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a b s t r a c t

Weathering phenomena are ubiquitous in urban environments, where it is easy to observe severely
degraded old buildings as a result of water penetration. Despite being an important part of any realistic
city, this kind of phenomenon has received little attention from the Computer Graphics community
compared to stains resulting from biological or flow effects on the building exteriors. In this paper,
we present physically-inspired deep weathering effects, where the penetration of humidity (i.e., water
particles) and its interaction with a building’s internal structural elements result in large, visible
degradation effects. Our implementation is based on a particle-based propagation model for humidity
propagation, coupled with a spring-based interaction simulation that allows chemical interactions, like
the formation of rust, to deform and destroy a building’s inner structure. To illustrate our methodology,
we show a collection of deep degradation effects applied to urban models involving the creation of
rust or of ice within walls.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Weathering effects have received a lot of attention from the
omputer Graphics community [1]. Several key techniques have
llowed the production of urban landscape images with very
ealistic degradation effects, including erosion, pollution, flow,
eeling, and cracking of the building’s surfaces [2,3].
However, in spite of the many achievements of the past

ecades, physically-based simulations of deep weathering effects
i.e., the ones involving not only the outer surfaces of buildings
ut also the inner layers of the walls) have not been extensively
ackled by the community. In particular, the simulation of the in-
erplay between rust, plaster, brick, and other masonry structural
lements, despite being a major factor in the degradation of older
uildings [4], has not been addressed.
In this paper, we present a technique that simulates deep

eathering effects on building materials (see Figs. 1 and 2) lead-
ng to the exposure of buildings’ internal structures such as bricks
r rusted surfaces.
Our method approximately simulates the penetration of water

articles in a wall volume, their interaction with the inner ele-
ents present in the wall, (like concrete, iron, or other metals),
nd the consequent formation of new compounds, like rust; and

✩ This article was recommended for publication by J. Dorsey.
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097-8493/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
similarly for the humidity that remains and is converted later
on into ice (e.g., in winter). Since these new compounds have a
higher volume than their original counterparts, their expansion
leads to the formation of cracks in the wall which result in
the exposure of bricks or rusted surfaces. This phenomenon is
ubiquitous in any city with old buildings as illustrated in the real
pictures from Fig. 4.

Our main contributions are:

1. A physically-inspired simulation of the penetration of wa-
ter particles (e.g., humidity, rain) in the bulk volume of
walls, and their interactions with the inner structures of
the wall (e.g., concrete, iron lattices, lead pipes, etc.).

2. An approximate simulation of the expansion of these ele-
ments, like water turning into ice, or metal into rust.

3. An approximate simulation of the deformation of concrete,
plaster, and bricks in the wall, and of the formation of
cracks inside the wall. Cracks can lead to the breaking of
concrete, the fall of loose plaster, as well as the acceleration
of the two previous steps given the increased exposure
of plaster, bricks, and metallic structures to air as well as
other natural weathering elements (e.g., rain).

In the remainder of this article we start with an overview
of the related work in Section 2 before presenting our pro-
posal (Section 3). Section 4 details our simulation framework
while Section 5 illustrates deep weathering effects that can be
achieved by our method and discuss its limitations. Finally, we
draw conclusions and suggest future work in Section 6.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. A building with deep weathering effects. Left: the original building. Middle: the same building after the simulation of water particles penetrating the gray
rea. Right, a closeup view of the resulting degradation is due to weathering effects. Surface noise is part of the wall texture itself.
Fig. 2. From left to right, top to bottom, part of a wall being pushed over by rust over time. Surface noise is part of the wall texture itself.
. Previous work

Aging phenomena have attracted a great deal of interest in
he Computer Graphics community. Covered topics include the
eposition of dust on objects [5], terrain erosion [6], wrinkles
eneration on organic materials [7] (which was later improved
ith specific crack generation algorithms e.g. [3]), material peel-

ng [8], surface erosion [9], tarnishing effects [10], flow and its
mpact on appearance changes [11], metallic patinas [12,13], or
estructive corrosion [14]. More material-oriented studies were
lso proposed, especially on material dissolution [15], mate-
ial fluorescence [16], material decay [17], or organic material
rowth [18]. The main difference between our approach and
revious works [15,17] is the objective of our simulations: while
revious works focused on appearance changes due to weath-
ring, our objective is to model mechanical strong deformations
aused by weathering processes, such as rust and its deformation
ffect on plaster and bricks.
In the past, there has been a lot of very interesting research

n the generation of cracks on surfaces, starting from the works
y Hirota and coworkers [19,20], dynamic animations [21,22],
ncluding the work of Gobron and Chiba [23] using cellular au-
omata, the works using finite element analysis [24], the work by
osch et al. [25] on the generation of scratches and impacts, or the
ore recent works by Iben and O’Brien [26], and Muller [27], up

o some fast approximations for brittle fracture simulation, as in
he work by Hann and Wojtan [28]. In all these cases, these works
re more concerned with the realistic generation of cracks than
ith the simulation of their underlying process, as we do in this
aper for the building elements interacting with water. We refer
he interested reader to recent surveys like the one by Muguercia
t al. [3] for an in-depth treatment of the subject. Again, these
horough works do not attempt to model weathering effects, only
he result of tears in a model surface.

Particle tracing has also been used: γ -ton is a technique devel-
ped by Chen et al. [29] for visually simulating weathering. This
41
was later improved by Kider [30] with a system of particles that
allowed to simulate a 3D model’s shape and appearance aging by
a number of phenomena, including physical, chemical, biological,
environmental, and weathering effects. Although our work shares
the particle-based approach with these works, our aim is not to
simulate decay or degradation, but mechanical deformations on
the inner elements of an architectural structure.

Dorsey and colleagues [15] studied numerous stone weath-
ering behaviors, employing complex modeling of chemical re-
actions. Later, Mérillou et al. [17] proposed a simple model for
simulating the aging of building materials, being able to handle
a variety of damage patterns related to salt decay, as well as
locating the phenomena with a physically inspired method that
leads to plausible results. Our proposed technique is also related
to the work of Cutler et al. [31], where a procedural approach
to solid model authoring was presented, based on a volumet-
ric approach. However, our implementation is based on voxels,
while theirs was based on tetrahedrons and a distance function.
Recently, Ishitobi et al. [32] developed a method for weathering
simulations of coated metallic objects, with a particular focus on
the processes of cracking and peeling. An introduction to these
topics can be found in the seminal book by Dorsey et al. [1] or in
the survey by Mérillou and Ghazanfarpour [2]. As mentioned, the
main difference with our approach is on the scale and volume of
the effects simulated, as we aim to model the macroscopic me-
chanical deformation weathering may produce on architectural
elements.

3. Overview of our proposal

Buildings may suffer from structural defects at different lev-
els (roof, walls, foundations, etc.) and with various causes and
degrees of importance. Structural dampness is one cause of struc-
tural defects which is due to the penetration of moisture within
a building’s structure. A high proportion of those damp problems
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Fig. 3. Overview of the simulation loop.

re caused by rain penetration through porous masonry. In this
aper, we focus on rain penetration in old brick walls.
Our system simulates deep weathering effects and is based on

wo stages: (i) a physical-inspired simulation of the interactions
f water particles with buildings’ materials, and (ii) computation
f the deformation of structural elements due to internal forces
rising from weathering effects (computed from a voxelization of
he simulation space). Water particles are the main simulation
ntities, penetrating the wall and interacting with its inner ele-
ents (e.g., bricks, concrete, plaster, beams, wood). For instance,
orrosion of reinforcing bars is a major cause of reinforced con-
rete failure because of rust swelling. Here, voxels are merely
sed as a data structure to store the accumulated water, which in
urn will be used to compute the strength of the materials created
y chemical reactions between water and the inner structure’s
aterials. To allow for an efficient simulation, a wall (e.g., brick
asonry) and its inner structural elements (e.g., metallic struc-

ures) are voxelized. We approximate the contents of each voxel
s being of a unique type (i.e., material, plaster, iron, etc.), and
ach voxel is connected to its surrounding voxels via a net of
prings.
The simulation loop (see Fig. 3) is as follows:

1. Water particles are instantiated on the wall surfaces, where
they diffuse into the wall material. Although currently not
implemented, at this point particles could flow on the wall
exterior surface, further wearing its appearance and reach-
ing other areas [11,33]. Then, their positions are updated
by the particle system, diffusing into materials. When a
water particle enters a non-empty voxel, its velocity is
updated (depending on the voxel’s water permeability) and
the voxel’s water content is updated (depending on the
particle’s velocity).

2. Whenever they interact with water and depending on
their types, the voxels can turn into another type of voxel
(e.g. iron turns into rust due to corrosion or water into ice).

3. Since the transformation may require a larger volume than
its original counterpart (e.g. rust takes 4 to 12 times more
space [4] than iron), mechanical forces are exerted, leading
to the displacement of the neighboring voxels and to the
generation of new voxels.

4. The mass–spring system is updated.
5. Each spring having a length above its maximum length is

broken (denoted as sb) and a crack is instantiated.

6. Cracks close enough to each other are merged.

42
Fig. 4. Two real examples of weathering effects of water and rust on a building
facade.

Fig. 5. Simulation results of weathering effects on a building facade. Notice the
now rusty iron pipe.

7. Each voxel with a broken spring sb checks if it still has a
connection with some other voxel. If it does, the spring
remains; if not, it is flagged as ‘‘loose’’.

8. Each rust voxel (noted vr1) having exerted a force, checks
if it has enough space to instantiate a new rust voxel
(noted vr2); if yes, vr1 loses energy, and vr2 is instantiated
(with the same energy as vr1) and linked to its surrounding
voxels.

9. if a set of voxels, e.g., belonging to a brick or a broken
piece of concrete, is found not to be connected to the
rest of the wall anymore, and if these voxels have clear
access to the exterior of the wall, then they fall. In our
current implementation, they are just removed, but it is
not difficult to imagine an animated loose brick falling off
a damaged wall.

At the end of this process, the inner materials of a wall might
be exposed. If the process continues, in the case of rust, the degra-
dation process will accelerate because of the direct interaction of
rust with air and rain. These phenomena can clearly be seen in
older, poorly maintained buildings, resulting in a characteristic
degraded appearance, as seen in Fig. 4.

In this paper, we focus on the rain penetration phenomenon
and on two types of representative water–material interaction:
(i) the creation of rust from iron and (ii) the creation of ice
from water (at low temperatures). Both of them can lead to the
creation of cracks and can result in deep weathering effects, see
Fig. 5.

4. The approximate simulation model

In this section, we present more details regarding our sim-
ulation model. First, we focus on voxels creation and on the
mass–spring system we use to model the forces. Then we detail
how deep weathering effects are simulated.
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.1. Voxelization

In order to simulate deep weathering effects, we need building
odels to be segmented into their distinct elements, depending
n their materials (plaster, bricks, iron, etc.). This could prove
hallenging if one wants to apply our technique to existing, artist-
reated 3D models without internal structure. Nevertheless, the
ecent development of Building Information Modeling (BIM) as
ell as the procedural shift within the Architecture, Engineer-

ng, Construction, and Operations (AECO) industry will greatly
implify the availability of such semantic models. In our current
mplementation, the designer selects an area on a building wall,
nd automatically the system generates a generic multi-layer
tructure for that area, adding further layers of plaster, bricks, and
andom vertical or horizontal metallic pipes within the structure.

After the segmented building model is obtained, the next
tep in our process is the voxelization of the wall volume to be
imulated. As usual, there is a trade-off between the voxels’ size,
he volume of the simulation domain, and the number of voxels.

We settle for enough voxel resolution to capture the impor-
ant structural details of the model in order to provide visually
lausible results. The simulation domain was restricted to specific
arts of 3D building models. Those models were not voxelized but
irectly imported and rendered (cf. Fig. 1), and only a part of their
alls were voxelized.
For each voxel, we store the following information: its posi-

ion, the springs connecting it to its neighbors, the force going
hrough it (cf. Section 4.2), the amount of moisture on each of its
aces, and its type. Our voxels can be of the following types: brick,
laster, iron, rust, space (empty voxels that can be filled with
ce or rust), ice, and ‘‘fixed’’. In addition to the aforementioned
ttributes, voxels producing other voxels (e.g. iron, rust, ice)
ossess an ‘‘energy’’ attribute, to represent whether a voxel has
nough chemical energy to produce other voxels.
Note that ‘‘fixed’’ voxels are a special type of voxels used to

represent the interface between our simulation space (composed
of voxels) and the rest of the larger model which is composed of
vertices and triangles (cf. Fig. 1). As a consequence, those fixed
voxels cannot be displaced and indicate a junction with the main
structural elements of the building.

During the simulation, if a voxel is not linked (either directly
or indirectly through other voxels) to at least one fixed voxel,
then it becomes ‘‘loose’’ (it is part of a ‘‘falling’’ set of voxels),
meaning that it does not interact with the other voxels but
instead is affected by external forces (i.e., gravity). In this case, the
loose element can be animated during its fall, or simply removed
if a detailed animation over time is unimportant for the final
result.

4.2. Forces

In our system, we model contact forces using a mass–spring
system, where the object is approximated by a finite set of
masses represented by the aforementioned voxels. Mass–spring
models are one of the simplest yet most flexible ways to model
a deformable body [3].

Basically, mass–spring systems quantify the simulation vol-
ume into a finite set of particles {pi; 1 ≤ i ≤ n}. Each particle
i (a voxel in our system) has its own mass mi and position ri.
he particles are pairwise connected with springs, each with its
wn properties (stiffness, damping factor, and rest length). Each
article is set to a classic equilibrium equation:

i
∂2ri

= fi (1)

∂t2

43
Fig. 6. A schematic 2D example of a rusting pipe inside a wall. Forces are
represented as strings (purple lines) that propagate stress among the voxels.
Cracks lines are shown (in cyan), as well as iron voxels (in dark gray), wall
material voxels (plaster or concrete, in light gray), and rust voxels (in dark red).
From left to right: the pipe in its initial state inside the wall material. As rust
appears to occupy a larger volume, material voxels are pushed over and fall off.

where fi is the sum of all the forces acting on particle pi [3].
We distinguish between external forces, like gravity; and internal
ones, which come from the springs attached to the particle pi.

In general, springs follow Hooke’s law [34], which can be
stated as:

fi = k
(|∆rij| − r0ij )∆rij

∥∆rij∥
(2)

with k being the spring constant that characterizes its stiffness,
r0ij its original or rest length, and ∆rij = ri − rj its current length,
measured as the difference between the positions of voxels i and
j. In practice, we use an effective force f ′

i which is defined as

f ′

i = t ∗ fi (3)

where t is a force-damping coefficient that depends on the type
of voxel connection. Typically, a connection between two brick
voxels will have t ≈ 1, in order to allow the brick voxels to move
together, if possible. See Section 4.3.3 for exact values for t in
each use case. This choice is justified from a physical standpoint
since materials react differently to pressure. Moreover, forces are
only transmitted from voxel to voxel when they are above a small
threshold, in order to limit the calculation to the surrounding
voxels.

When the limit of a spring exceeds a given threshold, we
model breakage by flagging the corresponding spring as broken,
and by removing the corresponding connections between the
voxels. See Fig. 6 for an example using rust as expanding material.
In practice, when many springs are broken in the same region,
cracks appear, and eventually, concrete gets broken or plaster
gets loose, and can fall, see Section 4.3.4 for implementation
details on this effect.

4.3. Deep weathering effects

In order to simulate deep weathering effects, we use particles
to represent water and use them to simulate the way water pen-
etrates and interacts with a building’s inner materials. However,
depending on the exact materials in the building and the length of
the whole simulation, the particles can have different behaviors,
from a more plastic one similar to plaster (but with somewhat
more rigidity, if needed), to a full rigid body. In the first case, the
particles are treated exactly as plaster (see below), simply taking
into account their extra rigidity. On the other hand, when they act
as full rigid bodies, we have to resort to a different approach to
guarantee rigidity, see below. Finally, we provide details of how
cracks are generated and how they spread within our model.
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Fig. 7. Curves representing the Volume Fractional Saturation (VFS) obtained with
ur particle-based simulation at different time steps for a wall made of concrete.
he moisture advance depends on the material’s water saturation.

.3.1. Water particles
As mentioned, humidity is an important source of structural

efects. Most of the inorganic materials used in construction
re porous. This means they absorb water particles according
o their exposure to environmental factors like rain, humidity,
roundwater, condensation, etc., and they release them according
o the drying properties of the atmosphere. The flow of water on
nd within a building’s materials depends on the water content
f these materials, namely whether they are saturated or not.
aturated flow can be explained through Darcy’s law, but for
he unsaturated case an extended version of the same equation
hould be used [35,36] (see Eq. (4)):
∂θ

∂t
= ∇D∇θ (4)

where θ is the ratio of liquid volume to bulk volume (called
Volume Fractional Saturation), and D is the hydraulic diffusivity,
which is generally a function of θ . This equation can be analyti-
cally solved in 1D for very simple cases, resulting in a sigmoid-like
he function of θ (x) (where x is the spatial dimension), which
‘slope’’ decreases as water penetrates into the material volume.

To simulate the penetration of water into buildings’ structures,
e decided to use a Monte Carlo-based approach, where water
articles are ‘‘sprayed’’ onto the building’s voxels in contact with
eathering elements. These particles penetrate the voxels of the
all volume according to their water permeability, which repre-
ents the easiness for a water particle to go through this particular
aterial (see Fig. 7 for concrete).
For each water particle, we compute its instantaneous water

ontent (pw) based on three parameters: the surface of our simu-
lation area (a); the rain intensity (i in liters per hour on a unit of
surface area), and the number of particles generated per second
(nps):

pw(t) =
(a ∗ i)

(nps(t) ∗ 3600)
(5)

Thus, units for pw are liters per second.
The particle system is responsible for setting a direction and a

velocity for each water particle it generates.
According to their directions and velocities, water particles

navigate through the simulation space to saturate the voxels of
water. Whenever a water particle goes through a voxel, we use
the Russian Roulette technique to decide whether the particle is
‘‘killed’’ or whether it continues to penetrate the building.

A killed particle, adds its water content to the voxel’s water
saturation level. As a consequence, the behavior of Eq. (4) can be
approximated with an extinction probability having the form of
a sigmoid function, see Eq. (6):

Pr = 1/(1 + ek∗−θ ) (6)
44
Fig. 8. From left to right: rust presses against the voxels above and around it;
When the above voxels reach a threshold, they are displaced; A new rust voxel
is instantiated at the vacant position.

where k depends on the voxel’s type and where θ is the current
ratio of water saturation in the voxel. Fig. 7 presents imple-
mentation results of Eq. (6) obtained with our particle-based
simulation.

Each voxel can store a given amount of water before being
saturated. The more water it contains, the easier it is for the
next water particle to go through, see Eq. (4). Moreover, only
saturated voxels may give rise to chemical reactions favoring
deep weathering effects (e.g. the formation of rust from saturated
iron voxels), we detail these reactions in the next Section.

4.3.2. Water interaction: material transform
As mentioned above, saturated voxels may give rise to chem-

ical reactions involved in the deep weathering effects we can
simulate, namely:

• saturated iron voxels may produce rust voxels;
• saturated space voxels may produce ice voxels;
• saturated rust (resp. ice) voxels may produce more rust

(resp. ice) voxels.

Since rust (resp. ice) has a larger volume (see [4]) than the
iron (resp. empty space) it replaces, its chemical creation applies
a force on the mass–springs of the voxels in its vicinity. Whenever
the tension is above a threshold, voxels are moved in order to
make space for the newly created ‘‘rust’’ (resp. ‘‘ice’’) voxels, see
Fig. 8.

4.3.3. Bricks
As our domain is represented by a grid of voxels (see Sec-

tion 4.1), we simulate all these effects at the voxel level. In
the case of plastic deformation, bricks are simply dealt with by
changing the spring parameters to make them stiffer. However,
when brick rigidity is above a given user-provided threshold, we
switch to a full rigid body behavior to guarantee perfect rigidity.
In this scenario, ‘‘brick’’ voxels do not move independently from
the other voxels representing the brick.

In order to do so, the springs between brick voxels transmit
their forces to each other with very little loss (a transmission
of 0.99 cf. Eq. (3)) to guarantee that a similar amount of force
is exerted on them. Therefore when one brick voxel has enough
force to move, all the other connected brick voxels are more likely
to move at the same time. On the other hand, interfaces between
materials (e.g. brick/plaster or plaster/brick), transmit force with
a heavy loss (a transmission of 0.1), to ensure that the rigid object,
when moving, does it independently from the other material.

While our focus remains on bricks, other very rigid objects (as
opposed to plaster), could be simulated in a similar fashion.

4.3.4. Crack generation
Cracks, in our system, are the result of broken springs, i.e.,

springs that stretch beyond their maximum allowed distances.
Whenever a spring breaks, we (i) remove the connection between
the voxels it used to connect; (ii) instantiate one crack-point at
each end of the spring (cf. Section 4.2). Observe that, in our
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Fig. 9. 3D view of a cracked wall, where the voxels were displaced in a similar
way as in Fig. 6. The cracks are represented with cyan lines. Whenever possible,
we join and merge the cracks. From left to right: lateral ‘‘voxel view’’ of a wall
segment, cracks inside the material with voxel silhouettes, and 3D view of the
cracks inside the material where we can see them gathering together.

implementation, crack points have fixed positions in space. It
should be noted that crack points and cracks are not rendered
in the final result of our simulation.

Cracks are computed at each iteration of the simulation, de-
pending on the crack points they contain. The process of crack
generation is the following:

1. Remove all crack points already assigned to any crack.
2. Check each unassigned crack-point whether it is inside a

voxel (i.e., voxels may have been previously removed if
they belong to fallen material from the wall). If not, the
crack point is removed.

3. For each crack-point cpcur :

3.1 cpcur is added to an existing crack crackcur . if cpcur is
not close enough to an existing crack, create a new
crack crackcur at its position.

3.2 All crack-points cpother within a radius r of cpcur are
added to crackcur .

3.3 Each spring crossing a line between cpcur and any
cpother is broken. At this point, all crack-points around
cpcur have been added to crackcur . Now, we check if
one of those crack points could also be assigned to
another crack c.

4. For each crack c; if at least one of its crack-points is also
part of crackcur , then every crack-point of c is added to
crackcur and c is removed.

This process of crack generation and merging ensures that we
track every crack point and that cracks in the vicinity are merged
into larger cracks. Springs that connect cracks are removed and
may accelerate the deterioration process as is the case in real life.

Cracks are typically not supposed to be rendered since they
represent ruptures between the materials of our walls. For illus-
tration purposes, we use lines to visualize them in Fig. 9. Breaks
and fall of materials will eventually happen by themselves along
with the progress of the simulation, see Fig. 10.

5. Results and discussion

In this section, we first present some of our deep weathering
effects results before discussing limitations.

As mentioned, when the user selects a building part, the
system automatically generated the wall volume for that area,
randomly adding horizontal or vertical pipelines. The simulation
produces a voxelized output, which can have a block-based ap-
pearance (3D aliasing). Just as in any other of these cases, the
output voxels can be post-processed to be refined and smoothed
(e.g., with a marching cube algorithm [37]) to improve the result.
45
Fig. 10. Even without the rendering of cracks, we can clearly see where the
fractures are going to happen. Noise is part of the wall texture.

Fig. 11. Left: The original 3D mesh. Right: A heavily smoothed version. This
Figure is included for illustrative purposes, as this smoothing operator is not
part of the core proposal of this paper.

The results were obtained from a standard consumer-grade
laptop (Intel Core I5@2.4 GHz processor; 8 GB of DDR3 RAM; GPU:
NVIDIA GeForce 840M).

5.1. Results

Our particle system, voxel engine, and simulation were im-
plemented in Unity3D V5.4.0. Since our simulation produces a
voxelized output, to obtain the images in this paper, and only for
aesthetic reasons, we exported the simulation meshes at a given
interval of time, and imported them into a dedicated modeling
software (Blender v2.78). Also, for illustrative purposes only, and
to showcase the possibilities, we post-processed the model (with
a smoothing algorithm) and rendered it to obtain the final results,
see Fig. 11.

Our standard scene, unless stated otherwise, contains 983k
voxels of 0.5 cm3, allowing a simulation volume of 0.9 m ×

0.9 m× 0.20 m similar to Fig. 2. It was also made of 20 bricks of
approximately 30k voxels each (of size 0.3 m×0.15 m×0.1 m) as
well as an iron pipe (of about 15k voxels, with 0.15 m of diameter
and 0.9 m of length) going under the bricks; the rest of the wall
as made of plaster voxels. The particle system produces 500
ater particles per second, and the mass–spring system contains
bout 2 million springs.
With those parameters, it is only during the displacement of

oxels and the calculation of cracks that our simulation slows
own. It takes about 1.5 s to displace about 150k voxels (corre-
ponding to the displacement following the update of the mass–
pring system) and about 2.0 s to calculate the resulting cracks
for which almost all of the 1 million voxels are checked). Our
mplementation is running on a single thread and neither the
oxel engine nor the mass–spring system was implemented with
ny kind of optimization techniques. Beyond this worst case, the
imulation runs at an average of 5–6 fps; it takes about 3 min in
lender to obtain nicer rendered results of Fig. 12.
Fig. 13 shows the result of our deep weathering technique

pplied to an iron pipe in a Manhattan-like building. In the figure
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Fig. 12. An older building with plaster and bricks falling off one of its walls. For illustrative purposes, in this render, we have not smoothed the surfaces out, so
voxels are visible in some areas, but the original building textures have been kept in non-weathered areas. Also, a sharpening post-processing filter has been applied
to enhance voxel visibility.
we can appreciate the effect of water corroding an iron pipe
deeply inside the wall, and the chemical and physical interactions
that resulted in some plaster being removed, exposing concrete
and the rusted iron itself. The simulation results were duplicated
(the bottom pipe is a duplicate of the top one), before the final
smooth render.

Fig. 12 illustrates the same effect on a Victorian London build-
ng where the plaster has fallen to reveal the bricks underneath.
o obtain this rendering, we ran two separate simulations: the
irst one corresponds to the leftmost fallen plaster; and the sec-
nd to the right area with fallen plaster. This second area was
igger with a volume of 1.4 m × 1.4 m × 0.20 m and about 2.6
illion voxels.
In Fig. 14 we can see another degradation example of a house

ith fallen plaster and bricks that are surfacing because of some
aterial expansion (e.g., frozen water) inside the wall. To ob-

ain this rendering, we ran three separate simulations on three
istinct simulation areas.

.2. Discussion

Our deep weathering simulation system combines a particle
ystem with a voxel engine. Each voxel is linked to its neighbors
ia a mass–spring system that represents relations between the
oxels composing the walls.
In this article, we only focused on simulating the creation of

ust and cracks in walls that arise from the infiltration of water
ithin the materials of a wall (i.e., concrete, plaster, bricks) to
each the inner part of the wall, and interact with the materials
here, like metallic structures. However, our method can easily be
pplied to other deep weathering effects such as water infiltration
nd the creation of cracks due to the creation of ice (as seen in
ig. 15 for our standard wall).
On the validation side of this work, although qualitative com-

arison with real-world images is fairly easy, quantitative vali-
ation is incredibly hard to do, as well as comparing to previous

esults. Actually, there are no concrete previous works to compare

46
Fig. 13. A building with a visible rusting iron pipe exposing concrete and the
pipe itself, top: from a distance view; bottom: closeup view.

with, except for isolated aspects. For instance, we could compare
our specific crack-generation module with previous approaches,
such as the ones by Bosch et al. [25], Iben and O’Brien [26],
Muller [27], Muguercia et al. [3], and Hann and Wojtan [28],
to cite just a few. However, in this case, we would only be
comparing one subpart of our approach with state-of-the-art
specialized approaches, which is far from our current objectives.
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Fig. 14. Closeup view from the building where plaster and bricks fell off from a wall. Note that the original building textures have been kept in non-weathered
reas. A sharpening post-processing filter has been applied to enhance voxel visibility.
Fig. 15. Ice formation on a layer of plaster lying on top of bricks, from left to right and top to bottom: (1) a small rain area; (2) small rain density area under a
onger exposure; (3) same exposure but with a larger area; (4) a wall with plaster only.
ther previous works, such as the ones mentioned in our Previous
ork Section, focus on different phenomena than our proposal,

o comparisons are nearly impossible.
Although our approach presents promising results on deep

eathering effects it nevertheless suffers from a few drawbacks:

• The weathered areas should be manually created by the
designer, in a way completely isolated from the rest of the
building. It would be interesting but left as future work,
to integrate this system into a whole-building degradation
47
simulation, which could retrieve aging information from an
independent simulation module such as the one by Munoz-
Pandiella et al. [38]. Also, rain density and direction could be
used to automatically determine the most weathered areas,
as well as puddle formation and similar effects.

• Very rigid bodies (e.g., bricks) were not displaced as realisti-
cally as we wanted them to, since our implementation could
not exercise any torque on them (and therefore bricks were
unable to rotate). Depending on the type of building and the
weathering effect, this can be an issue. A possible solution
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would be to move and rotate every brick voxel as a single
rigid body when a displacement of a brick voxel occurs.

• Mass–springs systems can be troublesome to configure and
predict. Even if it is not the focus of our work to allow
for easier interaction, other methods to link voxels may be
explored.

• Voxels of the simulation area need to be entirely generated
from scratch.

• Since the results are exported in Blender for the final ren-
dering, it is always possible to work by ‘‘pieces’’ in the
simulation of a large facade, so larger models can be dealt
without any problems.

• More effects, such as water flow on the exterior wall surface
could also be added [11,33].

• Finally, as of now, our technique only generates discrete
moments in time, as shown in Fig. 15. Generating an an-
imation would mean adding synthetic frames that have
nothing to do with our technique, but with animating falling
particles, and displacing bricks which, eventually, may fall
off. All these intermediate frames are quite important and
interesting, but we consider them to fall beyond the scope
of our paper, which is focused on the simulation itself and
not on producing believable animations.

6. Conclusions

In this paper, we presented a method to simulate deep weath-
ering effects applied to architectural buildings. Our method com-
bines a particle system with a voxel engine and allows us to
simulate the infiltration of water particles within a building’s
outer (e.g., plaster, concrete, bricks, etc.) and inner (e.g., iron
pipes and other metallic structures) materials, their interaction
with those materials, the generation of rust and similar expansive
effects, and the consequent displacement of outer material under
the pressure created by the formation of rust.

This allowed us to simulate the deterioration of the outer
materials of a building (represented by the fall of plaster in our
simulations) and the exposure of inner materials to weather-
ing effects, thus accelerating the formation of rust (when water
interacts with metallic objects).

While not targeted to real-time applications, our method
presents acceptable performance and can manage up to millions
of voxels and hundreds of particles, which has been demonstrated
by our urban examples showing some complex deep weathering
effects.

In the future, we will focus on other deep weathering effects
such as the degradation effects of materials due to penetra-
tion of moss or other biological compounds, together with other
situations that result in important damage to a building wall.
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