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Modeling and scoring dynamic probabilistic forecasts

Thibault Modeste ∗ Clément Dombry † Anne-Laure Fougères ∗

Abstract

Probabilistic forecast plays a major role in many applications where forecast is
needed together with an assessment of its uncertainty. Verification of probabilistic
forecast has become increasingly important and mostly relies on two sets of tools:
scoring rules and calibration diagnostics. Proper scoring rules assign forecasts nu-
merical scores such that the correct forecast achieves a minimal expected score.
Calibration theory aims at verifying that the observations and the forecasts are
consistent.

In practice, using a probabilistic forecast commonly involves a sequential decision
making process where the environment evolves over time. In this article, we propose
a mathematical framework for dynamic probabilistic forecast. The forecasts take
therein the form of stochastic processes adapted to a filtration that encodes the
available information. Under minimal assumptions, we show that proper scoring
rules can still be used in this dynamic framework to discriminate the ideal forecast
- more precisely, we prove that the long term average score is close to minimum if
and only if the forecasts are close to ideal. Some connections are also done in terms
of Wasserstein distance, and links are given between scoring rules and reproducing
kernels.
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1 Introduction

In a wide range of applications, probabilistic forecasts (Dawid, 1984; Gneiting et al., 2007)
have become an essential tool, as recently illustrated for example in hydrology (Tiberi-
Wadier et al., 2021), health (Henzi et al., 2021), demography (Raftery and Ševč́ıková,
2021), or meteorology (Vannitsem et al., 2021). In such contexts, verification is of par-
ticular importance, and is based on two sets of tools: calibration diagnostics, and scoring
rules. Calibration theory aims at verifying that the observations and the forecasts are
consistent. See e.g. Tsyplakov (2011), Strähl and Ziegel (2017), or Taillardat et al. (2022,
Appendix A) for formal definitions. Scoring rules are used for evaluating the quality of
a forecast and to compare different forecasts, and proper scoring rules assign forecasts
numerical scores such that the correct forecast achieves a minimal expected score.

Most of the phenomena considered in applications have a dynamical nature, see among
others Holzmann and Eulert (2014) in a risk management scoring framework, or Bröcker
and Ben Bouallègue (2020) for verification of ensemble weather forecasts. To meet these
needs in terms of assumptions, the stationary setting is the most popular one, as is re-
quired in the papers cited above. Such hypotheses happen however to be too restrictive
in most situations, and there is a real practical interest to get general models for proba-
bilistic forecasts in a dynamical context. From this perspective, Strähl and Ziegel (2017)
proposed a framework allowing for quite general serial dependence as well as a definition of
calibration dedicated to this setting. Our work is in the same vein, and consists of propos-
ing to consider as dynamic probabilistic forecasts some stochastic processes adapted to a
filtration that encodes the available information. We show in such a general framework
that proper scoring rules can still be used to discriminate the ideal forecast.

More precisely, we introduce in Section 2 a general model – called Model 1 – which
only requires assumptions of measurability with respect to a σ-field gathering the avail-
able information. Various examples are also given to illustrate the defined structure. In
Section 3, Theorem 1 shows that even under weak assumptions including Model 1, the
long term averaged score is still almost surely minimized by the ideal forecast; it states
additionally that the long term averaged score of a dynamic forecast is asymptotically
equivalent to the long term averaged score of the ideal forecast if and only if the average
divergence between the two forecasts tends to 0. Similar results can be easily obtained
with stationarity assumptions. This theorem therefore justifies the common use of aver-
aging under more general assumptions than the stationary one. In some particular cases
of energy scores, it is also stated that the average divergence between two forecasts tends
to 0 if and only if the average Wasserstein distance between two forecasts tends to 0.
Finally, Section 4 focuses on the family of kernel scores, for which sufficient conditions on
the kernel are discussed that guarantee a proper scoring rule, and the links with the theory
of reproducing kernels is discussed. Section 5 contains all the proofs, and an appendix
gives some results on the regularity of scoring rules.

Acknowledgments : The authors acknowledge the support of the French Agence Na-
tionale de la Recherche (ANR) under reference ANR-20-CE40-0025-01 (TREX project).
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2 Dynamic probabilistic forecast

2.1 Mathematical models

In this section, we propose a simple mathematical framework for dynamic probabilistic
forecasts. Let U be a Polish space considered as the universe. Let Y be a second Polish
space and f : U → Y be a measurable application considered as the observable, that is to
say the quantity we are interested in and we want to forecast. The space of Borel probabil-
ity measures on Y is denoted by M1(Y) and seen as the space of predictive distributions.
It is equipped with the σ-algebra generated by the applications π ∈ M1(Y) 7→ π(B) ∈ R,
B ⊂ Y Borel.

Model 1. On an underlying probability space (Ω,F ,P), we consider:

• a sequence (Un)n∈N of U -valued random variables;

• the sequence Yn = f(Un), n ∈ N;

• a sub-filtration (Fn)n∈N of the natural filtration (Gn)n∈N associated with (Un)n∈N,
i.e. Fn ⊂ Gn = σ(Uk; k ≤ n) for all n ∈ N;

• a sequence (Fn)n∈N of M1(Y)-valued random variables adapted to (Fn)n∈N, i.e. Fn

is Fn-measurable for all n ∈ N.

The sequence (Un)n∈N represents the evolution of the environment over time and (Yn)n∈N
the quantity of interest. The sub-filtration (Fn)n∈N represents the information and we
call the sequence (Fn)n∈N a dynamic probabilistic forecast. The forecast is understood
relatively to a lead time T ≥ 1, meaning that the forecaster produces at time n a forecast
Fn for the future value Yn+T and this predictive distribution Fn is built in view of the
limited information encoded in Fn only.
In a context of meteorological forecast, the space U may represent e.g. the different
possible states of the atmosphere, and Un its state at time n. If the quantity of interest is
the temperature at some location, we may take Y = R and Yn is the temperature at time
n. The available information Fn may be a record of temperature, pressure, precipitation
at several locations up to time n. Using this information, the forecast for the future
temperature Yn+T is given by the predictive distribution Fn with lead time T .

For the forecaster, the holy graal is the so-called ideal forecast that we define below.

Definition 1. The ideal forecast with respect to the filtration (Fn)n∈N and with lead time
T ≥ 1 is the random sequence (F ∗

n,T )n∈N defined by

F ∗
n,T = L(Yn+T | Fn) a.s., n ∈ N.

Clearly, the ideal forecast (F ∗
n,T )n∈N is adapted to the filtration (Fn)n∈N and is an ad-

missible dynamic probabilistic forecast. The conditional distribution F ∗
n,T is considered

as the best possible predictive distribution for Yn+T given the information Fn. We refer
to Gneiting and Ranjan (2013) and Tsyplakov (2013) for a general discussion on ideal
forecast.
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For the purpose of asymptotics, we also consider a stronger model assuming stationarity.
The model is very similar to Model 1, but we assume additionally the strict stationarity
and that the time index is n ∈ Z. We also assume that the information is steeming from
auxiliary observations of the form Xn = h(Un), with h : U → X measurable mapping
between Polish spaces.

Model 2. On an underlying probability space (Ω,F ,P), we consider:

• a strictly stationary sequence (Un)n∈Z of U -valued random variables;

• the sequences Yn = f(Un) and Xn = h(Un), n ∈ Z;

• the sub-filtration (Fn)n∈Z associated to (Xn)n∈Z, i.e. Fn = σ(Xk; k ≤ n);

• a sequence (Fn)n∈Z of M1(Y)-valued random variables adapted to (Fn)n∈Z.

The sequence (Yn)n∈Z again corresponds to the quantity of interest that we want to
forecast, whereas (Xn)n∈Z gathers the observations that are available, generating the
information encoded by the filtration (Fn)n∈Z. Clearly, both sequences (Xn)n∈Z and
(Yn)n∈Z are strictly stationary, and we will mostly consider stationary forecast as defined
below.

Definition 2. The dynamic probabilistic forecast (Fn)n∈Z is said stationary if the sequence
(Un, Fn)n∈Z is strictly stationary.

Under Model 2, a stationary forecast takes the form

Fn = Φ(Xn, Xn−1, Xn−2, · · · ), n ∈ Z,

for some measurable mapping Φ: X N → M1(Y). The mapping Φ is seen as the forecast
algorithm that produces the predictive distribution given the past observations. See
Lemma 1 in Section 5.1.
One can also show that the ideal forecast in Model 2 is stationary and takes the form

F ∗
n,T = L(Yn+T | Xn, Xn−1, Xn−2, · · · ) = Φ∗

T (Xn, Xn−1, Xn−2, · · · ) a.s.,

with Φ∗
T : X N → M1(Y) and n ∈ Z. See Lemma 2 in Section 5.1.

2.2 Examples

Several examples are discussed in this section to illustrate the framework of dynamic
probabilistic forecasts introduced previously.

Example 1. As a simple example of Model 1, consider the Gaussian autoregressive model
of order 1 (Brockwell and Davis (1991), Chapter 3) defined by the initial value U0 = 0
and the recursive relation

Un+1 = αUn + εn+1, n ∈ N,
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where α ∈ R and (εn)n≥1 is an i.i.d. centered gaussian sequence with variance σ2 > 0.
We assume that U = Y = R and that the quantity of interest is Yn = Un.

Consider first the trivial case where no information is available, i.e. Fn = {∅,U} is the
trivial σ-field for all n ∈ N. Then the ideal forecast with lead time T ≥ 1 is

F ∗
n,T = L(Un+T | Fn) = L(Un+T ), n ∈ N,

because conditional distribution with respect to the trivial σ-field reduces to marginal
distribution. Simple computations show that

Un+T =
n+T∑
i=1

αn+T−iεi

whence we deduce

F ∗
n,T = N

(
0,

1− α2(n+T )

1− α2
σ2

)
, n ∈ N.

We next discuss the opposite case of complete information where Fn = σ(Uk, k ≤ n) for
all n ∈ N. The ideal forecast with lead time T = 1 is then

F ∗
n,1 = L(Un+1 | U0, . . . Un) = N (αUn, σ

2), n ∈ N.

For a general lead time T ≥ 1, the relation

Un+T = αTUn +
T∑
i=1

αT−iεn+i

implies that the ideal forecast is given by

F ∗
n,T = N

(
αTUn,

1− α2T

1− α2
σ2

)
, n ∈ N. (1)

Note that the variances are smaller than in the case with no information which corresponds
to the general fact that exploiting information reduces forecast uncertainty and leads to
sharper predictive distributions.
If the parameters α, σ2 are unknown, the ideal forecast is not accessible but the forecaster
may naturally provide sequential parameter estimates based on the observation record.
Maximum likelihood estimation (Brockwell and Davis (1991), Chapter 8.7) yields

α̂n =

∑n
i=1 Ui−1Ui∑n
i=1 U

2
i−1

and σ̂2
n =

1

n

n∑
i=1

(Ui − α̂nUi−1)
2 , n ≥ 1.

In view of Equation (1), the plug-in method suggests the dynamic probabilistic forecast
with lead time T ,

Fn,T = N
(
α̂T
nUn,

1− α̂2T
n

1− α̂2
n

σ̂2
n

)
, n ≥ 1, (2)
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which is adapted with respect to (Fn)n∈N, i.e. accessible in view of the available observa-
tion record.

A simple illustration of Model 2 can be obtained when α ∈ (−1, 1). Let (εn)n∈Z be an
i.i.d. sequence with distribution N (0, σ2), and consider the infinite moving average

Un =
∑
i≥0

αiεn−i, n ∈ Z.

The sequence (Un)n∈Z is strictly stationary and satisfies the auto-regressive property. The
marginal distribution N (0, σ2/(1 − α2)) corresponds to the ideal forecast in absence of
information. To produce a stationary forecast, one may consider maximum likelihood
estimation based on the last p observations, where p is an integer in [1, n], i.e.

α̂n =

∑p−1
i=0 Un−i−1Un−i∑p−1

i=0 U
2
n−i

and σ̂2
n =

1

p

p−1∑
i=0

(Un−i − α̂nUn−i−1)
2 .

Clearly, the sequence of parameter estimates (α̂n, σ̂
2
n)n∈Z is strictly stationary and (Fn,T )n∈Z

defined by Equation (2) is a stationary forecast.

Example 2. An extension of the previous model can be built by incorporating an additive
error of measure. To do this, consider the sequence{

U
(1)
n+1 = αU

(1)
n + εn+1,

U
(2)
n+1 = U

(1)
n+1 + δn+1 ,

where the two sequences of innovation (εn)n≥1 and noise (δn)n≥1 are assumed i.i.d. and
with respective distribution N (0, σ2) and N (0, τ 2). Assume that the quantity of interest

is the first component Yn = U
(1)
n and is observed with a measurement error δn, so that

the observation available is the second component Xn = U
(2)
n . Here, one thus has U = R2

and Y = R, and the information is given by the natural filtration associated with (Xn),
i.e. Fn = σ(Xk, k ≤ n).

The sequence (Un)n∈N = (U
(1)
n , U

(2)
n )n∈N is a bivariate gaussian vector as soon as the initial

value U0 is assumed to be bivariate gaussian. When α ∈ (−1, 1), it is strictly stationary
for a suitable choice of the initial distribution.

Example 3. An example in a spatio-temporal setting can be constructed starting from
a vectorial AR(1). Let A ∈ Md(R), U0 be a d-variate random vector and (εn)n∈N an i.i.d.
sequence of d-variate Gaussian vectors with distribution Nd(0,Σ). Consider for n ∈ N

Un+1 = AUn + εn.

We write
Un = (X1,n, . . . , Xd,n)

T .

The quantity of interest is the first coordinate, ie Yn = X1,n. For I ⊂ {1, . . . , d}, we note

FI,n = σ (Xi,k, i ∈ I, k ≤ n) .
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Example 4. As discussed above, the three examples considered can be made stationary
by choosing a specific initialisation U0. Let finally illustrate a case of Model 1 that can
not be plug into Model 2; let (tn)n∈N and (sn)n∈N be two sequences, and assume that
(sn)n∈N is periodic. It typically represents seasonal variability. The sequence (tn)n∈N is a
general trend that can represent a global warming in the context of climate change. For
a given r.v. U0, one can define for all n ∈ N the sequence

Un+1 = tn + sn + αUn + εn+1 ,

which fulfills Model 1’s general assumptions but not Model 2’s ones.

3 Score theory for dynamic probabilistic forecast

3.1 Background on score theory

Scoring rules (Gneiting and Raftery, 2007) provide a major tool for forecast validation.
A scoring rule compares forecasts and realizations and assigns a numerical score assessing
the forecast quality. Proper scoring rules have the property that the correct forecast
minimizes the expected score. They are commonly used to compare different forecast
methods and the forecast with the lowest score is preferred.
First we recall some basic definitions. Let (L, d) be a subset of M1(Y) and d a distance
on this space, as for example the Wasserstein distance, see Section 3.3 for a definition. A
score on L is a measurable real valued function S : L × Y → R, and S(F, y) is the score
assigned to the probabilistic forecast F when the outcome y occurs.

Remark 1. Let specify here that we add the assumption of measurability in the definition
of the score S, as done in Holzmann and Eulert (2014), in order to lighten the presentation.
Some suffisant conditions to get this measurability are provided in Appendix A.

Definition 3. The score S is said proper on L if for all F,G ∈ L, the integral

S(F,G) =

∫
Y
S(F, y) dG(y)

is well-defined and if the following inequality holds

S(G,G) ≤ S(F,G), for all F,G ∈ L.

The score is said strictly proper if the equality holds above if and only if F = G.

The quantity S(F,G) is the average score when the forecast is F and the observations have
distribution G. For a proper scoring rule, the minimum of F 7→ S(F,G) is achieved when
F = G. The divergence associated with a proper score S is the non-negative function

divS(F,G) = S(F,G)− S(G,G).

For a strictly proper scoring rule, the divergence vanishes if and only if F = G, so that the
divergence can be seen as a pseudo-distance between F and G (the symmetry or triangle
inequality may not be satisfied).
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Example 5. For real observations, the most important and widely used score is the
Continuous Ranked Probability Score, shortly noted CRPS (Epstein (1969); Hersbach
(2000); Bröcker (2012)). The CRPS is a strictly proper scoring rule on the class P1(R) of
probability measures on R having a finite first moment. It is defined for F ∈ P1(R) and
y ∈ R by

CRPS(F, y) =

∫
R
(F (x)− 1{y≤x})

2dx,

where the probability F is identified with its cumulative distribution function. An alter-
native representation is

CRPS(F, y) = E[|X − y|]− 1

2
E[|X −X ′|] (3)

where X,X ′ are independent random variables with distribution F . Several other decom-
positions are available, see e.g. Taillardat et al. (2022) and references therein.

Example 6. A generalization of the CRPS can be obtained from (3) by introducing the
so-called energy kernel, defined for α > 0 and β ∈ (0,∞] by

ρα,β(x, y) = ∥x− y∥αβ , x, y ∈ Rd, (4)

with ∥x∥β = (
∑d

i=1 |xi|β)1/β and ∥x∥∞ = max1≤i≤d |xi|. More precisely, let consider the
energy score, defined as

Sρα,β
(F, y) =

∫
Rd

ρα,β(x, y) dF (x)− 1

2

∫
Rd×Rd

ρα,β(x, x
′)F (dx)F (dx′).

The case d = 1 and α = 1 boils down to Equation (3) and hence to the CRPS.
It can be shown that the energy score is a proper scoring rule in the following cases:

- d = 1 and α ∈ (0, 2];

- d ≥ 2, β ∈ (0, 2] and α ∈ (0, β];

- d = 2, β ∈ (2,+∞] and α ∈ (0, 2].

See e.g. Schoenberg (1938) (case β = 2), Koldobsky (1992) and Zastavnyi (1993), as well
as the discussion in Section 4. Additionally, some interesting results can be established
on the divergence of the energy score when β = 2 and α ∈ (0, 2), see Section 3.3.

Example 7. Another score that is widely used in practice is the logarithm score, intro-
duced in Good (1952). It is defined for measures dominated by the Lebesgue measure
with non vanishing density functions. Consider such a measure F , denote by f its density,
and define for y ∈ R the score as

S(F, y) = log f(y).

This score is strictly proper, and its divergence is the well-known Kullback–Leibler diver-
gence,

divS(F,G) =

∫
R
log

(
f(y)

g(y)

)
g(y) dy.
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3.2 Asymptotic results for dynamic forecast scoring

The aim of this section is to discuss the score theory for dynamic probabilistic forecasts
as defined in Model 1. It is established in particular that the ideal forecast minimizes the
averaged score in different ways. Note that Model 1 provides a sequential model and, for
simplicity, we first look at a single step.
Consider a random forecast F on (Ω,F ,P), which is measurable with respect to a sub-
σ-algebra F0 ⊂ F , and consider an observation Y . The ideal forecast is thus defined
as F ∗ = L(Y | F0). A natural consequence of the definition of proper scoring rule is
that the ideal forecast minimizes the expected score. Here, the expectation is taken with
respect to both the observation and the forecast randomness. The following proposition
is an important result in the non dynamic framework, and can be found in Holzmann and
Eulert (2014) (Theorem 3).

Proposition 1. Let S be a proper scoring rule. Then a.s.

E[S(F, Y )− S(F ∗, Y ) | F0] = divS(F, F
∗) ≥ 0 ,

and this implies E[S(F, Y )] ≥ E[S(F ∗, Y )]. Moreover, if the score is strictly proper, then
the equality holds if and only if F = F ∗ a.s..

As a consequence, in the sequential framework defined by Model 1, the forecaster has to
predict at each time n the ideal forecast F ∗

n,T in order to minimize its expected score. The
main result of this section is a stronger optimality property in the sense of almost sure
convergence. It states that the ideal forecast minimizes the long-term score almost surely.
In some sense, expectation is replaced by a temporal average but it should be stressed
that this is not straightforward because we do not assume any stationary condition.

Theorem 1. Let (Fn)n∈N be a probabilistic dynamic forecast as defined in Model 1, mea-
surable with respect to (Fn)n∈N. Let (F ∗

n,T )n∈N be the ideal forecast with lead time T ≥ 1.
Let S be a proper scoring rule with associated divergence divS. We assume that, for
k = 1, . . . , T ,

n∑
i=1

E
[(
δki
)2 | Fi+T−k

]
= O(n), n ∈ N. (5)

where δki = E[∆i | Fi+T+1−k] − E[∆i | Fi+T−k] and ∆i = S (Fi, Yi+T ) − S
(
F ∗
i,T , Yi+T

)
.

Then a.s., the following inequality holds

lim inf
n→∞

1

n

n∑
i=1

S (Fi, Yi+T )− S
(
F ∗
i,T , Yi+T

)
≥ 0 . (6)

Moreover, we have

lim
n→∞

1

n

n∑
i=1

S (Fi, Yi+T )− S
(
F ∗
i,T , Yi+T

)
= 0 a.s. (7)

if and only if
1

n

n∑
i=1

divS(Fi, F
∗
i,T ) → 0 a.s. .
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Equation (6) states that the ideal forecast minimizes the long term averaged score almost
surely – here the average is temporal and for a fixed realization, in opposition to the
expected score considered in Proposition 1. The vanishing limit (7) means that the
long term averaged score of the dynamic forecast (Fn)n∈N is equal to the one of the
ideal forecast (F ∗

n,T )n∈N, stating that both predictions are equally good in this sense.
This is characterized by an asymptotically negligible average divergence between the two
sequences.
The proof of Theorem 1 is based on the strong law of large numbers for square integrable
martingales and do not assume any stationarity condition. The technical condition (5) is
required for the martingale convergence theorem. See Section 5.2 for more details.

Remark 2. In the case of the energy score with α ≤ 1 and 1 ≤ β (see Example 6), a
simple sufficient condition for condition (5) to hold is

sup
i

m(Fi) +m
(
F ∗
i,T

)
< +∞ ,

where m(F ) is the first moment of a probability F . In other words, the probabilistic
forecast and the ideal forecast have uniformly bounded moments. See Proposition 3 in
the Appendix A for more details.

Example 8. Theorem 1 has an interesting application dealing with partial information.
Assume that two experts have access to different information and that the first expert is
better informed. This is formalized by two filtrations (F1

n)n∈N and (F2
n)n∈N with F2

n ⊂ F1
n

for all n ∈ N. The best possible forecast for each expert is the ideal forecast with respect
to the available information, noted F ∗,j

n,T = L(Yn+T | F j
n), j = 1, 2. Theorem 1 yields

lim inf
1

n

n∑
i=1

S
(
F ∗,2
i,T , Yi+T

)
− S

(
F ∗,1
i,T , Yi+T

)
= 0 a.s.,

meaning that the extra information possessed by the first expert allows him to reach a
lower averaged score in the long term.

Example 9. Elaborating on the previous example is the notion of cross-calibration (Strähl
and Ziegel (2017)). Assume J different experts produce dynamic forecasts (F j

n)n∈N with
respect to different filtrations (F j

n)n∈N, 1 ≤ j ≤ J . Assume that the information (F j
n)n∈N

is private but the forecasts (F j
n)n∈N are public. Then the information encoded in the

filtration
Fn = σ(F j

i ; i ≤ n, 1 ≤ j ≤ J), n ∈ N,
is publicly accessible. Note that Fn does not necessarily contain F j

n but nevertheless F j
n

is measurable with respect to Fn. Considering the ideal forecast F ∗
n,T = L(Yn+T | Fn),

Theorem 1 yields, for all 1 ≤ j ≤ J ,

lim inf
1

n

n∑
i=1

S
(
F j
i , Yi+T

)
− S

(
F ∗
i,T , Yi+T

)
= 0 a.s. .

This means that the public forecasts can be used to produce a new forecast that outper-
forms the J experts in terms of averaged score.
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We briefly comment the stationary case and state simple results for Model 2. Note
that stationarity combined with ergodicity allows to use the ergodic theorem and greatly
simplifies the proof.

Corollary 1. In the framework of Model 2 with the ergodicity condition, let (Fn)n∈Z be a
stationary dynamic forecast measurable with respect to (Fn)n∈Z and (F ∗

n,T )n∈Z be the ideal
forecast with lead time T ≥ 1. Let S be a proper scoring rule. Then,

lim
n→∞

1

n

n∑
i=1

S (Fi, Yi+T ) = E [S(F0, YT )] ≥ lim
n→∞

1

n

n∑
i=1

S
(
F ∗
i,T , Yi+T

)
= E

[
S(F ∗

0,T , YT )
]
,

where the limit are meant almost surely. Moreover, if S is strictly proper, equality holds
if and only if (Fn)n∈Z = (F ∗

n,T )n∈Z a.s.

3.3 Links between energy scores and Wasserstein distance

The purpose of this section is to provide a more explicit interpretation of the divergence
condition (7) in the case of the energy scores defined via (4). We assume β = 2 so that
∥ · ∥2 denotes the Euclidean norm on Rd. The p−Wasserstein space on Rd consists in the
set Pp(Rd) of Borel probability measures F on Rd with finite p−moment, i.e.

Pp(Rd) = {F ∈ M1(Rd) :

∫
∥x∥p2 dF (x) < ∞}.

It follows from Hölder’s inequality that Pp(Rd) ⊂ P1(Rd). In the case of p = 1, it is
endowed with the Kantorovich-Rubinstein distance

W1(F1, F2) = sup
Lip(ϕ)≤1

∣∣∣∣∫ φ(x) dF1(x)−
∫

φ(x) dF2(x)

∣∣∣∣ ,
where ϕ : Rd → R is a Lipschitz function and Lip(ϕ) = supx ̸=y |ϕ(x) − ϕ(y)|/∥x − y∥2.
Fore more details on Wasserstein spaces, we refer to Villani (2008) Chapter 6.

Theorem 2. Let α ∈ (0, 2) and (Fn)n∈N and (Gn)n∈N be sequences in Pmax(1,α)(Rd) and
assume the sequences are uniformly integrables, i.e.

∀ε > 0, ∃K ⊂ Rd compact, ∀n ∈ N,
∫
Kc

∥x∥ d(Fn +Gn)(x) < ε.

Let divS be the divergence of the energy score with α ∈ (0, 2) and β = 2. Then

1

n

n∑
i=1

divS(Fi, Gi) → 0 if and only if
1

n

n∑
i=1

W1(Fi, Gi) → 0.

Consequently, Theorem 1 can be rewritten as follows: assuming condition (5) together
with uniform integrability, we have the equivalence

lim
n→∞

1

n

n∑
i=1

S (Fi, Yi+T )− S
(
F ∗
i,T , Yi+T

)
= 0 ⇐⇒ lim

n→∞

1

n

n∑
i=1

W1(Fi, F
∗
i,T ) = 0.

This means that the dynamic forecast (Fn)n∈N achieves asymptotically the minimal aver-
aged score if and only if it is closed to the ideal forecast (F ∗

n,T )n∈N in Wasserstein distance.
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4 Kernel Score

4.1 Presentation

The energy score defined in Example 6 is a specific case of the larger family of the so-called
kernel scores. On the observation space Y , consider a measurable kernel, ρ : Y × Y → R
and assume that

∀y ∈ Y , ρ(y, y) = 0. (8)

Such a condition is useful to characterize the definition set of the associated score. Re-
call that ρ is said conditionally negative definite if it is symmetric and if for all n ≥ 2,
(y1, . . . , yn) ∈ Yn and (a1, . . . , an) ∈ Rn such that

∑n
i=1 ai = 0, it holds∑

1≤i,j≤n

aiajρ(yi, yj) ≤ 0 . (9)

Note that a kernel ρ satisfying Assumptions (8) and (9) is necessarily non negative.
Indeed, for x, y ∈ Y , these conditions yield, when a1 = 1 and a2 = −1,

0 ≥ ρ(x, x) + ρ(y, y)− 2ρ(x, y) = −2ρ(x, y).

The following subset of probability measures is then introduced for such kernels

Lρ :=

{
F ∈ M1(Y) | ∃y0 ∈ Y ,

∫
Y
ρ(y, y0) dF (y) < +∞

}
, (10)

and the score Sρ associated with the kernel ρ is defined on Lρ × Y by

Sρ : (F, y) 7→
∫
Y
ρ(x, y) dF (x)− 1

2

∫
Y×Y

ρ(x, x′)F (dx)F (dx′).

Remark 3. The well-defined character of these integrals is justified in Remark 21 of
Sejdinovic et al. (2013). Note that conditions (8) and (9) are essential. We will propose
a quick justification similar to the previous article but using the terminology from geo-
statistics. If the kernel ρ verifies conditions (8) and (9) then we can consider a Gaussian
process (By)y∈Y verifying

∀x, y ∈ Y , ρ(x, y) = Var(Bx −By).

The kernel ρ is then called the variogramm of the process (By)y∈Y . Let F ∈ Lρ and y0 ∈ Y
from the definition (10),

ρ(x, y) = Var(Bx −By) = Var(Bx −By0 +By0 −By)

= Var(Bx −By0) + Var(By0 −By) + 2Cov(Bx −By0 , By0 −By)

≤ ρ(x, y0) + ρ(y, y0) + 2
√
ρ(x, y0)

√
ρ(y, y0).

This concludes because L1(Y , dF ) ⊂ L1/2(Y , dF ) as F is a finite measure. This also shows
that S(F,G) is well defined for F,G ∈ Lρ.

The score Sρ is a proper scoring rule as soon as the kernel ρ is continuous. This comes
from Hoeffding’s inequality, see Berg et al. (1984), section 7, Theorem 2.1. Note that it
is not always simple to show that a kernel score is strictly proper. Sufficient conditions
are discussed in Steinwart and Ziegel (2021), especially the case where Y is compact.
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4.2 Scoring rules and Reproducing Kernel

The scores from a kernel can be compared to the Maximum Mean Discrepancy (MMD)
of the Reproducing Kernel Hilbert Space (RKHS) theory. This comparison is the key
to the proof of Theorem 2. We will not give details of this theory but only the essence.
We invite the curious reader to refer to Berlinet and Thomas-Agnan (2004), Smola et al.
(2007) or Steinwart and Christmann (2008, Section 4). The idea of this theory is to embed
any topological space Y into a Hilbert space H, i.e. each point y ∈ Y is represented by
a vector K(y) ∈ H. To do this embedding, we define the scalar product between each
point of the space Y . This scalar product is represented by a kernel k, which is this time
positive definite, i.e.

∀n ≥ 2, (y1, . . . , yn) ∈ Yn, (a1, . . . , an) ∈ Rn,
∑

1≤i,j≤n

aiajk(yi, yj) ≥ 0

and not conditionally definite negative as previously. In the following, k will represent
a positive definite kernel and ρ a conditionally negative definite kernel. We will see
in Theorem 3 the links between these two properties. Returning to the RKHS, after
embedding the space Y into a Hilbert space H, one can embed a set L ⊂ M1(Y) into
this same Hilbert. Thus each measure F ∈ L is represented by a vector K(F ). This idea
allows then to compare two measures F,G ∈ L through the Hilbert space, i.e.

γk(F,G) = ∥K(F )−K(G)∥H.

The function γk comparing these two measures is called the MMD. It has another more
explicit form in terms of the kernel k,

γk(F,G)2 =

∫
Y2

k(x, y) d(F −G)⊗ (F −G)(x, y).

Moreover, this integral is well defined for F,G in the set

Lk :=

{
F ∈ M1(Y) |

∫ √
k(y, y) dF (y) < +∞

}
. (11)

The links between kernel scores and this theory have already been explained in several
articles (see (Sejdinovic et al., 2013, Section 4 and 5), Steinwart and Ziegel (2021)).

Theorem 3. [(Berg et al., 1984, Section 3 Lemma 2.1.), (Sejdinovic et al., 2013, Propo-
sition 20, Theorem 22 and Remark 23)] Let y0 ∈ Y, let ρ be a kernel verifying the As-
sumption (8) and (9), then the kernel defined by

∀x, y ∈ Y , k(x, y) = ρ(y0, x) + ρ(y0, y)− ρ(x, y) (12)

is positive definite. Moreover, this kernel is defined on a larger set of probability measures,
i.e. Lρ ⊂ Lk. The divergence divSρ and the MMD γk satisfy

∀F,G ∈ Lρ, divSρ(F,G) = 2γ2
k(F,G).
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Example 10. The CRPS corresponds to the conditionally negative kernel ρ(x, y) = |x−y|
and is defined on P1(R), the set of probability measures with a first absolute moment.
An associated positive definite kernel is

k(x, y) = |x|+ |y| − |x− y|.

Then k(x, x) = 2|x| so that the MMD is defined on the space P1/2(R) of probability
measures with a half absolute moment. So we notice that the MMD γk is defined for
strictly more probability measures.

Remark 4. Following Dawid (2007), kernel scores can also be defined for positive definite
kernel by

Sk(F, y) =

∫
Y2

k(x, x′) d(F − δy)⊗ (F − δy)(x, x
′),

for F ∈ Lk defined in (11) and y ∈ Rd. If the kernel k is associated with the conditionally
negative kernel ρ by Equation (12), then the scoring rules Sρ and Sk are defined on
different distribution sets Lρ ⊂ Lk and

∀F,G ∈ Lρ, divSρ(F,G) = divSk
(F,G).

The construction with positive definite kernels is more general since it is defined on a
larger space.

5 Proofs

5.1 Proofs of Section 2

Lemma 1. Under Model 2, if (Fn)n∈Z is stationary, there exists a map Φ: X N → M1(Y)
such that

Fn
d
= Φ(Xn, Xn−1, . . .).

Proof. As M1(Y) is a Polish Space, there exists for all n ∈ Z, a map Φn : X N → M1(Y)
such that

Fn = Φn(Xn, Xn−1, . . .),

because Fn is σ(Xn, Xn−1, . . .)-measurable. Moreover, (Fn)n∈Z is stationary, so that

Φn(Xn, Xn−1, . . .) = Fn
d
= F0 = Φ0(X0, X−1, . . .).

But (Xn)n∈Z is also stationary, and thus Φ0(X0, X−1, . . .)
d
= Φ0(Xn, Xn−1, . . .). Then we

note Φ := Φ0 and get the proof.

Lemma 2. Under Model 2, the ideal forecast with respect to the filtration (Fn)n≥Z and
with lead time T ≥ 1 can be written as

F ∗
n,T = Φ∗

T (Xn, Xn−1, . . .) a.s.,

where Φ∗
T : X N → M1(Y) is a measurable map.
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Proof. By definition, we have F ∗
n,T = L(Yn+T |Fn) = FFn

Yn+T
for all n ∈ Z. Standard

properties of conditional distributions then give that

F ∗
n,T = F

(Xn,Xn−1,...)
Yn+T

(Xn, Xn−1, . . .).

See e.g. Kallenberg (1997, Chapter 5), or Modeste et al. (2023, Appendix A) for more
details. Now, (Xn)n∈Z and (Yn)n∈Z are strictly stationary (since (Un)n∈Z is so), and one
thus gets for all k ∈ Z,

L(Yn+T | Xn, Xn−1, . . .) = L(Yn+T+k | Xn+k, Xn+k−1, . . .).

This yields

Φ∗
T := F

(Xn,Xn−1,...)
Yn+T

= F
(Xn+k,Xn+k−1,...)
Yn+T+k

,

implying that F ∗
n,T = Φ∗

T (Xn, Xn−1, . . .).

5.2 Proofs for Section 3

Proof of Theorem 1. Defining ∆i = S (Fi, Yi+T )−S
(
F ∗
i,T , Yi+T

)
, our goal is to prove that

lim inf
n→∞

1

n

n∑
i=1

∆i ≥ 0 .

Applying Proposition 1 for all i ≥ 1 yields E[∆i | Fi] = divS(Fi, F
∗
i,T ) ≥ 0. Now, since ∆i

is Fi+T -measurable, let introduce the following decomposition as a telescopic sum

∆i − E[∆i | Fi] =
T∑

k=1

(E[∆i | Fi+T+1−k]− E[∆i | Fi+T−k]) .

Defining δki = E[∆i | Fi+T+1−k]− E[∆i | Fi+T−k] and Mk
n =

∑n
i=1 δ

k
i implies

1

n

n∑
i=1

∆i =
1

n

n∑
i=1

divS(Fi, F
∗
i,T ) +

1

n

T∑
k=1

Mk
n .

The announced results therefore follow as soon as the second term of the right hand side
in the equality above is shown to converge a.s. to 0. To see this, notice that for 1 ≤ k ≤ T ,
the sequence (Mk

n)n∈N is a martingale with respect to the filtration (Fn+T+1−k)n∈N and
its quadratic variation is defined by

⟨Mk⟩n =
n∑

i=1

E
[(
δki
)2 | Fi+T−k

]
, n ∈ N.

It is a nondecreasing process and we denote by ⟨Mk⟩∞ its almost sure limit in [0,+∞].
The strong law of large numbers for square-integrable martingales, see e.g. (Hall and
Heyde, 1980, Section 2.6), implies that:
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i) on the event ⟨Mk⟩∞ < +∞, the martingaleMk
n converges to a finite limit as n → ∞;

ii) on the event ⟨Mk⟩∞ = +∞, the ratio Mk
n/⟨Mk⟩n converges to 0 as n → ∞.

The first case clearly implies that Mk
n/n → 0 as n → ∞. This also holds in the second

case thanks to the Assumption (5) cause ⟨Mk⟩n = O(n). As a conclusion, one gets also
in ii) that Mk

n/n → 0 as n → ∞.

Our proof of Theorem 2 rely on the inequality stated in Modeste and Dombry (2022,
Proposition 3.9). This results is based on the following representation of the Energy Score
divergence in the case α ∈ (0, 2) and β = 2 due to Szekely (2003). For F,G ∈ Pα(Rd),

divS(F,G) =
1

C(d, α)

∫
Rd

|F̂ (t)− Ĝ(t)|2

∥t∥d+α
2

dt, (13)

with C(d, α) > 0 and F̂ (resp. Ĝ) the characteristic function of F (resp. G) defined
by F̂ (t) =

∫
Rd e

it·x dF (x). Note that the subject of Modeste and Dombry (2022) is not
conditionally negative kernels, but their Formula (14) shows that we consider the same
object. The link between these two articles is detailed in Subsection 4.2.

Proof of the Theorem 2. The direct implication is a consequence of this inequality present
in Modeste and Dombry (2022, Proposition 3.9 and Formula (14))

∀ε > 0, ∀n ∈ N, ∃C > 0, W1(Fn, Gn) ≤ CdivS(Fn, Gn) + ε,

because the sequences are uniformly integrables. Then for ε > 0, let C > 0 of the previous
inequality. We deduce that

lim sup
1

n

n∑
j=1

W1(Fj, Gj) ≤ C lim sup
1

n

n∑
j=1

divS(Fj, Gj) + ε = ε.

We now prove the converse implication and assume that the sequences (Fn)n, (Gn)n are
uniformly integrables and that n−1

∑n
i=1W1(Fi, Gi) → 0. Because, for all t ∈ Rd, the

functions x 7→ cos(t · x) and x 7→ sin(t · x) are ∥t∥-Lipschitz continuous, we have

1

n

n∑
j=1

∣∣F̂j(t)− Ĝj(t)
∣∣

≤ 1

n

n∑
j=1

∣∣∣ ∫
Rd

cos(t · x) (Fj −Gj)(dx)
∣∣∣+ ∣∣∣ ∫

Rd

sin(t · x) (Fj −Gj)(dx)
∣∣∣

≤ 2∥t∥
n

n∑
j=1

W1(Fj, Gj) → 0.

By the Cauchy-Schwarz inequality, we also have

1

n

n∑
j=1

|F̂j(t)− Ĝj(t)|2 → 0, t ∈ Rd.
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Thanks to Equation (13)

1

n

n∑
j=1

divS(Fj, Gj) =

∫
Rd

1

nC(d, α)

n∑
j=1

|F̂j(t)− Ĝj(t)|2

∥t∥d+α−2
dt.

This is shown to converge to 0 by dominated convergence. Indeed,

hn(t) =
1

n

n∑
j=1

|F̂j(t)− Ĝj(t)|2

∥t∥d+α−2
→ 0, for all t ∈ Rd \ {0}.

Furthermore, the uniformly integrability of (Fn)n∈N, (Gn)n∈N implies a first moment uni-
formly bounded by some constant M > 0 so that the characteristic functions are M -
Lipschitz continuous and

|hn(t)| ≤
M2

∥t∥d+α−2
1∥t∥≤1 +

2

∥t∥d+α
1∥t∥>1 ∈ L1(Rd),

for α ∈ (0, 2). The integrabily of the dominant function comes from the following lemma

Lemma 3. Let ϕ : R → R be a measurable map and ∥ · ∥ be a norm on Rd. The map
ϕ ◦ ∥ · ∥ ∈ L1(Rd) if and only if t ∈ R+ 7→ td−1ϕ(t) ∈ L1(R).
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A Measurability of the score

The assumption of measurability added in the definition is there for mathematical reasons.
In this small Appendix, we will give some natural properties about a score involving
measurability.

Definition 4. An application S is said continuous for a distance δ on L if for each y ∈ Y,
the map S(·, y) is continuous for δ.

Lemma 4. Let S : L × Y → R be an application measurable in its second variable, if S
is continuous for a metric δ such that L is separable then S is a score.

Proof. Let (F0, F1, F2, . . .) be a countable dense family of L. We define for n ∈ N∗

kn(F ) = inf{k ∈ N | F ∈ Bδ(Fk, 1/n)},

where Bδ(F, ε) is the closed balled centered at point F . By density, this set is not empty.
The map kn is measurable cause

{kn(F ) = k} = Bδ(Fk, 1/n) \
k−1⋃
i=0

Bδ(Fi, 1/n).

We define

Sn(F, y) =
+∞∑
k=0

1{kn(F )=k}S(Fk, y).

This map is measurable by the measurability of kn. By continuity of S and construction
of kn, we have

Sn(F, y) → S(F, y), forall F, y ∈ L × Y .

Then S is limit of measurable maps, then S is measurable.

Remark 5. If (Y , d) is separable, the space of probability measure M1(Y) is still mea-
surable for the Levy-Prokhorov metric which metrizes the weak convergence. This is
still true when the set P1(Rd) is fitted with the Wasserstein distance W1, introduced in
Section 3.3. Moreover, a subset of a separable metric space remains separable.

In the Section 4, we introduced the family of kernel score. We will show the continuity
of these scores for the Wasserstein distance introduced in Section 3.3. We need another
writing of this distance, for F,G ∈ P1(Rd),

W1(F,G) = inf
X∼F,Y∼G

E[∥X − Y ∥], (14)

where X ∼ F means that F is the distribution of the random variable X.

Proposition 2. Let ρ be a Lipschitz continuous kernel, ie there exists C > 0,

∀x1, x2, y1, y2 ∈ Rd, |ρ(x1, y1)− ρ(x2, y2)| ≤ C(∥x1 − x2∥+ ∥y1 − y2∥),

then the score Sρ is defined on P1(Rd) and is continuous for the Wasserstein distance W1.
More precisely for all F,G ∈ P1(Rd) and y ∈ Rd,

|Sρ(F, y)− Sρ(G, y)| ≤ 2CW1(F,G).
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Proof. Let C > 0 be a Lipschitz constant of ρ, then Sρ is well defined on P1(Rd). Let
F,G ∈ P1(Rd) and X,X ′, Z, Z ′ be four random variables associated with this probabilities
and X (resp. Z) and X ′ (resp. Z ′) independents. For y ∈ Rd, we have∣∣∣∣∫

Rd

ρ(x, y) dF (x)−
∫
Rd

ρ(z, y) dG(z)

∣∣∣∣ = |E[ρ(X, y)− ρ(Z, y)]| ≤ CE[∥X − Z∥]

and∣∣∣∣∫
Rd×Rd

ρ(x, x′) dF (x)dF (x′)−
∫
Rd×Rd

ρ(z, z′) dG(z)dG(z′)

∣∣∣∣ = |E[ρ(X,X ′)− ρ(Z,Z ′)]|

≤ CE[∥X − Z∥+ ∥X ′ − Z ′∥].

As we do not do assumption on the dependence between X (resp. X ′) and Z (resp. Z ′),
we conclude with the formulation (14) of the Wasserstein distance that∣∣∣∣∫

Rd

k(x, y) dF (x)−
∫
Rd

k(z, y) dG(z)

∣∣∣∣ ≤ CW1(F,G)∣∣∣∣∫
Rd×Rd

k(x, x′) dF (x)dF (x′)−
∫
Rd×Rd

k(z, z′) dG(z)dG(z′)

∣∣∣∣ ≤ 2CW1(F,G).

Then
|Sρ(F, y)− Sρ(G, y)| ≤ 2CW1(F,G).

Proposition 3. Let (Fn)n∈N be a filtration and F ∗
n,T be the ideal forecast with respect to

this filtration with a lead time T ≥ 1. We consider also an admissible dynamic forecast
(Fn)n∈N. If ρ is Lipschitz continuous and

n∑
i=1

(∫
Rd

∥y∥ d
(
Fi + F ∗

i,T

)
(y)

)2

= O(n),

then one verifies the condition (5). This is true specially in the case where the moments
are uniformly bounded

sup
i

∫
Rd

∥y∥ d
(
Fi + F ∗

i,T

)
(y) < +∞.

Proof. Let k ∈ {1, . . . , T} and C > 0 be a Lipschitz constant of the kernel ρ, let’s
remember the definition of

∆i = S (Fi, Yi+T )− S
(
F ∗
i,T , Yi+T

)
and δki = E[∆i | Fi+T+1−k]− E[∆i | Fi+T−k], for i ∈ N

For a, b ∈ R, (a+ b)2 ≤ 2(a2 + b2), then with the Jensen Inequality

E[(δki )2 | Fi+T−k] ≤ 4E[∆2
i | Fi+T−k].
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The Proposition 2 rewrites this inequality in terms of Wasserstein distance

E[(δki )2 | Fi+T−k] ≤ 16C2E[W 2
1

(
Fi, F

∗
i,T

)
| Fi+T−k] = 16C2W 2

1

(
Fi, F

∗
i,T

)
Then by Triangular Inequality and Equation (14),

W 2
1

(
Fi, F

∗
i,T

)
≤

(∫
Rd×Rd

∥x− x′∥ dFi ⊗ F ∗
i,T (x, x

′)

)2

≤
(∫

Rd

∥y∥ d
(
Fi + F ∗

i,T

)
(y)

)2

.

So the condition (5) is checked.
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