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Applying Bayesian inference in a hybrid
CNN-LSTM model for time series

prediction

Abstract—Convolutional neural networks (CNN)
and Long short-term memory (LSTM) provide state-
of-the-art performance in various tasks. However,
these models are faced with overfitting on small data
and cannot measure uncertainty, which have a negative
effect on their generalization abilities. In addition, the
prediction task can face many challenges because of
the complex long-term fluctuations, especially in time
series datasets. Recently, applying Bayesian inference
in deep learning to estimate the uncertainty in the
model prediction was introduced. This approach can
be highly robust to overfitting and allows to estimate
uncertainty. In this paper, we propose a novel ap-
proach using Bayesian inference in a hybrid CNN-
LSTM model called CNN-Bayes LSTM for time series
prediction. The experiments have been conducted on
two real time series datasets, namely sunspot and
weather datasets. The experimental results show that
the proposed CNN-Bayes LSTM model is more ef-
fective than other forecasting models in terms of Root
Mean Square Error (RMSE) and Mean Absolute Error
(MAE) as well as for uncertainty quantification.

Index Terms—Bayesian inference; time series
dataset; uncertainty quantification

I. INTRODUCTION

Time series prediction is a field of research with
increasing interest that is broadly used in various
applications such as economy, bio-medicine, en-
gineering, astronomy, weather forecast, air traffic
management. The purpose of time series prediction
is to predict the future state of a dynamic system
from the observation of previous states [1]. However,
in a significant number of prediction problems, we
have to face uncertainty, non-linearity, chaotic be-
haviors and non-stationarity, which deteriorates the
prediction accuracy of the model.

In order to deal with these issues, many ap-
proaches have been proposed. They can be gen-
erally categorized into two types: the statistical
approach and the deep learning approach. Statisti-
cal approaches such as SARIMA [2], Prophet [3]
can predict time series precisely by exploiting the
relationship between the original data and the pre-
dicted states while deep learning approaches such as

LSTM, Transformer can model data with rich tem-
poral patterns and learn high-level representations of
features and associated nonlinear functions without
relying on experts to select which of the manually-
crafted features to employ [1], [4].

Besides evaluating the performance prediction,
quantification of uncertainty is considered as one of
the most important aspects of the decision-making
process [5]. In order to quantify the model’s un-
certainty, many researchers use Bayesian inference
to estimate the uncertainty in the prediction model
from probability distributions. As the result, it can
be highly robust to overfitting and easily learn from
minor datasets. In the Bayesian framework, the
posterior distribution provides all information about
the unknown parameters. Bayesian inference with
different techniques such as Markov Chain Monte
Carlo, Laplace approximation, expectation propaga-
tion, variational inference have been used to quantify
the uncertainty in time series data prediction such as
sunspot dataset [6], [7], weather dataset [8], [9], etc.

In this study, we propose to use Bayesian infer-
ence in a hybrid model between CNN and LSTM.
We test on two real datasets, namely sunspot and
weather datasets. In addition, we also compare the
proposed model to the statistical models and deep
learning models as well as uncertainty quantifi-
cation. The main contributions of this paper are
summarised as follows:

• We apply a Bayesian inference to update the
weight of hyper-parameters in a hybrid predic-
tion method that combines CNN and LSTM.
We use 1D convolutional layer of CNN to
extract the spatial features and LSTM to ex-
tract the temporal features of the sunspot and
weather datasets.

• We also compare the prediction performance
of proposed model with statistical models
(SARIMA and Prophet) and deep leaning mod-
els (LSTM, GRU, Transformer, and Informer).
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• Finally, we illustrate the way to calculate the
model’s uncertainty used in time series dataset.

The rest of our paper is structured as follows:
Section II provides brief review of relevant works
for time series prediction. Section III introduces
our proposed model while Section IV describes
the experimental results of two studies on sunspots
and weather prediction. The conclusions and future
works are summarized in Section V.

II. RELATED WORKS

To improve the models’ performance prediction
for time series dataset, many researchers introduced
several statistical, deep learning which attack uncer-
tain complex time series.

Statistical approaches could predict time series
precisely by mapping the relationship among both
original data and predicted data. These models
include the ARIMA family of methods such as
AR, ARMA, ARIMA, Random Walk, SARIMA [2],
Prophet [3], etc. While SARIMA is to describe the
current value in a time series based on prior observed
data by adding three new hyper-parameters to de-
termine the AR, moving average and distinguishing
terms as well as an additional parameter for the
seasonal interval, Prophet is a more current time
series predicting method. Although this approach
has some similarities to SARIMA, it models the
trend and seasonality of time series by combining
more configurable flexibility. In Prophet approach,
the trend, seasonality, and holiday are the three
main features, and holiday is selected to change
predictions.

Deep learning has proven to be extremely effec-
tive in computer vision, computer gaming, multime-
dia, and big data-related challenges. Deep learning
approaches are also widely used to model time
series data. Because of their capacity to collect
temporal information, RNNs have proven useful in
forecasting time series [10]. Many researchers used
deep learning approaches such as RNN, LSTM,
GRU [11], [12], Transformer [13] or CNN models to
forecast temporal information in time series dataset.
[14] proposed to use recursive Levenberg-Marquardt
Bayesian in RNN to forecast electricity spot prices
as well as compute the uncertainty of the model.
Other researchers used CNN to predict wind power
[15], LSTM to predict wind speed [16], weather [8],
[9], sunspot [10], [17], [18], or combine CNN and
LSTM [19], [20], RNN and LSTM [21] to forecast
the output in time series datasets. Recently, In 2021,
Zhou proposed a novel approach called Informer

to deal with heavy memory when using long input
sequences [22]. This approach is an improvement
of Transformer approach [13]. The main idea of In-
former is to use a ProbSparse technique in selecting
only the most crucial queries by using Kullback-
Leibler. So it can decrease the time complexity and
memory useage.

III. PROPOSED METHOD

A. Long Short-Term Memory

LSTM network is a advanced version of RNN
proposed by Hochreiter in 1997 [23]. It is applied
very effectively used due to the capability of learn-
ing short and long dependencies. The network’s
(and so RNN) default behavior is to remember
information for a long time. RNNs take the form
of a repeating sequence of NN modules. In RNN,
these modules have a very simple structure, just a
tanh layer. But the issue is that RNN cannot process
long-term dependency, LSTM is intended to prevent
this problem. LSTMs also have a string structure.
Instead of a single NN layer, LSTM has four layers
which interact with each other (seen in Figure 1).

The main idea of LSTM is that the cells’ state is
depicted by the horizontal line (red line) at the top,
from Ct−1 to Ct. The cell state is like a carousel
running straight through the whole chain with only
a few small linear interactions. It is relatively easy
for information to remain unaltered.

LSTMs have the ability to remove or add informa-
tion to the cell state, which is carefully regulated by
structures called gates. The gate is an optional way
for information to pass through. They are composed
of a layer of sigmoid NN and a point-wise multi-
plication operator. The output of the sigmoid layer
are the number values in [0, 1], which describe the
throughput of each component. 0 and 1 values mean
”let nothing through” and ”let everything through”,
respectively. An LSTM has three sigmoid gates
to protect and control the cell state, including the
forget, the input, and the output gates.

Hence this allows long-term memory to be reset
and overcome the vanishing and exploding gradient
problems.

B. Bayesian inference in a CNN-LSTM model

The proposed model named CNN-Bayes LSTM
that is illustrated in Fig. 2 has two main parts: CNN
(extract the spatial data) and Bayes LSTM (extract
long-term temporal data). After the data preparation,
high level spatial features can be extracted by using
a CNN layer.
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Fig. 1: The LSTM architecture [23].

Then, these extracted low-dimensional features
are linked together via a LSTM to extract the
temporal features from the data. In this part, we use
Bayesian inference to optimize the hyper-parameters
and architecture of our model as well as quantify
the model’s uncertainty on its weights by sampling
them from a distribution parameterized by trainable
variables on each feed-forward operation. The de-
tailed process in the Bayesian LSTM architecture
is illustrated in Figure 3. Finally, a fully-connected
layer is added to determine the output.

Fig. 2: The CNN-Bayes LSTM framework proposed
for time series prediction.

In this paper, we denote X an Y are the input
and output of the framework.

• Input: X = (Xt, Xt+1, . . . , Xt+N−1) where
Xt is the observed sample at time t with N
is the number of samples.

• Output: Y = (Yt+N , Yt+N+1, . . . , Yt+2N−1) is
the predicted values.

For example, we use the temperature of five pre-
vious months to predict the future, so N = 5. At the
first time, t = 1, we have X = (X1, X1, . . . , X5)
corresponding to five months from January to May,
then the output Y = (Y6, Y7, . . . , Y10) correspond-
ing to five months from June to October.

The purpose of Bayesian neural network is rather
than having deterministic weights to sample them

Fig. 3: The Bayesian LSTM flow chart

for a probability distribution and then optimize the
distribution parameters. By this approach, it is pos-
sible to measure confidence and uncertainty over
predictions. In Bayesian LSTM, we can calculate
the weights and biases sampling as follows:

• The weight sampled at the ith time on the
position N of the layer by the formula:

W
(i)
(n) = N (0, 1) ∗ log

(
1 + ρ

(i)
(w)

)
+ µ

(i)
(w) (1)

• The bias sampled at the ith time on the position
N of the layer by the formula:

b
(i)
(n) = N (0, 1) ∗ log

(
1 + ρ

(i)
(b)

)
+ µ

(i)
(b) (2)

Where ρ and µ are the input feature standard
deviation and the input feature mean, respectively.

At the stage, Bayesian optimization calculate the
posterior distribution of objective function by using
Bayesian inference where the next hyper-parameter
combination is selected from this distribution. The
previous sampling information is used to find the
objective function and the hyper-parameters in order
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to maximize the target output. If the process is not
good, we return to consider the hyper-parameters as
well as the architecture in LSTM model. Otherwise,
we go to use these weights to predict the future and
evaluate the model. In our proposed model, to iden-
tify vital LSTM hyper-parameter values, Bayesian
optimization is used.

C. Uncertainty quantification

Before evaluating forecasting uncertainty, it is
necessary to identify the two types of uncertainty
(aleatoric and epistemic) and the appropriate solu-
tion to decrease them. The first type of uncertainty
is epistemic. It refers to model’s uncertainty because
of the lacking of model’s knowledge in features of
the input space where there is tiny data such as
data sparsity, bias, etc. [24]. It can be reduced by
gathering enough data. We can achieve a model’s
confidence interval by estimating its epistemic un-
certainty. The second type of uncertainty is aleatoric.
It is essentially a noise inherent in the observations
such as input-dependent due to either sensor noise
or motion noise which is uniform along the dataset.
It cannot be decreased even when more data is
collected. We may calculate the prediction interval
by estimating the aleatoric and epistemic uncertainty
[25], [26]. The confidence interval may be narrower
than the prediction interval.

IV. EXPERIMENTAL RESULTS

A. Dataset

To evaluate the performance of our proposed
model, we test on two real time series datasets,
namely sunspot and weather datasets.

1) Sunspot dataset: Sunspot dataset is collected
from January 1749 to February 2022 by the research
working in the Royal Observatory of Belgium. This
data is available at the World Data Center SILSO
website [27]. The dataset used in our research in-
cludes 3278 samples of averaged total sunspot num-
ber per month with the dates and the monthly mean
number of sunspots information. It is divided into
two sets, including 2294 and 984 samples in training
and testing sets, respectively. For the forecasting, the
data can be classified into either a fixed time period
or a solar cycle. Solar cycles and ordinary years
are not distinguished in the dataset. As a result, the
dataset only uses the averaged number of sunspots
seen in that month.

2) Weather dataset: Weather dataset used in our
research includes 1380 samples of the mean temper-
ature values per month in Bangladesh from January
1901 to December 2015. This data is available at
Kaggle website [28]. It is divided into two sets,
including 965 and 415 samples in training and
testing sets, respectively.

Figure 4 illustrates the trend of monthly mean
sunspots number and mean temperature from 1901
to 1905. Figure 5 illustrates the monthly mean
total sunspot number and temperature in entire two
datasets.

B. Evaluation

To evaluate the performance of the model’s pre-
diction, we use two evaluation metrics in forecasting
task, including RMSE and MAE. RMSE is used to
measure the magnitude of errors in the prediction
and is calculated as quadratic mean of the difference
between predicted value and observed value, called
prediction error. MAE is a measure of a model’s
performance in relation to a test set. It captures
as the average of the absolute values of individual
prediction mistakes across all instants in the test set.
RMSE and MAE are defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)
2; MAE =

1

n

n∑
i=1

|ŷi − yi|

(3)
where ŷi and yi are the observed and predicted
values at time step i, n is the length of the sample
data.

C. Empirical Results

Table I shows the results obtained by the proposed
method. Furthermore, to show the robustness of the
proposed model, we compare the proposed model
with others models, namely SARIMA [2], Prophet
[3], Transformer [13], Informer [22], LSTM [23],
and GRU [11] models. The results show that, our
proposed model has outperformed others with 26.10
of RMSE and 18.74 of MAE for sunspot dataset.
On weather dataset, the value obtained by the pro-
posed method is 2.23 for RMSE and 1.64 for MAE
respectively. It can be clearly seen that, there is a
big gap in RMSE values between statistical models
and deep learning model. In sunspot dataset, while
all used deep learning models have RMSE values
under 50 and MAE values from over 22 to under 40,
especially Informer model obtained 29.90 at RMSE
and 22.25 at MAE, statistical models have over 50
in both RMSE values and MAE values, SARIMA
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(a) (b)

Fig. 4: The trend of monthly mean sunspots number (a) and mean temperature (b) from 1901 to 1905 in
two datasets.

(a) The monthly sunspot number from 1749 to February 2022 (b) The monthly mean Temperature from 1901 to February 2015

Fig. 5: The trend of monthly mean sunspots number (a) and mean temperature (b) in entire two datasets.

TABLE I: Comparison of the proposed method and
the state-of-the-art methods on two datasets. Two
best results are in bold.

Forecasting models Sunspots dataset Weather dataset
RMSE MAE RMSE MAE

SARIMA [2] 54.11 45.51 - -
Prophet [3] 60.15 56.09 - -
Transformer [13] 33.99 25.26 2.10 1.43
Informer [22] 29.90 22.35 2.32 1.82
LSTM [23] 46.14 39.44 2.32 1.75
GRU [11] 37.14 26.77 4.44 3.43
Proposed model 26.10 18.74 2.23 1.64

and Prophet models obtained 54.11 versus 33.99 of
RMSE and 45.51 versus 56.09 of MAE respectively.
Interestingly, on Sunspot dataset, proposed method
had an outstanding performance in regarding RMSE
and MAE values, it is much better than well-known
Informer model (25.95 versus 29.90 in RMSE and
18.61 versus 23.35 respectively). In weather dataset,
the RMSE and MAE values are slightly lower than
that of Transformer (2.23 versus 2.10 in RMSE and
1.64 versus 1.43 respectively). Our result still is
higher than other models such as Informer, LSTM
and GRU models. In addition, the proposed model
can calculate the epistemic uncertainty. There are
some differences between GRU and the proposed
models when using Bayesian inference. The Figures

6 are presented the models’ epistemic variance esti-
mation on two datasets. It is more interesting differ-
ences between these models. We compare GRU and
proposed models in three aspects, including the real
data, the predicted data and the epistemic uncertainty
corresponding to the red line, the green line and
the light blue line, respectively. The 95% confidence
intervals for the sunspot number and the temperature
of two models obtained from numerous predictions
are illustrated in this figure. Figure 6 shows that
our proposed model captures the variation of the
predicted normalized value in the entire two datasets
whereas GRU sometimes fails to capture this mea-
sure in both datasets (the red circles).

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed a novel approach
using Bayesian inference in a hybrid CNN-LSTM
model called CNN-Bayes LSTM for time series
prediction. We evaluated the performance predic-
tion and uncertainty quantification of our proposed
model and compared with six models in the lit-
erature, including SARIMA, Prophet, Transformer,
Informer, LSTM, and GRU in time series dataset
forecasting. Experimental results have shown that
proposed CNN-Bayes LSTM achieves better perfor-
mance than existing methods in term of RMSE and
MAE values as well as the uncertainty quantification
of the model. However, we only used 1D CNN
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(a) sunspot data

(b) weather data

Fig. 6: Models’ uncertainty quantification in two datasets.

and one factor such as the sunspot number and the
temperature. It is interesting idea if we can test on
many factors in high dimension dataset (3D or 4D).
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