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Abstract

Every minor-closed class of matroids of bounded branch-width can be characterized by a minimal
list of excluded minors, but unlike graphs, this list could be infinite in general. However, for
each fixed finite field F, the list contains only finitely many F-representable matroids, due to the
well-quasi-ordering of F-representable matroids of bounded branch-width under taking matroid
minors [J. F. Geelen, A. M. H. Gerards, and G. Whittle (2002)]. But this proof is non-constructive
and does not provide any algorithm for computing these F-representable excluded minors in general.

We consider the class of matroids of path-width at most k for fixed k. We prove that for a finite
field F, every F-representable excluded minor for the class of matroids of path-width at most k has
at most 2|F|O(k2)

elements. We can therefore compute, for any integer k and a fixed finite field F,
the set of F-representable excluded minors for the class of matroids of path-width k, and this gives
as a corollary a polynomial-time algorithm for checking whether the path-width of an F-represented
matroid is at most k. We also prove that every excluded pivot-minor for the class of graphs having
linear rank-width at most k has at most 22O(k2)

vertices, which also results in a similar algorithmic
consequence for linear rank-width of graphs.
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40:2 Obstructions for Matroids of Path-Width ≤ k and Graphs of Linear Rank-Width ≤ k

1 Introduction

For a class C of graphs or matroids, a graph or a matroid is an excluded minor for C if it
does not belong to C but all of its proper minors belong to C.

Robertson and Seymour [20] proved that every minor-closed class of graphs has finitely
many excluded minors. This deep theorem has many algorithmic consequences for minor-
closed classes of graphs. One of the corollaries is that for each minor-closed class I of graphs,
there exists a monadic second-order formula φI that expresses the membership in I, as there
is a formula to decide whether a graph has a minor isomorphic to a fixed graph. However,
the proof of Robertson-Seymour theorem is non-constructive and provides no algorithm of
constructing the list of excluded minors and therefore we only know the existence of φI and
do not know how to construct φI in general.

The class of graphs of path-width at most k is minor-closed and therefore the list of
excluded minors for the class of graphs of path-width at most k is finite for each k. Actually,
this is also implied by an earlier theorem of Robertson and Seymour [19], stating that
graphs of bounded tree-width are well-quasi-ordered under taking minors. But this is still
non-constructive. In 1998, Lagergren [14] proved that each excluded minor for the class of
graphs of path-width at most k has at most 2O(k4) edges. Therefore we can now construct a
monadic second-order formula φk to decide whether the path-width of a graph is at most k for
each k. Since Courcelle’s theorem [3] allows us to decide φk on graphs of bounded tree-width
in polynomial time, we obtain a polynomial-time algorithm to decide whether an input graph
has path-width at most k for each fixed k, even though a direct algorithm was proposed by
Bodlaender and Kloks [2].

We aim to prove analogous theorems for the class of matroids of path-width at most k

and for the class of graphs of linear rank-width at most k. For a matroid M on the ground
set E(M), we define its connectivity function λM by

λM (X) = rM (X) + rM (E(M) − X) − r(M) for X ⊆ E(M),

where rM is the rank function of M . The path-width of a matroid M is defined as the
minimum width of linear orderings of its elements, called path-decompositions or linear layouts,
where the width of a path-decomposition e1, e2, . . . , en is defined as the maximum of the
values λM ({e1, e2, . . . , ei}) for all i = 1, 2, . . . , n.

For matroid path-width, we do not yet know whether there are only finitely many excluded
minors for the class of matroids of path-width at most k. Previously, Koutsonas, Thilikos,
and Yamazaki [13] showed a lower bound, proving that the number of excluded minors for
the class of matroids of path-width at most k is at least (k!)2. We remark that a class of
matroids of bounded path-width is not necessarily well-quasi-ordered under taking minors;
Geelen, Gerards, and Whittle [6] showed that there is an infinite antichain of matroids of
bounded path-width.

Geelen, Gerards, and Whittle [6] proved that for each finite field F, F-representable
matroids of bounded branch-width are well-quasi-ordered under taking minors, as a gener-
alization of the theorem of Robertson and Seymour [19] on graphs of bounded tree-width.
This implies that for each finite field F, there are only finitely many F-representable excluded
minors for the class of matroids of path-width at most k.

As a corollary, for each finite field F and an integer k, there exists a monadic second-order
formula φF

k to decide whether an F-representable matroid has path-width at most k, because
one can write a monadic second-order formula to describe whether a matroid has a fixed
matroid as a minor by Hliněný [7]. Hliněný [7] also proved an analog of Courcelle’s theorem
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for F-represented matroids, showing a fixed-parameter algorithm to decide a monadic second-
order formula on F-represented matroids of bounded branch-width, for a finite field F. This
allows us to conclude that there “exists” a fixed-parameter tractable algorithm to decide
whether an input F-represented matroid has path-width at most k by testing φF

k.
However, the theorem of Geelen, Gerards, and Whittle [6] does not provide any method

of constructing the list of F-representable excluded minors and so we did not know how to
find φF

k. We are now ready to state our main theorem, showing an explicit upper bound of
the size of every F-representable excluded minor.

▶ Theorem 1. For a finite field F and an integer k, each F-representable excluded minor for
the class of matroids of path-width at most k has at most 2|F|O(k2) elements.

Thus, by Theorem 1, we “have” an algorithm to construct φF
k and we “have” a fixed-

parameter algorithm to decide whether an input F-represented matroid has path-width at
most k. Note that there is a subtle difference between “have” and “there exist”; by Geelen,
Gerards, and Whittle [6], we knew that there exists φF

k, but we did not know how to construct
it, because their proof is non-constructive. By Theorem 1 we can enumerate all matroids of
small size to find the list of all F-representable excluded minors and therefore we can finally
construct φF

k.
We remark that Geelen, Gerards, Robertson, and Whittle [5] showed an analogous

theorem for branch-width of matroids; for each k ≥ 1, every excluded minor for the class of
matroids of branch-width at most k has at most (6k+1 − 1)/5 elements.1

By extending our method slightly, we also prove a similar theorem for the linear rank-width
of graphs as follows.

▶ Theorem 2. Each excluded pivot-minor for the class of graphs of linear rank-width at
most k has at most 22O(k2) vertices.

Since every vertex-minor obstruction is also a pivot-minor obstruction, we deduce the
following.

▶ Corollary 3. Each excluded vertex-minor for the class of graphs of linear rank-width at
most k has at most 22O(k2) vertices.

The situation is very similar to that of matroids representable over a fixed finite field.
Oum [16] showed that graphs of bounded rank-width are well-quasi-ordered under taking
pivot-minors, which implies that the list of excluded pivot-minors for the class of graphs of
linear rank-width at most k is finite. Again its proof is non-constructive and therefore it
provides no algorithm to construct the list. Jeong, Kwon, and Oum [10, 11] proved that any
list of excluded pivot-minors characterizing the class of graphs of linear rank-width at most k

has at least 2Ω(3k) graphs.
Corollary 3 answers an open problem of Jeong, Kwon, and Oum [11] on the number of

vertices of each excluded vertex-minor for the class of graphs of linear rank-width at most k.
Adler, Farley, and Proskurowski [1] characterized excluded vertex-minors for the class of
graphs of linear rank-width at most 1. Theorem 6.1 of Kanté and Kwon [12] implies that
distance-hereditary excluded vertex-minors for the class of graphs of linear rank-width at
most k have at most O(3k) vertices.

1 In [5], the connectivity function of matroids is defined to have +1, which makes (6k − 1)/5.
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40:4 Obstructions for Matroids of Path-Width ≤ k and Graphs of Linear Rank-Width ≤ k

Previously, we only knew the existence of a modulo-2 counting monadic second-order
formula Φk testing whether a graph has linear rank-width at most k. This is due to the
theorem of Courcelle and Oum [4] stating that for each graph H, there is a modulo-2 counting
monadic second-order formula to decide whether a graph has a pivot-minor isomorphic to H.
As there is a polynomial-time algorithm to decide a modulo-2 counting monadic second-order
formula for graphs of bounded rank-width (see [4, Proposition 5.7]), we can conclude that
there “exists” a polynomial-time algorithm to decide whether an input graph has linear
rank-width at most k. However, this algorithm is based on the existence of Φk, and we
did not know how to construct Φk. Finally, by Theorem 2, we know how to construct Φk

algorithmically.

Let us now explain the main ideas. We first observe that each excluded minor M has
path-width k+1, admits a linked path-decomposition, which is a path-decomposition satisfying
some Menger-like condition, and each proper minor of M has path-width at most k. Secondly,
we show that each excluded minor of sufficiently large size has many nested cuts, all of the
same value. We finally show that among those cuts of the same value, there are two nested
cuts X and Y such that M has a minor on X ∪ (E(M)\Y ) of path-width k +1, contradicting
that all proper minors of M have path-width at most k. One of the key ingredients in
finding the minor is to use the data structure proposed by Jeong, Kim, and Oum [9]. Based
on dynamic programming, they devised fixed-parameter algorithms to decide whether an
F-represented matroid has path-width at most k and to decide whether a graph has linear
rank-width at most k without using the fact that there are only finitely many excluded
minors. Their so-called B-trajectories encode partial solutions which may be extended to
the full solutions. Here is the idea behind B-trajectories. If λM (X) = k, then the dimension
of the vector space spanned by both X and E(M) \ X is exactly k. Since the underlying
field is finite, this intersection subspace has only finitely many subspaces. Combining this
observation with the idea of typical sequences appearing in Bodlaender and Kloks [2], Jeong,
Kim, and Oum [9] deduce that there are only finitely many collections, called the full sets,
of meaningful partial solutions (compact B-trajectories) at every moment of the dynamic
programming algorithm. We indeed prove that among all nested cuts ensured by the large
size of M , there are two nested cuts X and Y such that the full set associated with Y can be
obtained by applying the same linear transformation to all compact B-trajectories of the full
set associated with X, where B is the vector space spanned by both X and E(M) \ X. The
second key ingredient of our proof is the linking theorem for minors of matroids of Tutte [21]
and a corresponding theorem for pivot-minors of graphs by Oum [16]; both are analogs of
Menger’s theorem. These linking theorems will ensure that when two nested cuts display the
identical full set up to a certain linear transformation, one can obtain a proper minor or a
proper pivot-minor having the same path-width or linear rank-width, respectively.

This paper is organized as follows. Section 2 reviews necessary definitions and known
facts on matroids, branch-decompositions, path-decompositions, and Tutte’s linking theorem.
We review in Section 3 the data structure introduced in Jeong, Kim, and Oum [9]. Section 4
presents a lemma on finding many cuts of the same width inside a linked path-decomposition.
We present the proof of the main theorem in Section 5. In Section 6, we present the proof
for Theorem 2 on linear rank-width of graphs.
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2 Preliminaries

For two sets A and B, we write A△B to denote (A − B) ∪ (B − A).

2.1 Matroids and minors
A matroid is a pair (E, I) of a finite set E and a set I of subsets of E satisfying the following
three properties:
(I1) ∅ ∈ I.
(I2) If X ∈ I and Y ⊆ X, then Y ∈ I.
(I3) If X, Y ∈ I and |X| < |Y |, then there is e ∈ Y − X such that X ∪ {e} ∈ I.
A subset of E is independent if it belongs to I. The ground set of a matroid M = (E, I) is
the set E denoted by E(M). A subset of E is dependent if it is not independent.

Let M = (E, I) be a matroid on n elements. We write I(M) to denote the set of
independent sets of a matroid M . A base of a matroid is a maximal independent set. A
subset of E is coindependent if it is disjoint with some base. The rank of a set X in a matroid
M , denoted by rM (X), is the size of a maximal independent subset of X in M . The rank of
a matroid M is r(M) := rM (E(M)). The connectivity function of a matroid M , denoted by
λM is defined as

λM (X) := rM (X) + rM (E(M) − X) − r(M)

for all X ⊆ E(M). It is easy to verify that λM is submodular, that is

λM (X) + λM (Y ) ≥ λM (X ∪ Y ) + λM (X ∩ Y )

for all X, Y ⊆ E(M). Also observe that λM is symmetric, that is λM (X) = λM (E(M) − X)
for all X ⊆ E(M).

For X ⊆ E, the restriction M |X of a matroid M on X is a matroid on the ground set
X such that I ⊆ X is an independent set of M |X if and only if it is an independent set
of M . The deletion of X from M is the restriction of M on E − X, denoted as M \ X.
Another matroid operation is a contraction. The contraction of M by X, denoted as M/X,
is a matroid with the ground set E − X such that a set I ⊆ E − X is an independent set of
M/X if and only if there exists a base BX of M |X such that I ∪ BX is an independent set
of M . Note that for Y ⊆ E − X, rM/X(Y ) = rM (Y ∪ X) − rM (X), where rM is the rank
function of a matroid M . For two matroids M, N , we say that N is a minor of M if there
exist disjoint subsets C and D of E(M) such that N = M \ D/C. A minor N of M is proper
if E(N) ̸= E(M).

The following lemma is obtained easily from the above equation on the rank of a minor.

▶ Lemma 4 (Geelen, Gerards, and Whittle [6, (5.3)]). Let M = (E, I) be a matroid and
let X, C, D be disjoint subsets of E. Then λM\D/C(X) ≤ λM (X). Furthermore, the
equality holds if and only if rM (X ∪ C) = rM (X) + rM (C) and rM (E − X) + rM (E − D) =
rM (E) + rM (E − (X ∪ D)).

2.2 Vector matroids
One of the key examples of matroids is the class of vector matroids. Let A be an m × n

matrix over a field F whose columns are indexed by a set E of column labels. Then a matroid
M(A) on E can be defined from A so that X is independent in M(A) if and only if the
corresponding column vectors of A are linearly independent. Such a matroid M(A) is called a

STACS 2022



40:6 Obstructions for Matroids of Path-Width ≤ k and Graphs of Linear Rank-Width ≤ k

vector matroid and A is called a representation of the matroid M(A). We say that a matroid
M is representable over F, or equivalently F-representable if there is a matrix A over F such
that M = M(A). We say a matroid M is F-represented if it is given with its representation
over F.

Instead of using matrices, we may regard a vector matroid defined from a finite set of
labeled vectors in a vector space, called a configuration as in [6]. For a configuration A, we
write M(A) to denote the matroid on A such that a subset of A is independent in M(A) if
and only if it is linearly independent in the underlying vector space. Note that vectors in a
configuration may coincide as we allow two different labels to represent the same vector. We
write ⟨A⟩ to denote the linear span of the vectors in A.

2.3 Path-width
Let E be a finite set with n elements. A function f : 2E → Z is submodular if f(X) + f(Y ) ≥
f(X ∪ Y ) + f(X ∩ Y ) for all X, Y ⊆ E and is symmetric if f(X) = f(E − X) for all X ⊆ E.
We say that a function f : 2E → Z is a connectivity function if it is submodular, symmetric,
and f(∅) = 0.

A linear layout of E is a permutation σ = e1, e2, . . . , en of E. The width of a linear layout
σ = e1, e2, . . . , en with respect to f is max1≤i<n f({e1, e2, . . . , ei}). The path-width of f is
the minimum width of all possible linear layouts of E with respect to f .

If f is the matroid connectivity function λM of a matroid M , then the linear layout
of E(M) is called a path-decomposition of M and the path-width of M is defined as the
path-width of λM .

A linear layout σ = e1, e2, . . . , en is linked if for all 0 ≤ i < j ≤ n,

min
{e1,e2,...,ei}⊆X⊆{e1,e2,...,ej}

f(X) = min
i≤ℓ≤j

f({e1, e2, . . . , eℓ}).

Nagamochi [15] presented an algorithm that runs in polynomial time for fixed k to find a
linear layout of width at most k if it exists for general connectivity functions. The key step
of his algorithm implies the following theorem easily from [15, Lemma 2], which ensures that
there always exists a linked linear layout of the optimum width. Actually, his algorithm
outputs a linked linear layout.

▶ Theorem 5 (Nagamochi [15]). If a connectivity function f has path-width k, then it has a
linked linear layout of width at most k.

2.4 Tutte’s linking theorem
▶ Theorem 6 (Tutte [21]). Let M be a matroid and A, B be disjoint subsets of E(M). Then

λM (X) ≥ k for all A ⊆ X ⊆ E(M) − B

if and only if M has a minor N on A ∪ B such that λN (A) ≥ k.

For a configuration A and X ⊆ A, let

∂A(X) := ⟨X⟩ ∩ ⟨A − X⟩.

Observe that λM(A)(X) = dim ∂A(X). The following proposition is essentially due to Geelen,
Gerards, and Whittle [6, (5.7)] and we modified their statement with the almost same proof.
Note that if N = M/C \ D is a minor of M , then we can choose D as a coindependent set in
M without changing N , see [18, Lemma 3.3.2]. Thus it is easy to satisfy the requirements of
the following proposition from Tutte’s linking theorem.
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▶ Proposition 7. Let A be a configuration over a field F and let S, T be subcollections of A

such that S ∩ T = ∅. Let C, D be disjoint subcollections of A such that C ∪ D = A − (S ∪ T ),
D is coindependent in M(A), and for the minor N = M(A)/C \ D of M(A) on S ∪ T ,

λN (S) = min
S⊆X⊆A−T

λM(A)(X) = k.

Then for all subcollections Z of A, if S ⊆ Z ⊆ A − T and λM(A)(Z) = k, then the following
hold.

(i) For all x, y ∈ ⟨Z⟩, x − y ∈ ⟨C⟩ if and only if x − y ∈ ⟨C ∩ Z⟩.
(ii) For all x, y ∈ ⟨A − Z⟩, x − y ∈ ⟨C⟩ if and only if x − y ∈ ⟨C − Z⟩.
(iii) For all x, y ∈ ∂A(Z), x − y ∈ ⟨C⟩ if and only if x = y.
(iv) If Z ′ is also a subcollection of A such that S ⊆ Z ′ ⊆ A − T and λM(A)(Z ′) = k, then

for each x ∈ ∂A(Z ′), there is a unique y ∈ ∂A(Z) such that x − y ∈ ⟨C⟩. Moreover,
x − y ∈ ⟨C ∩ (Z△Z ′)⟩.

Proof. Let M = M(A). Since D is coindependent, rM (A − D) = rM (A). Let C1 = C ∩ Z,
D1 = D ∩ Z, C2 = C − Z, and D2 = D − Z. By Lemma 4,

rM (A − Z) + rM (A − D2) = rM (A) + rM (A − (Z ∪ D2)),
rM (Z ∪ C2) = rM (Z) + rM (C2).

As rM (A − D2) = rM (A), from the first equation, we have rM (A − Z) = rM (A − (Z ∪ D2)) =
rM (T ∪ C2) and so

⟨A − Z⟩ = ⟨T ∪ C2⟩. (1)

From the second equation, we have

⟨Z⟩ ∩ ⟨C2⟩ = {0}. (2)

By symmetry between S and T and between Z and V − Z, we have

⟨Z⟩ = ⟨S ∪ C1⟩ and ⟨A − Z⟩ ∩ ⟨C1⟩ = {0}. (3)

Suppose that x, y ∈ ⟨Z⟩ and x − y ∈ ⟨C⟩. Let c1 ∈ ⟨C1⟩ and c2 ∈ ⟨C2⟩ such that
x − y = c1 + c2. Then x − y − c1 ∈ ⟨C2⟩ ∩ ⟨Z⟩. By (2), x − y − c1 = 0 and so x − y ∈ ⟨C1⟩.
This proves (i). By symmetry, (ii) is also proved.

By (i) and (ii), if x, y ∈ ∂A(Z) and x − y ∈ ⟨C⟩, then x − y ∈ ⟨C ∩ Z⟩ ∩ ⟨C − Z⟩. By (2),
⟨C ∩ Z⟩ ∩ ⟨C − Z⟩ = {0} and therefore x = y. This proves (iii).

To prove (iv), suppose that x ∈ ∂A(Z ′). By (1) applied to Z ′, there exist t ∈ ⟨T ⟩ and
c2 ∈ ⟨C −Z ′⟩ such that x = t+c2. Similarly, by (3), there exist s ∈ ⟨S⟩ and c1 ∈ ⟨C ∩Z ′⟩ such
that x = s + c1. We can write c1 = c11 + c12 for c11 ∈ ⟨C ∩ (Z ∩ Z ′)⟩ and c12 ∈ ⟨C ∩ (Z ′ − Z)⟩
and write c2 = c21 + c22 for c21 ∈ ⟨C ∩ (Z − Z ′)⟩ and c22 ∈ ⟨C − (Z ∪ Z ′)⟩. Let us define
y = s + c11 − c21 = t + c22 − c12. Then y ∈ ∂A(Z) because s + c11 − c21 ∈ ⟨Z⟩ and
t + c22 − c12 ∈ ⟨A − Z⟩. Now observe that x − y = c12 + c21 ∈ ⟨C ∩ (Z△Z ′)⟩. This proves
that the desired y exists. By (iii), such y is unique. ◀

STACS 2022
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3 Full sets

We review the concepts of B-trajectories and full sets introduced by Jeong, Kim, and Oum [9].

3.1 B-trajectories
Let B be a vector space. A statistic is a triple a = (L, R, λ) of subspaces L, R of B and a
non-negative integer λ. For convenience, we write L(a) = L, R(a) = R, and λ(a) = λ. A
B-trajectory is a sequence Γ = a0, a1, . . . , an of statistics for a non-negative integer n such
that

R(a0) = L(an),
L(a0) ⊆ L(a1) ⊆ · · · ⊆ L(an) ⊆ B,
R(an) ⊆ R(an−1) ⊆ · · · ⊆ R(a0) ⊆ B.

The width of Γ is max0≤i≤n λ(ai). We write Γ(i) to denote ai. The length of Γ, denoted by
|Γ|, is n + 1.

Let A = {e1, e2, . . . , en} be a configuration over a field F. From a path-decomposition
σ = e1, e2, . . . , en of a represented matroid M = M(A), we can obtain its canonical B-
trajectory as follows. For i = 0, 1, 2, . . . , n, let

Li = ⟨e1, e2, . . . , ei⟩ ∩ B,

Ri = ⟨ei+1, ei+2, . . . , en⟩ ∩ B, and
λi = dim⟨e1, e2, . . . , ei⟩ ∩ ⟨ei+1, ei+2, . . . , en⟩ − dim Li ∩ Ri.

Note that L0 = Rn = {0} and λ0 = λn = 0. Let ai = (Li, Ri, λi) for i = 0, 1, 2, . . . , n. Then
it is easy to see that Γ = a0, a1, a2, . . . , an is a B-trajectory, which we call the canonical B-
trajectory of σ. If Γ is a canonical B-trajectory of some path-decomposition σ of M = M(A),
then we say Γ is realizable in A.

For a B-trajectory Γ = a0, a1, a2, . . . , an, the compactification of Γ, denoted by τ(Γ), is
a B-trajectory obtained from Γ by applying the following operations repeatedly until no
further operations can be applied.

Remove an entry ai if ai−1 = ai.
Remove a subsequence ai+1, ai+2, . . ., aj−1 if i+1 < j, L(ai) = L(aj), R(ai) = R(aj), and
either λ(ai) ≤ λ(ak) ≤ λ(aj) for all k ∈ {i + 1, i + 2, . . . , j − 1} or λ(ai) ≥ λ(ak) ≥ λ(aj)
for all k ∈ {i + 1, i + 2, . . . , j − 1}.

We say that a B-trajectory is compact if τ(Γ) = Γ. Let Uk(B) be the set of all compact
B-trajectories of width at most k.

▶ Lemma 8 (Jeong, Kim, and Oum [9, Lemma 11]). Let B be a vector space over a finite
field F with dimension θ. Then

|Uk(B)| ≤ 29θ+2|F|θ(θ−1)22(2θ+1)k.

We can define binary relations which compare two B-trajectories as follows [9]. For two
statistics a and b, we write a ≤ b if

L(a) = L(b), R(a) = R(b), and λ(a) ≤ λ(b).

For two B-trajectories Γ1 and Γ2, we write Γ1 ≤ Γ2 if the lengths of Γ1 and Γ2 are the same,
say n, and Γ1(i) ≤ Γ2(i) for all 0 ≤ i ≤ n − 1. A B-trajectory Γ∗ is called an extension of a
B-trajectory Γ if Γ∗ can be obtained by repeating some statistics of Γ. We say that Γ1 ≼ Γ2
if there are extensions Γ∗

1 of Γ1 and Γ∗
2 of Γ2 such that Γ∗

1 ≤ Γ∗
2.
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3.2 A full set
We review the full set notion introduced by Jeong, Kim, and Oum [9] used for their algorithm
to decide the path-width of represented matroids. Let A be a configuration of vectors in a
vector space V over a field F. Let B be a subspace of V .

The full set of A of width k with respect to B, denoted by FSk(A, B), is the set of
all compact B-trajectories Γ of width at most k such that there exists a B-trajectory ∆
realizable in A with ∆ ≼ Γ. From the definition, it is clear that

FSk(A, {0}) ̸= ∅ if and only if M(A) has path-width at most k.

By Lemma 8, the number of B-trajectories in FSk(A, B) is bounded by a function of |F|,
dim B, and k.

The following lemma is an immediate consequence of Jeong, Kim, and Oum [9, Proposi-
tions 35 and 36].

▶ Lemma 9. Let A, A′ be configurations in a vector space V . Let k be a non-negative integer.
Let B be a subspace of V . If FSk(A, B) = FSk(A′, B), then FSk(A, {0}) = FSk(A′, {0}).

▶ Lemma 10. Let A1, A′
1, A2, A′

2 be configurations in a vector space V . Let k be a non-
negative integer. Let B be a subspace of V such that (⟨A1⟩ + B) ∩ (⟨A2⟩ + B) = B and
(⟨A′

1⟩ + B) ∩ (⟨A′
2⟩ + B) = B. If FSk(A1, B) = FSk(A′

1, B) and FSk(A2, B) = FSk(A′
2, B),

then FSk(A1 ∪ A2, B) = FSk(A′
1 ∪ A′

2, B).

For a configuration A = {e1, e2, . . . , en} and a linear transformation ϕ, we write ϕ(A) to
denote a configuration {ϕ(e1), ϕ(e2), . . . , ϕ(en)}.

If B1 and B2 are subspaces of the same dimension and ϕ is a bijective linear transformation
from B1 to B2, then for each B1-trajectory Γ we can define a B2-trajectory ∆ := ϕ(Γ) in the
following way:

L(∆(i)) = ϕ(L(Γ(i))), R(∆(i)) = ϕ(R(Γ(i))), λ(∆(i)) = λ(Γ(i)),

for every 0 ≤ i ≤ |Γ| − 1. For a set of B-trajectories R, we define the set ϕ(R) = {ϕ(Γ) : Γ ∈
R}.

Observe that if ϕ is a linear transformation on ⟨A⟩ that is injective on ⟨A1⟩ and B1 is a
subspace of ⟨A1⟩, then

ϕ(FSk(A1, B1)) = FSk(ϕ(A1), ϕ(B1)).

Here on the right-hand side, we use ϕ values for all vectors in ⟨A1⟩ but on the left-hand side,
we only use ϕ for vectors in B1.

We can deduce the following lemma easily from Lemmas 9 and 10. We omit its proof.

▶ Lemma 11. Let k be a non-negative integer and let F be a field. Let A be a configuration
in a vector space V over F and let A′ be a configuration in a vector space V ′ over F. Let
(A1, A2) be a partition of A and (A′

1, A′
2) be a partition of A′. If there is a bijective linear

transformation ϕ : ∂A(A1) → ∂A′(A′
1) such that

ϕ(FSk(A1, ∂A(A1))) = FSk(A′
1, ∂A′(A′

1)) and
ϕ(FSk(A2, ∂A(A1))) = FSk(A′

2, ∂A′(A′
1)),

then the path-width of M(A) is at most k if and only if the path-width of M(A′) is at most k.
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4 Finding many repeated cuts

The following lemma finds many cuts in the linked path-decomposition that are of the same
width and linked each other.

▶ Lemma 12. Let ℓ ≥ 4 be an integer. Let a0, a1, a2, . . . , an be a sequence of integers such
that ai ≥ a0 = an for all 0 ≤ i ≤ n and |ai − ai+1| ≤ 1. If

n ≥
(

ℓ − 1 + 2(ℓ − 2)
ℓ − 3

)
(ℓ − 2)max0≤i≤n(ai−a0) − 2(ℓ − 2)

ℓ − 3 ,

then there exist 0 ≤ i1 < i2 < i3 < · · · < iℓ ≤ n and w such that

ai1 = ai2 = · · · = aiℓ
= w and ai ≥ w for all i1 ≤ i ≤ iℓ.

Proof. We proceed by induction on M = max0≤i≤n(ai − a0). It is trivial if M = 0. Let
m = |{i ∈ {0, 1, . . . , n} : ai = a0}|. If m ≥ ℓ, then we are done. Thus we may assume
that m ≤ ℓ − 1. Then there exists a subsequence ap, ap+1, . . . , aq such that ai > a0 for all
p ≤ i ≤ q, and q−p+1 ≥ n

m−1 −1 ≥ n
ℓ−2 −1. Equivalently, q−p+ 2(ℓ−2)

ℓ−3 ≥ 1
ℓ−2

(
n + 2(ℓ−2)

ℓ−3

)
and therefore

q − p ≥
(

ℓ − 1 + 2(ℓ − 2)
ℓ − 3

)
(ℓ − 2)M−1 − 2(ℓ − 2)

ℓ − 3 .

We may assume that q − p is chosen as a maximum. Then by the assumption that
|ai − ai+1| ≤ 1, we deduce that ap = aq = a0 + 1. Now we apply the induction hypothesis to
the subsequence ap, ap+1, . . . , aq to conclude the proof. ◀

We will apply Lemma 12 to a sequence a0, a1, a2, . . . , an obtained from a linked path-
decomposition σ = e1, e2, . . . , en, where ai = λM ({e1, e2, . . . , ei}) for i = 0, 1, 2, . . . , n. It is
easy to verify that any path-decomposition σ of a represented matroid meets the requirement
that |ai − ai+1| ≤ 1 of Lemma 12. The next lemma is needed.

▶ Lemma 13. Let M be a matroid. If e ∈ X ⊆ E(M), then |λM (X) − λM (X − {e})| ≤ 1.

Proof. By the submodularity of the connectivity function, we have λM (X −{e})+λM ({e}) ≥
λM (X). Since λM ({e}) ≤ 1, we have λM (X) ≤ λM (X − {e}) + 1. Since λM is symmetric,
we deduce that λM (X − {e}) ≤ λM (X) + 1. ◀

5 The proof

The following proposition proves Theorem 1.

▶ Proposition 14. Let F be a finite field and k be a non-negative integer. Let M be an
F-representable matroid of path-width larger than k. Let ℓ = 229k+11|F|k(k+1)22(2k+3)k + 1. If

|E(M)| ≥
(

ℓ − 1 + 2(ℓ − 2)
ℓ − 3

)
(ℓ − 2)k+1 − 2(ℓ − 2)

ℓ − 3 ,

then there is e ∈ E(M) such that M/e or M \ e has path-width larger than k.

Proof. Let A be a configuration in a vector space over F such that M = M(A). We may
assume that M \ e and M/e has path-width at most k for every e ∈ E(M). This implies that
M has path-width exactly k + 1 and by Theorem 5, there is a linked path-decomposition
σ = e1, e2, . . . , en of M of width k + 1. We identify ei with a vector in A.
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For i = 0, 1, 2, . . . , n, let ai = λM ({e1, e2, . . . , ei}). Then 0 ≤ ai ≤ k + 1 for all i.
By Lemma 12, there exist integers 0 ≤ t1 < t2 < · · · < tℓ ≤ n and 0 ≤ θ ≤ k + 1 such

that at1 = at2 = · · · = atℓ
= θ and ai ≥ θ for all t1 ≤ i ≤ tℓ. Let Ai = {e1, e2, . . . , eti

} and
Bi = ∂A(Ai) for 1 ≤ i ≤ ℓ.

Since σ is a linked path-decomposition, λM (X) ≥ θ for all A1 ⊆ X ⊆ Aℓ. By Theorem 6,
there are disjoint subcollections C, D of A such that C ∪ D = A − (A1 ∪ (A − Aℓ)) and
λM/C\D(A1) = θ. We may assume that D is coindependent, see [18, Lemma 3.3.2]. Let
π : ⟨A⟩ → ⟨A⟩/⟨C⟩ be the linear transformation mapping x ∈ ⟨A⟩ to an equivalence class
[x] containing x where two vectors x and x′ are equivalent if and only if x − x′ ∈ ⟨C⟩. Let
B = π(∂A(A1)).

By (iii) and (iv) of Proposition 7, dim B = θ and π(∂A(Ai)) = π(∂A(Aj)) for all
1 ≤ i < j ≤ ℓ.

Observe that π(FSk(Ai, ∂A(Ai))) ⊆ Uk(B). Since ℓ is big enough, by Lemma 8 and
the pigeon-hole principle, there exist 1 ≤ i < j ≤ ℓ such that π(FSk(Ai, ∂A(Ai))) =
π(FSk(Aj , ∂A(Aj))).

Let C ′ = C ∩ (Aj − Ai) and D′ = D ∩ (Aj − Ai). Let ϕ : ⟨A⟩ → ⟨A⟩/⟨C ′⟩ be the linear
transformation mapping x ∈ ⟨A⟩ to an equivalence class containing x where two elements x,
y are equivalent if and only if x − y ∈ ⟨C ′⟩.

Let B′ = ϕ(∂A(Ai)). Since C ′ ⊆ C, by (iii) of Proposition 7, we have dim B′ = θ.
Furthermore, from (iv) of Proposition 7, we deduce that for x ∈ ∂A(Ai) and y ∈ ∂A(Aj),
π(x) = π(y) if and only if ϕ(x) = ϕ(y). Therefore, B′ = ϕ(∂A(Aj)) and ϕ(FSk(Ai, ∂A(Ai))) =
ϕ(FSk(Aj , ∂A(Aj))).

We claim that ϕ is an injection on ⟨Ai⟩. Suppose that x, y ∈ ⟨Ai⟩ and x − y ∈ ⟨C ′⟩ =
⟨C ∩ (Aj − Ai)⟩ ⊆ ⟨A − Ai⟩. Then x − y ∈ ⟨C⟩ and by (i) of Proposition 7, we deduce that
x − y ∈ ⟨C ∩ Ai⟩ ⊆ ⟨Ai⟩. This would imply that x − y ∈ ∂A(Ai) and therefore x = y by (iii)
of Proposition 7. By symmetry, we can also deduce that ϕ is an injection on ⟨A − Aj⟩.

Let N = M(A)/C ′ \ D′. Then A′ = ϕ(Ai ∪ (A − Aj)) is a configuration in the vector
space ⟨A⟩/⟨C ′⟩ such that N = M(A′). Since B′ ⊆ ⟨ϕ(Ai)⟩ and B′ ⊆ ⟨ϕ(A − Aj)⟩, we have
B′ ⊆ ∂A′(ϕ(Ai)). By Lemma 4, dim ∂A′(ϕ(Ai)) ≤ θ and therefore B′ = ∂A′(ϕ(Ai)).

Since ϕ is an injection on Ai, FSk(ϕ(Ai), ∂A′(ϕ(Ai))) = ϕ(FSk(Aj), ∂A(Aj)). Since ϕ is an
injection on A−Aj , trivially FSk(ϕ(A−Aj), ∂A′(ϕ(A−Aj))) = ϕ(FSk(A−Aj), ∂A(A−Aj)).

Since N is a proper minor of M , the path-width of N is at most k. By Lemma 11, M

has path-width at most k if and only if N has path-width at most k and therefore we deduce
that the path-width of M is at most k, contradicting the assumption. ◀

6 Obstructions to linear rank-width

All graphs in this section are simple, having no loops and no parallel edges.
For a graph G, the cut-rank function ρG of G is defined as a function that maps a set

X of vertices of G to the rank of the X × (V (G) − X) matrix over the binary field whose
ab-entry is 1 if and only if a ∈ X is adjacent to b ∈ V (G) − X. It is known that ρG is
symmetric and submodular, see Oum and Seymour [17], and therefore it is a connectivity
function. We remark that ρG(∅) = ρG(V (G)) = 0. The linear rank-width of a graph G is
defined to be the path-width of ρG.

For a pair (x, y) of distinct vertices of a graph G, flipping (x, y) is an operation that adds
an edge xy if x, y are non-adjacent in G and deletes the edge xy otherwise. For an edge uv

of a graph G, we write G ∧ uv to denote the graph G′ on V (G) obtained by the following
procedures.
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1. For every pair x ∈ N(u) ∩ N(v) and y ∈ N(u) − N(v), flip (x, y).
2. For every pair x ∈ N(u) ∩ N(v) and y ∈ N(v) − N(u), flip (x, y).
3. For every pair x ∈ N(u) − N(v) and y ∈ N(v) − N(u), flip (x, y).
4. Swap the label of u and v.
This operation is called the pivot. We remark that the purpose of the last operation is to
make G ∧ uv ∧ vw = G ∧ uw, see Oum [16]. Here is an important property of pivots with
respect to the cut-rank function.

▶ Proposition 15 (See Oum [16]). If H = G ∧ uv, then ρH(X) = ρG(X) for all X ⊆ V (G).

We say that a graph H is a pivot-minor of a graph G if H is an induced subgraph of a
graph obtained from G by applying some sequence of pivots. We say that a pivot-minor H of
G is proper if V (H) ̸= V (G). Since deleting a vertex never increases the cut-rank function,
we deduce the following easily from the previous proposition.

▶ Corollary 16. If H is a pivot-minor of G, then the linear rank-width of H is at most the
linear rank-width of G.

Oum [16] proved an analog of Tutte’s linking theorem for pivot-minors.

▶ Theorem 17. Let G be a graph and let S, T be disjoint vertex sets of G. Then there exists
a pivot-minor H on S ∪ T such that ρH(S) = minS⊆X⊆V (G)−T ρG(X).

Let us now show how to represent a graph with a subspace arrangement. A subspace
arrangement V over a field F is a finite set of subspaces of a finite-dimensional vector space
over F. We usually write a subspace arrangement as a family V = {Vi}i∈E of subspaces
indexed by a finite set E.

A linear layout of a subspace arrangement V is a permutation σ = V1, V2, . . . , Vn of V.
The width of a linear layout σ = V1, V2, . . . , Vn is equal to

max
1≤i<n

dim(V1 + V2 + · · · + Vi) ∩ (Vi+1 + Vi+2 + · · · + Vn).

Note that this function is a connectivity function on V . The path-width of V is the minimum
width of linear layouts of V. If |V| ≤ 1, then we define the width of its linear layout to be 0
and its path-width to be 0.

As observed in [9, Section VII], for a matroid M represented by a configuration A, if we
take V = {⟨v⟩ : v ∈ A}, then the path-width of V is equal to the path-width of M(A).

We are now going to review the construction, appeared in [9, Section VIII], of a subspace
arrangement from graphs to relay the concept of linear rank-width to the path-width of its
corresponding subspace arrangement. For a graph G on the vertex set {1, 2, . . . , n}, let us
define a subspace arrangement over the binary field as follows. Let {e1, e2, . . . , en} be the
standard basis of Fn

2 where F2 is the binary field. Let vi =
∑

j∈NG(i) ej , where NG(i) denotes
the set of neighbors of i. Let Vi = ⟨ei, vi⟩ and let VG = {Vi}i∈V (G).

Here is the key observation.

▶ Lemma 18 (Jeong, Kim, and Oum [9, Lemma 52]). For X ⊆ V (G),

dim
(
(
∑
i∈X

Vi) ∩ (
∑

j∈V (G)−X

Vj)
)

= 2ρG(X).

▶ Corollary 19. The path-width of VG is equal to twice the linear rank-width of G.
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For a subset X of V (G), let IX = {ei : i ∈ X}, AX = {vi : i ∈ X}, and ∂X =
⟨IX ∪ AX⟩ ∩ ⟨IV (G)−X ∪ AV (G)−X⟩. By Lemma 18, dim ∂X = 2ρG(X). One can see that IZ

is a set of some column vectors in the n × n identity matrix and AZ is a set of some column
vectors in the adjacency matrix of G. Let MG be the binary matroid represented by the
matrix (In A(G)), where In is the n × n identity matrix and A(G) is the adjacency matrix
of G.

In Subsection 3.2, we reviewed the concept of full sets for the context of represented
matroids or configurations. In fact, Jeong, Kim, and Oum [9] introduced full sets in more
general form for subspace arrangements.

Here we are going to show the difference compared to Subsections 3.1 and 3.2. For a
subspace arrangement V and its linear layout σ = V1, V2, . . . , Vn, the canonical B-trajectory
is defined as follows. For i = 0, 1, . . . , n, let Li = (

∑i
j=1 Vj) ∩ B, Ri = (

∑n
j=i+1 Vj) ∩ B, λi =

dim(
∑i

j=1 Vj)∩ (
∑n

j=i+1 Vj)−dim Li ∩Ri, and ai = (Li, Ri, λi). Then Γ = a0, a1, a2, . . . , an

is the canonical B-trajectory of σ. We say that Γ is realizable in V if it is a canonical
B-trajectory of some linear layout of V.

For a subspace arrangement V, FSk(V, B) is defined as the set of all compact B-tra-
jectories Γ of width at most k such that there exists a B-trajectory ∆ realizable in V with
∆ ⪯ Γ.

Lemmas 9 and 10 are special cases of the following two lemmas easily deduced from the
result of Jeong, Kim, and Oum [9].

▶ Lemma 20. Let V, V ′ be subspace arrangements over a field F. Let k be a non-negative
integer. Let B be a subspace of ⟨V ∪ V ′⟩. If FSk(V, B) = FSk(V ′, B), then FSk(V, {0}) =
FSk(V ′, {0}).

▶ Lemma 21. Let V1, V ′
1, V2, V ′

2 be subspace arrangements over a field F. Let k be a non-
negative integer. Let B be a subspace of ⟨V1∪V2∪V ′

1∪V ′
2⟩ such that (⟨V1⟩+B)∩(⟨V2⟩+B) = B

and (⟨V ′
1⟩ + B) ∩ (⟨V ′

2⟩ + B) = B. If FSk(V1, B) = FSk(V ′
1, B) and FSk(V2, B) = FSk(V ′

2, B),
then FSk(V1 ∪ V2, B) = FSk(V ′

1 ∪ V ′
2, B).

We can deduce the following lemma easily from Lemmas 20 and 21 by the same method of
deducing Lemma 10 from Lemmas 9 and 10.

▶ Lemma 22. Let k be a non-negative integer and let F be a field. Let V be a subspace
arrangement over F and let V ′ be a subspace arrangement over F. Let (V1, V2) be a partition of
V and (V ′

1, V ′
2) be a partition of V ′. If there is a bijective linear transformation ϕ : ∂V(V1) →

∂V′(V ′
1) such that

ϕ(FSk(V1, ∂V(V1))) = FSk(V ′
1, ∂V′(V ′

1)) and ϕ(FSk(V2, ∂V(V1))) = FSk(V ′
2, ∂V′(V ′

1)),

then the path-width of V is at most k if and only if the path-width of V ′ is at most k.

The following proposition implies Theorem 2 and Corollary 3. We omit its proof.

▶ Proposition 23. Let G be a graph of linear rank-width larger than k.
Let ℓ = 2218(k+1)+2+(2k+2)(2k+1)+2(4k+3)2k + 1. If G has more than(

ℓ − 1 + 2(ℓ − 2)
ℓ − 3

)
(ℓ − 2)k+1 − 2(ℓ − 2)

ℓ − 3 ,

vertices, then G has a proper pivot-minor H whose linear rank-width is larger than k.
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