, we do not reproduce his
calculations for brevity. In our notation, the hexagon has an area AC = (3

√
3/2)× (dx/2)

2,
the segment angle varies in [0, 2π] and its length s in [0, dx], so the measure is AC×2π×dx =
6π

√
3(dx/2)

3. Nondimensionalizing the lengths s by the side length dx/2 of the hexagon,
and denoting by r = 2s/dx the non-dimensional segment lengths, we obtain

µ = 6π
√
3, µC = µ1 + µ2 + µ3, µi =

∫ ri2

ri1

mi (r) dr, (15)

r ∈ [r11 = 0, r12 = 1] , m1 (r) = 3π
√
3− 12r + r2

(
3− π/

√
3
)
, (16)

r ∈
[
r21 = 1, r22 =

√
3
]
, m2 (r) = π

√
3
(
r2 + 5

)
− 9

√
4r2 − 3 ...

... − 2
√
3
(
3 + 2r2

)
arcsin

(√
3/2r

)
, (17)

r ∈
[
r31 =

√
3, r32 = 2

]
, m3 (r) = 2

√
3
(
r2 + 12

)
arcsin

(√
3/r

)
...

... + 30
√
r2 − 3−

(
8π

√
3 + 18

)
− r2

(
3 + 2π/

√
3
)
, (18)

µ1 = 10.720, µ2 = 1. 837 4, µ3 = 1.154 7× 10−2, (19)

where the mis are Vassallo’s non-intersection measures for constant segment lengths [21]
and the µis ours for segment lengths varying in the intervals [0, dx/2], [dx/2,

√
3dx/2] and

[
√
3dx/2, dx]. This gives the non-intersection probability, that is, the mean burnt fraction ȳC

(≡ ȳ, Sect.2), by
µ = 32.648, µC = 12.569, ȳ =

µC

µ
≈ 0.38498. (20)

Finally, we obtain the aspect ratio λ̄C/L̄C by combining stochasticity and, inspired by
[22], geometry. Since the transverse waves have a stochastic motion, their positions can be
considered to be the same every period ∆tC, so the longitudinal overdriven front waves of
the model cellular front should superimpose on each other every distance L̄C. Equivalently,
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these waves can be viewed as the upper surface elements of spheres arranged in the hexagonal
closest packing, that is, with alternate layers in the ABAB ... sequence. The sphere diameter
is also the distance between the centers of adjacent spheres and the inner diameter di of a
hexagon, so the ratio L̄C/di comes out as twice the height of the tetrahedral pyramid whose
base is the triangle with vertices the centers of the three closest spheres in the same layer.
Simple geometry then gives L̄C/di =

√
8/3 and di/dx =

√
3/2. With the first relation (12),

that yields the mean cell aspect ratio

a =
λ̄C

L̄C
=

3 ln 3

π

√
3

8
≈ 0.64244, (21)

which gives the opening angle 65.4o well representing the measurements on the longitudinal
recordings. The intersection of L1(z) (10) and L2(z) (11) defines the value of L̄C in (21).
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4. Results

Figures 3 and 4 compare calculated and experimental cell mean widths λ̄C.
We have used the experimental values given in the Detonation Database [23]. The red

crosses (+) indicate measurements in tubes whose transverse dimension is at least ten times
the experimental λ̄C, i.e. for detonation fronts with at least O(100) cells, and the gray
crosses (×) otherwise. The first case is closer to the validity condition of our model that the
transverse dimension must be large enough compared to λ̄C (e.g., fig.7 in [3]). We found the
information on the tube dimension and the measurement uncertainty on the widths (shown
as error bars) in the references of the Detonation Database.

The model is valid for a sufficiently large number of cells on the front surface (Sect.
3). The choice in section 4 to retain only the experimental results in tubes whose transverse
dimension is at least ten times the experimental λ̄C, i.e. there should be at least O(100) cells
on the front, is arbitrary and follows from our experimental observations for the sole mixture
2 H2 +O2 +2 Ar [3, 5]. Therefore, further experiments are needed to determine more precisely
the constraints on the initial conditions of a given mixture and the tube cross-section area
above which the mean width and the front-view cell patterns are independent of the tube.

We carried out the ZND calculations using the Konnov’s [24], San-Diego [25], and FFCM-
1 [26] chemical kinetic schemes. We chose H2, C3H8, C2H4, or CH4 as fuels and O2 as the
oxidant, pure or diluted with the diatomic diluent N2 in its proportion in air (O2 +3.71 N2 +
0.048 Ar), because of their practical importance and the attention they have received from
kineticists. We input the same initial pressures and temperatures as in the Detonation
Database [23], and table 1 shows which scheme fits which fuel. The object here is not to
detail the intrinsic properties of these schemes nor to discuss the differences between their
predictions.

Table 1: Compatibility table of the fuels and the chemical kinetic schemes

Fuel symbol H2 C3H8 C2H4 CH4

Konnov [24] yes yes yes yes
San-Diego [25] yes yes yes yes
FFCM-1 [26] yes no no yes

Two independent elements determine the relevance of the calculated λ̄C, namely the
model assumptions and the kinetic scheme. Their respective contributions to the differences
with the experimental values are difficult to distinguish due to the sensitivity of the detona-
tion characteristic lengths to the chemical kinetics. Our approach to best separate them is
to consider as a reference case the mixture 2 H2 + O2, whose cell widths are both frequently
measured and small enough compared to the transverse dimension of most detonation tubes,
and whose kinetic schemes have been frequently studied.

The good agreement shown in figure 3-a for the reference case and in figures 3-c to -f for
H2:Air mixtures for each scheme tends to indicate that the model assumptions are correct, at
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least for this fuel mixed with O2 or air. Figure 5 shows the sensitivities of the temperature
profile and λ̄C to the scheme for 2 H2 + O2 at 20 kPa. However, the large amount 40%
mol. of the monatomic diluent Ar in 2 H2 + O2 leads to overestimates of λ̄C. A possible
interpretation is that, for large dilutions with Ar, the considered schemes are calibrated only
for lean mixtures, e.g. [27]. Nevertheless, the calculated values have the right magnitude
and decreasing trend with increasing p0.

The figures 4-a to -d for the hydrocarbon fuels C3H8 and C2H4 show as good an agree-
ment as for 2 H2 + O2 and 2 H2 + Air. However, the calculations for CH4 overestimate the
measurements, although the schemes are valid for the equivalence ratio considered. Our
interpretation involves the very large values of the χ parameter for the CH4 + O2 mixture,
a situation for which a cell mean width, measured or calculated, may not be a relevant
characteristic length [2, 10, 11, 28] (Sect. 5).
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Figure 3: Comparison of calculated and measured cell mean widths λ̄C for H2 as the fuel. Full and open
symbols: calculations using Konnov’s [24] ( ), the San Diego [25] ( ) and the FFCM-1 [26] ( ) schemes of
chemical kinetics. Crosses: measurements [23] with small (⩽ O(10), red +) and large (⩾ O(10), gray ×)

ratios λ̄C/d, with dtransv the transverse dimension of the tubes.
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Figure 4: Comparison of calculated and measured cell mean widths λ̄C for hydrocarbon fuels. Full and
open symbols: calculations using Konnov’s [24] ( ), the San Diego [25] ( ) and the FFCM-1 [26] ( )

schemes of chemical kinetics. Crosses: measurements [23] with small (⩽ O(10), red +) and large (⩾ O(10),
gray ×) ratios λ̄C/dtransv, with dtransv the transverse dimension of the tubes.
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Figure 5: Sensitivities of the material evolutions of the ZND temperature T (red curves, right ordinate),
the transverse-waves mean distances λ1 and λ2 (Sec. 2, blue and green curves, left ordinate), the cell mean
width λ̄C and the ZND complete reaction time tZR to the chemical kinetic scheme. Full curves: Konnov’s

scheme, dashed curves: FFCM-1 scheme. The green curves of each scheme are indistinguishable.

Thus, overall, the model predicts the right values and trends of λ̄C for cells independent
of the confinement up to reasonably large χ parameters if the chemical kinetic schemes are
suitable for the considered mixtures. In these conditions, the relation (7) and the value
ȳ = 0.38498 (20) obtained in the section 3 show that the cellular process should take, on
average, ∆tC/tZR ≈ 5.2 times longer than the ZND process to achieve complete combustion.
Why ȳ and, therefore, the time ratios ∆tC/tZR, δtZR/tZR and tZI/tZR (Sect. 2) are pure
numbers, independent of the chemical and physical properties of the mixture, seem to be
a mere consequence of the model assumptions, and we have no physical interpretation. In
contrast, from the relations (4), (6) and (9) and the basic relation for the burnt volume
fraction

ν̄ = ȳ
vCJ

v̄Z(ȳ)
≡ δℓZR

ℓZR
, ℓZI = (1− ν̄)ℓZR (22)

the length ratios LC/ℓZR, ℓZI/ℓZR and δℓZR/ℓZR, where ℓZI = UHtZI and δℓZR = UCJδtZR are
the thicknesses of the reaction and induction layers (ℓZR = ℓZI + δℓZR), depend on the shock
and reaction-end properties. Table 2 shows and example. The values of vH, and vCJ and DCJ

are obtained from the ZND calculations, and those of λ̄C, ℓZR and tZR are obtained by the
procedure described in sections 2 and 3. We emphasize that the model defines thicknesses
ℓZI and δℓZR and crossing times tZI and δtZR of the induction and main-reaction layers that
are larger than those defined from the inflexion points of the profile and evolution of the
temperature. Nevertheless, the model gives typical large values of the ratios λ̄C/ℓZR and
λ̄C/ℓZI.
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Table 2: Data and calculation results for the mixture 2 H2 + O2
at p0 = 20 kPa, T0 = 293 K and with the Konnov’s scheme [24] (figs. 6)

v0 vH vCJ DCJ λ̄C ℓZR tZR v̄Z(ȳ) ν̄ λ̄C/ℓZR λ̄C/ℓZI

(m3/kg) (m3/kg) (m3/kg) (m/s) (mm) (mm) (µs) (m3/kg)

10.061 1.827 5.681 2750.9 14.065 1.382 1.528 3.308 0.660 10.177 29.925

Figure 6: Red curves, right ordinates: ZND profile (left graph) and material evolution (right graph) of the
temperature (T ). Blue and green curves, left ordinates: transverse-wave mean distances λ1 and λ2 as
functions of the position (z, blue) and time (tm(z), green) of a fluid element in the ZND reaction zone

relative to the leading shock.
The intersections of λ1 and λ2 give the cell mean width λ̄C and the ZND complete reaction length ℓZR and

time tZR (Sects. 2& 3).
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5. Discussion and conclusions

The model predicts well the mean cell width λ̄C up to reasonably large irregularity
parameters χ if the chemical kinetic schemes are suitable for the considered mixtures (but
cannot –and does not aim to– characterize this front-view irregularity). Therefore, the model
confirms the analyses by Short [10] and Radulescu [11, 28], reviewed by Ng and Zhang [2],
that larger χ give more irregular lozenges and identify a transition of the combustion process
from shock-induced adiabatic ignition for regular-to-irregular lozenges to a more complex one
including turbulent diffusion for highly irregular ones.

Adiabatic heating by shock compression is the sole mechanism involved in our approach,
which indeed predicts well λ̄C for H2:O2, H2:Air, C3H8:O2, C3H8:Air and C2H4:Air mixtures
whose lozenges are regular or irregular, and χ small or moderately large. In contrast, the
model overestimates λ̄C for CH4:O2 mixtures whose lozenges are highly irregular, and χ very
large, i.e. 52.5 [2]). In this case, the basic relations for the average reaction rate (7) and
the aspect ratio (21) would then no longer hold since they derive from the assumption of a
very rapid rate of shock-induced adiabatic combustion in the regions behind the transverse
waves and the faster forward waves (Sect. 2).

Therefore, our model provides an indirect means of identifying the mixtures whose det-
onation reaction zone includes turbulent diffusion since it predicts correct cell mean widths
and trends with an adequate chemical kinetic scheme when only adiabatic shock compression
is required. In this case, since its implementation is a simple post-processing of ZND profiles,
another application is the assessment of the representative capacity of kinetic schemes based
on the comparison of calculated mean widths with those obtained from experimental lozenges
that are not highly irregular. This contributes to the debates about the representativeness
of the experimental cell mean widths λ̄C with a high scatter of measurements and thus about
the sufficiency of λ̄C and χ to characterize the geometric properties of these longitudinally
highly irregular cells. We emphasize that longitudinal and front-view recordings may not
give the same information, for example, respectively, regular lozenges and irregular patterns,
depending on the cross-section shape of the tube (Sect. 1).

Theoretical approaches based on perturbation techniques use the ZND steady reaction
zone as an initial condition from which small linear perturbations grow, e.g., [15]. Their goal
is to select the unstable modes that should evolve into the transverse shocks representing the
cellular front in the limits of long times and large transverse dimensions. The expectation is
that the number of modes per unit of surface area of the front becomes constant, similarly
to multicellular detonations, but too small dimensions limit the number selected, similarly
to marginal detonations. Indeed, the experimental cells are independent of the cross-section
shapes and areas of sufficiently long and wide detonation tubes [3, 5]. A mathematical esti-
mate of the long-time limit is difficult because the number of modes increases with increasing
transverse dimensions. Our approach assumes the opposite basis that the front is multicel-
lular in the sense of both limits and therefore propagates steadily under conditions such that
the cellular and the ZND combustion processes are equivalent. Thus our model holds only
for multicellular detonations, not for marginal detonations.
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One debate is whether selecting 2D modes is a prerequisite for 3D modes. There are
three experimental observations. The first is that front views can show patterns regular in
a square-section tube and irregular at higher initial pressures in that tube or at the same
initial pressure and a larger square-section area. The second observation is that no regular
patterns are observed in round tubes and on spherically expanding detonations. Front-view
regularity is inherent to marginal detonation regimes in mixtures with light fuels in square
or rectangular tubes and not too high initial pressures. That does not represent the physical
multicellular (CJ) detonation regime, for which the front views are irregular. The third
observation is that, for sufficiently low initial pressures, regular lozenges on longitudinal
recordings in square tubes have smaller widths and a thinner aspect ratio λ̄C/LC than in
round tubes of the same cross-section area, and that, for sufficiently high initial pressures,
the mean cell widths become independent of the cross-section shape, as shown by the figure
7 in [3]. Therefore, 2D modes, regular or irregular, might no be the right basis for studying
3D modes.

For the situation of irregular front-view patterns independent of the tube cross-section,
we have considered the dynamics of the transverse waves to be a stochastic process, both
stationary and ergodic. These mathematical definitions are difficult to substantiate formally
in the context of detonation dynamics modelling. We can only propose phenomenological
elements based on a qualitative understanding of simplified definitions. Stochastic processes
involve randomness, and their evolution laws result in probability distributions. They are
stationary if the distributions are invariant in time and ergodic if the distributions through
space at a given time represent those obtained through time at a given location. The
orientations and lengths of the transverse waves, or equivalently the shapes and sizes of
the front-view patterns, cannot be the same at a given front position from one experiment
to another because of their high sensitivity to the initial conditions. We have assumed
this to be correct only within the probabilistic meaning above. Specifically, their successive
realizations over the propagation period ∆tC/2 in the same experiment should form the same
distribution as those at the same front position from one experiment to another. We know
of none that suggest otherwise at sufficiently long times or large distances from the ignition.
No front view shows distributions with patterns that are qualitatively very different in shape
and dimension from one experiment to another. In particular, none of the statistical analyses
of the numerous cell recordings made so far could have converged on the same λ̄C if this were
not the case.

The representation of the cellular front by a hexagonal patterned tessellation should
be interpreted as the limiting rearrangement of the cell edges statistically equivalent to
their experimental distribution at each instant of time since the Descartes-Euler-Poincaré
relation is independent of time. We are looking at the interest of an improved representation
by a multi-pattern Voronoi tessellation. We investigate the tentative assumption that the
transverse wave dynamics is a Poisson random process both stationary and homogeneous,
considering that irregular cells, due to their high sensitivity to initial conditions, have center
points randomly distributed, statistically constant in number and which move independently
of each other. Table 3 shows the corresponding distribution of the number of edges E of the
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patterns obtained explicitly by Calka [29] but recognized implicit in Miles and Maillardet
[30]. We observe the predominance of hexagons, then of pentagons and heptagons, about
75%, which supports the representativeness of the hexagon limit used in this work. That
also suggests that the mean burnt fraction for this multi-pattern tessellation, calculated from
a barycentric rule based on the individual mean burnt fractions and the distribution of the
patterns, would be only slightly different from the value 0.385 (20) for the hexagon alone
(Sect. 3). We also observe that about 67% of the patterns have at most six edges.

Table 3: Pattern distribution in % as a function of the number of edges E
for the homogeneous stationary Poisson process [29, 30]

E 3 4 5 6 7 8 9 10
% 1.1 10.7 25.9 29.5 19.9 9 3 0.7

In conclusion, the model predict correct values and trends of the mean widths λ̄C of
detonation cells whose longitudinal soot recordings show longitudinally regular to irregular
lozenges independent of the confinement if the chemical kinetic schemes are suitable for the
considered mixtures.
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Appendix A. ZND model equations

We summarize below for completeness the basic ZND-model case relevant to this work,
namely that for constant-velocity planar detonation in ideal reactive inviscid gases, with
detailed chemical kinetic schemes. Higgins [31] and Ng [2] have given comprehensive reviews.
The model equations derive from the Euler equations, which express the mass, momentum,
and energy balances for the inviscid reactive fluid, simplified by the assumptions that the
flow behind the detonation leading shock is one-dimensional planar and steady.

The notation is essentially that introduced in Section 2 and detailed in the nomenclature
(B). The origin of the distances x in the laboratory reference frame is an arbitrary initial
position L0 = 0 of the shock and the origin of the times t is the instant t0 = 0 when the
fluid elements enter the ZND reaction zone. Thus, at an instant t > 0, the position of the
shock is L(t) = Dt and the distance relative to this position is z(x, t) = Dt− x. Steadiness
is the invariance of any variable f with respect to L(t) at a constant relative distance z in
the reaction zone. With f(t, x) and f(t, z) the corresponding representations, this gives the
constraint

∂f

∂t

)
x

+D
∂f

∂x

)
t

=
∂f

∂t

)
z

= 0. (A.1)

The Euler equations for one-dimensional planar flow

∂ρ

∂t

)
x

+
∂ρu

∂x

)
t

= 0, (A.2)

∂ρu

∂t

)
x

+
∂p+ ρu2

∂x

)
t

= 0, (A.3)

∂ρE

∂t

)
x

+
∂ (p+ ρE)u

∂x

)
t

= 0, (A.4)

with E = e+ u2/2, e the specific internal energy and u the material speed in the laboratory
frame, thus reduce to a system of ordinary differential equations

df

dz
= F (f , D) , f(z = 0) = fH(D, p0, T0,y0), (A.5)

where d./dz ≡ ∂./∂z)t (since ∂./∂t)z = 0, (A.1)) denotes the spatial derivatives, f the
vector of the dependent variables, namely p the pressure, ρ the specific mass, U = D−u the
material speed in the shock frame, y the vector of the mass fractions yk of the K chemical
species (k = 1, K), tm(z) the time relative to the shock for a fluid element to reach the
position z, and fH the values of f at the shock (z = 0, t = 0), which serve as boundary
conditions for the integration of the system, given D and the initial pressure p0, temperature
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T0 and composition y0. The system writes

dU

dz
=

σ.w

1−M2
a
, (A.6)

dp

dz
= −ρU

σ.w

1−M2
a
, (A.7)

dv

dz
=

1

ρU

σ.w

1−M2
a
, (A.8)

dy

dz
=

w

U
, (A.9)

dtm
dz

=
1

U
, (A.10)

where v = 1/ρ denotes the specific volume, Ma = U/c the flow Mach number, c the frozen
sound velocity, w = dy/dt the vector of the reaction rates wk = dyk/dt (with d./dt = Ud./dz
the material derivative), σ.w the thermicity, and σ the vector of the thermicity coefficients
σk. The system is formally closed with hydrodynamic constitutive relations, namely the
reaction rates wk(p, v,y) and the equation of state e(p, v,y) that defines the frozen sound
velocity c(p, v,y) and the thermicity coefficients σk(p, v,y) by

c2 = v2
p+ ∂e

∂v

)
p,y

∂e
∂p

)
v,y

, σk =
−v

c2
∂e

∂yk

)
p,v,yj ̸=k

. (A.11)

Calculation codes implement thermal equations of state h(T, p,n) and v(T, p,n), with h =
e + pv the specific enthalpy and n the vector of the mole fractions. Chain rule operations
transform their derivatives into the hydrodynamic derivatives in (A.11) [2, 31, 32]. The joint
integration of the identity (A.10) with the equations (A.6-A.9) defines the time-position
relationships tm(z) and zm(t) of a fluid element (Sect.2).

The Euler equations subjected to the steadiness constraint also have first integrals in the
form of the Rankine-Hugoniot (RH) relations below, which express the conservation of the
mass, momentum and energy surface fluxes from the initial state (subscript 0) through the
shock to any distance z or time t relative to the shock in the reaction zone,

ρ0D = ρU, (A.12)
p0 + ρ0D

2 = p+ ρU2, (A.13)

h0 +
1

2
D2 = h+

1

2
U2. (A.14)

The boundary condition on the chemical composition at the shock is often the no-dissociation
constraint yH = y0. The RH relations combined with equations of state for hH and h0 then
determine the boundary value fH(D, p0, T0,y0), and the integration of (A.5) then yields the
profiles and evolutions of the corresponding dependent variables. The value of D for the
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Chapman-Jouguet detonation is not arbitrary and is a part of the solution. A preliminary
estimate is the equilibrium value DCJ obtained by solving the RH relations above supple-
mented by the chemical equilibrium constraint A(T, p,y) = 0 on the chemical affinity A,
which defines the composition yeq(T, p) at chemical equilibrium, the equilibrium thermal
equations of state heq(T, p) = h(T, p,yeq(T, p)) and veq(T, p) = v(T, p,yeq(T, p)), and the
equilibrium CJ constraint U = ceq(T, p), where ceq is the equilibrium sound velocity given
by

c2eq = v2
p+ ∂eeq

∂v

)
p

∂eeq
∂p

)
v

̸= (c2)eq = c2(T, p,yeq(T, p)). (A.15)

An iterative procedure based on successive integrations of (A.5) initiated with DCJ then aims
at framing to a reasonable degree of accuracy which value of D ensures that the derivatives in
the ZND system remain physical, that is, bounded, while approaching the sonic locus, since
there 1−Ma = 0 (or u + c = D) and w = 0 (with A(T, p,y) = 0). That gives the profiles,
the evolutions, and the frozen CJ velocity DCJ-f. The latter is different from the equilibrium
velocity DCJ because ceq ̸= (c)eq (A.15), but usually not significantly. Higgins [31] has also
discussed the more complex cases of pathological ZND detonations, e.g., σ.w = 0 and w ̸= 0.
We implemented the Caltech ZND code with detailed chemical kinetic schemes and their
thermodynamic database taken from the literature (Sect. 4).
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Appendix B. Nomenclature

Acronyms and subscripts

0 Initial state and origin of position and time (L0 = 0, t0 = 0)

(¯) Mean value

1D Mono-dimensional

2D Two-dimensional

3D Three-dimensional

B Burnt gases

C Cellular process

CJ Chapman-Jouguet

H Shocked state

ZND Zel’dovich - von Neuman - Döring

Z ZND process

m Position or time of a fluid element relative to the ZND shock

Physical quantities

L̄C Length of the mean cell m

λ̄C Cell mean width m

λ Transverse-wave distance m

χ Instability parameter

a Cell mean width-to-length aspect ratio (a = λ̄C/L̄C)

∆tC Characteristic time for the length of the mean cell (L̄C/DCJ) s

D Detonation velocity m×s−1

AC Area of the mean cell m2

AT Area of the tube m2

di, dx Inner and outer diameters of a hexagon m
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dtransv Transverse dimension of tubes m

L Position of the ZND shock in the laboratory frame m

x Distances in the laboratory frame m

z Distances measured from the ZND shock m

t Instant of time s

p Pressure Pa

T Temperature K

v Specific volume m3×kg−1

ρ Specific mass (ρ = 1/v) kg×m−3

U Material speed m×s−1

tZR ZND complete reaction time s

ℓZR ZND complete reaction length (ℓZR = Ū tZR) m

M Mass kg or kg×m−2

y Burnt mass fraction

ν̄ Mean burnt volume fraction

Mathematical quantities

E Number of edges

F Number of faces

V Number of vertices

µ Measure of the total hyper-volume

µC Measure of the non-intersection hyper-volume

µi Vassallo’s non-intersection measure for constant-length segment

mi Non-intersection measure for variable segment length

r Non-dimensional segment length

s Segment length m
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