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Abstract: This work studies the orthogonality of the fields radiated by the different modes of a
radiating aperture. Waveguide modes exhibit an orthogonality property at the aperture cross-section
that can be used to simplify calculations. However, it is unclear whether this property can be
extended to the radiated fields produced by these same modes in apertures antennas, such as horns
or open-ended waveguides. A numerical study has been carried out, analysing how the waveguide
orthogonality extends to the radiated modal fields. It is observed that propagating modes and also
modes that are well below cutoff follow this same behaviour. However, modes that are close to cutoff
exhibit values in between those far from this transition region.

Keywords: antenna; aperture; orthogonality; modal field; waveguide
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1. Introduction

Aperture antennas can take several forms, such as horns, reflectors, or slots, among
others. Hence, thanks to this flexibility, they can be used in a wide range of different micro-
and milli-metre-wave wireless systems [1,2]. The increasing demand in the performance
for these kind of systems makes it necessary to develop efficient modelling strategies that
allow us to create sophisticated designs, which obtain the best possible characteristics [3–8].

These efficient modelling techniques are based on having a deep understanding of
the electromagnetic problem under study, with the objective of exploiting symmetries or
orthogonality properties that may appear in order to reduce the computation times.

Several analysis and synthesis techniques [9–14] perform a modal expansion of the
aperture field distribution in order to compute the total radiated field as the summation of
the fields radiated by each modal field function weighted by their corresponding complex
modal amplitudes. As is well known, these modal fields are orthogonal between them,
since they constitute an orthogonal basis for the fields at the aperture [15]. Nevertheless, to
the best of the author’s knowledge, it has not been addressed by the literature whether this
orthogonality is also satisfied by their corresponding radiated fields.

In order to address this subject, the present work shows, first, the formulation to
perform the modal expansion of the aperture radiated fields and then presents several
numerical examples to assess the orthogonality of the radiated fields.

2. Modal Expansion of the Far-Field Produced by a Radiating Aperture

The field radiated by an aperture lying on the xy-plane, similar to the one depicted
in Figure 1, can be computed from the transverse components of the electromagnetic
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field at the aperture~Eap(x′, y′), ~Hap(x′, y′) using the well known equivalence principle [16]
(Ch. 7) [17], denoted here by the linear integral operator, P , as:

~Erad(θ, ϕ) = Eθ(θ, ϕ)θ̂+ Eϕ(θ, ϕ)ϕ̂ = P
[
~Eap(x′, y′), ~Hap(x′, y′)

]
. (1)

Please note that (x′, y′) refer to a two-dimensional coordinate system used to calculate
the transverse electromagnetic field at the aperture, while (x, y, z) correspond to the tridi-
mensional coordinate system used to express the radiated fields (as illustrated in Figure 1).
Three different formulations of this equivalence principle (P) exist, depending on which
type of currents are considered as a radiation source. As is well known, the accuracy of the
equivalence principle is proportional to the aperture size ([16], Ch. 7 and [17]).

Figure 1. Representation of an aperture of arbitrary geometry (S) opened on an infinite ground plane
(grey) along with the coordinate system used in the formulation presented in this paper.

If both electric and magnetic currents are considered (alternative versions of these
formulas can be obtained if only electric or only magnetic currents are considered as the
radiation source), the equivalence principle in (1) takes the form:

Eθ(θ, ϕ) = j
k0

4π

(
Px cos ϕ + Py sin ϕ− η0 cos θ

(
Qx sin ϕ−Qy cos ϕ

))
,

Eϕ(θ, ϕ) = −j
k0

4π

(
cos θ

(
Px sin ϕ− Py cos ϕ

)
+ η0

(
Qx cos ϕ + Qy sin ϕ

))
, (2)

where Px, Py and Qx, Qy represent the two-dimensional Fourier transform of the transversal
electric and magnetic fields at the aperture S [16] (Ch. 7) (the x and y subscripts denote that
the Fourier transform is computed for the x or y component of the field): Px

y

Q x
y

 =
∫∫
S

 Eap, x
y
(x′, y′)

Hap, x
y
(x′, y′)

ejk0(ux′+vy′)dx′dy′, (3)

where k0 = ω
√

µ0ε0 is the free space wavenumber, µ0 is the free space magnetic perme-
ability, ε0 is the free space electric permittivity, η0 =

√
µ0/ε0 is the free space intrinsic

impedance, S is the aperture surface in Figure 1, (r, θ, ϕ) are the spherical coordinates with
their standard definition, and u = sin θ cos ϕ, v = sin θ sin ϕ.

Nevertheless, instead of operating directly with the total fields at the aperture, it is
more convenient to write them as the weighted sum of modal functions corresponding to a
waveguide with a section S equal to the aperture geometry [15] (Ch. 3):{

~Eap(x′, y′)
~Hap(x′, y′)

}
=

M

∑
m=1

cm

{
~em(x′, y′)
~hm(x′, y′)

}
, (4)



Mathematics 2023, 11, 1198 3 of 10

where cm represents the complex amplitudes of the electric (~em) and magnetic (~hm) fields
of the m-th mode, which can be computed as:

~em(x′, y′) = Q
1
2
mZ

1
2
m

{
∇tΦm(x′, y′)× ẑ TE Modes
∇tΦm(x′, y′) TM Modes

, (5)

~hm(x′, y′) = Q
1
2
mY

1
2

m

{
∇tΦm(x′, y′) TE Modes
ẑ×∇tΦm(x′, y′) TM Modes

. (6)

The term Zm = Y−1
m represents the mode impedance and Qm is an arbitrary nor-

malization constant. Additionally, the scalar function Φm(x′, y′) (which is real valued
and frequency independent) is proportional to the longitudinal component of either the
magnetic or electric field, depending on whether the m-th mode is transverse electric (TE)
or transverse magnetic (TM). This function, which is assumed here to be normalized as∫∫

S |∇tΦm|2dS = 1, can be calculated by solving the Helmholtz equation with the ade-
quate boundary conditions imposed by the aperture geometry [15]. For this work, they are
considered known, calculated either analytically (as in the circular and squared cases) or
numerically (represented, without loss of generality, by a polygonal case). The summa-
tion (4) is usually ordered by the cutoff frequency of the modes [15], and thus, each mode
is identified by a single index m, its cutoff wavenumber is identified by kcm, and its cutoff
frequency by fcm = kcm

2π
√

µε .
Certain waveguide geometries present analytical solutions for the modal fields. This

is the case, for example, of circular and rectangular waveguides. The following expressions
can be obtained to calculate the TE and TM modes of a circular waveguide of radius r:

Φ(c)
pr

Φ(s)
pr

= N
1
2
pr Jp(

ξ ′pr
re

ρ′)
cos
sin

pφ′, p =
0, 1, . . .
1, 2, . . .

r = 1, 2, . . . (7)

Φ(c)
pr

Φ(s)
pr

= N
1
2
pr Jp(

ξpr
re

ρ′)
cos
sin

pφ′, p =
0, 1, . . .
1, 2, . . .

r = 1, 2, . . . (8)

with roots [18] (Ch. 9) and normalization constants:

kc,pr =
ξ ′pr
re

, J′p(ξ
′
pr) = 0, Npr =

∣∣∣εp0
π
2 (ξ
′2
pr − p2)J2

p(ξ
′
pr)
∣∣∣−1

, (9)

kc,pr =
ξpr
re

, Jp(ξpr) = 0, Npr =
∣∣∣εp0

π
2 ξ2

pr J′2p (ξpr)
∣∣∣−1

, (10)

for TE and TM modes, respectively. Please note that the formulas consider a standard
polar coordinate system (ρ′, φ′) whose origin is placed at the centre of the waveguide
(εmk = 2(m = k), 1(m 6= k)).

Additionally, the following formulas can be derived for the TE and TM modes, re-
spectively, of a rectangular waveguide in a system (x′, y′) whose origin is at the centre of
the rectangle:

Φmn = N
1
2

mn cos(mπ
a (x′ + a

2 )) cos( nπ
b (y′ + b

2 )), m, n = 0, 1, . . . (m, n) 6= (0, 0) (11)

Φmn = N
1
2

mn sin(mπ
a (x′ + a

2 )) sin( nπ
b (y′ + b

2 )), m, n = 1, 2, . . . (12)

with cut-off wavenumbers and normalization constants:

kc,mn =
√
(mπ

a )2 + ( nπ
b )2, Nmn

∣∣∣((mπ
a )2 + ( nπ

b )2
)

ab
4 εm0εn0

∣∣∣−1
, (13)

where a and b are, respectively, the width and height of the waveguide. It must be empha-
sized that the modal expansion can also be applied to waveguide geometries that do not
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present closed-form expressions for their modal field functions by calculating these modal
fields numerically.

Therefore, thanks to this modal expansion and taking into consideration that the
transformation denoted by P is linear, (1) can be rewritten as:

~Erad(θ, ϕ) = P
[
~Eap(x′, y′), ~Hap(x′, y′)

]
=

= P
[
∑
m

cm~em(x′, y′), ∑
m

cm~hm(x′, y′)

]
=

= ∑
m

cm P
[
~em(x′, y′),~hm(x′, y′)

]
︸ ︷︷ ︸

~f m(θ,ϕ)

, (14)

where~f m(θ, ϕ) denotes the electric field radiated by the m-th mode:

~f m(θ, ϕ) = j
k0

4π

[∫∫
S
~em,x(x′, y′)ejk0(ux′+vy′)dx′dy′ cos ϕ +

∫∫
S
~em,y(x′, y′)ejk0(ux′+vy′)dx′dy′ sin ϕ+

−η0 cos θ

(∫∫
S
~hm,x(x′, y′)ejk0(ux′+vy′)dx′dy′ sin ϕ−

∫∫
S
~hm,y(x′, y′)ejk0(ux′+vy′)dx′dy′ cos ϕ

)]
θ̂+

−j
k0

4π

[
cos θ

(∫∫
S
~em,x(x′, y′)ejk0(ux′+vy′)dx′dy′ sin ϕ−

∫∫
S
~em,y(x′, y′)ejk0(ux′+vy′)dx′dy′ cos ϕ

)
+

+η0

(∫∫
S
~hm,x(x′, y′)ejk0(ux′+vy′)dx′dy′ cos ϕ +

∫∫
S
~hm,y(x′, y′)ejk0(ux′+vy′)dx′dy′ sin ϕ

)]
ϕ̂. (15)

Hence, the equivalence principle (2) can be applied to the electromagnetic field at
the aperture on a modal basis; that is, the field radiated by each mode is computed
independently, and then the total radiated field is obtained as the combination of the
different~f m(θ, ϕ), weighted by their corresponding modal amplitudes [12,13].

In order to verify this approach to calculate the radiated field produced by a modal
field function, the obtained results have been compared with those provided by a third
party commercial electromagnetic simulation software [19]. As an example, Figure 2 shows
the radiation pattern corresponding to the fundamental mode of both a circular (radius
r = 2λ0) an a squared aperture (side a = 4λ0). It can be observed that there is a good
correspondence between both sets of results.
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Figure 2. Radiation pattern produced by the fundamental mode of a circular (a) and a squared
(b) aperture calculated by the approach proposed in (15) (solid line) and by the commercial electromag-
netic simulator CST Microwave Studio (dashed line). DCirc

0,This work = 21.32 dBi, DCirc
0,CST = 21.31 dBi,

DSqua
0,This work = 22.27 dBi, DSqua

0,CST = 22.18 dBi.
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3. Radiated Field Cross-Products Matrix

The total power radiated by any antenna (Prad) can be computed from the integration
of the radiated electric field [20] as:

Prad =
1

2η0

π/2∫
θ=0

2π∫
ϕ=0

~Erad(θ, ϕ) ·~E∗rad(θ, ϕ) sin(θ)dθdϕ =

=
1

2η0

π/2∫
θ=0

2π∫
ϕ=0

(|Eθ(θ, ϕ)|2 + |Eϕ(θ, ϕ)|2) sin(θ)dθdϕ. (16)

It should be noted that the integration is calculated over an hemispheric surface, since
the equivalence principle assumes that the aperture is placed on an infinite ground plane,
and, therefore, it radiates only towards the free space region at one of the sides of such
plane. Then, by applying (14), the former equation can be expressed using matrix notation:

Prad =
1

2η0

π/2∫
θ=0

2π∫
ϕ=0

∑
m

cm~f m(θ, ϕ) ·∑
n

c∗n~f
∗
n(θ, ϕ) sin(θ)dθdϕ = cHAc, (17)

Amn =
1

2η0

π/2∫
θ=0

2π∫
ϕ=0

(~f m(θ, ϕ) ·~f ∗n(θ, ϕ)) sin(θ)dθdϕ, (18)

where H denotes the Hermitian operator (transpose conjugate) and c is the vector of
complex modal amplitudes cm. Hence, knowing the matrix of the radiated field cross-
products A for a certain aperture geometry, it is possible to determine the power radiated
by any field distribution at that aperture with the Hermitian quadratic form in (17).

4. Numerical Study of the Orthogonality for the Radiated Fields of Each Mode

The modal fields in (5) and (6) present the following orthogonality property [15] (Ch. 5)
defined over the aperture surface S:∫∫

S
(~em(x′, y′)×~h∗n(x′, y′) · ẑ)dS = Y∗m

∫∫
S
(~em(x′, y′) ·~e∗n(x′, y′))dS =

= Zm

∫∫
S
(~hm(x′, y′) ·~h∗n(x′, y′))dS =

= Pmδmn, (19)

where δmn is the Kronecker delta. Using (5) and (6), it can be easily shown that, for
propagating modes (i.e., kcm > k0), Pm = |Qm|.

Moreover, when modes in (5) and (6) are written with Qm = 1 (typical scenario that
will be used later), Pm is equal to 1 for propagating modes.

However, it is unclear if this same orthogonality is also exhibited by the fields (15)
radiated by these modes, i.e., whether the following equation holds true:

Amn
?
=

{
1
2 Pmδmn for propagating modes,
0 for evanescent modes.

(20)

The value of (18) for the fields radiated by an arbitrarily shaped aperture can be
obtained with a good computational efficiency using a numerical approach based on the
Lebedev-Laikov quadrature [21]. This technique approximates the value of a surface
integral over a sphere as a weighted summation of different evaluations of the function
to integrate over a grid of N points. Each evaluation of the function is weighted in the
summation by a quadrature coefficient wi associated to the grid point (θi, ϕi), given by [21],
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where the function is evaluated, which are specified by the corresponding quadrature rule.
Therefore, A can be approximated as:

Amn ≈
1

2η0

N

∑
i=1

wi(fm,θ(θi, ϕi) · f ∗n,θ(θi, ϕi) + fm,ϕ(θi, ϕi) · f ∗n,ϕ(θi, ϕi)) = (21)

=
1

2η0

(
gH

n,θgm,θ + gH
n,ϕgm,ϕ

)
,

where gm,θ and gm,ϕ are defined as:

gm, θ
ϕ ,i =

√
wi fm, θ

ϕ
(θi, ϕi), i = 1 . . . N. (22)

Then, it is possible to evaluate (21) for different aperture geometries. For example
a typical circular aperture with a radius of r = 2λ0, as illustrated in Figure 3a. For this
geometry, Figure 3b displays a graphical representation of A.
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Figure 3. (a) Representation of the circular apertures (the coordinates of the vertices are normalized
to λ0). (b) Representation of the magnitude of the elements in A for a circular waveguide with a
radius of r = 2λ0.

Two significant facts can be observed in these data. First of all, it can be seen that
evanescent modes (mode number 78 and subsequent) present a decreasing contribution
to the radiated power, which becomes smaller with the mode order. In addition, it can be
observed that the submatrix corresponding to the propagating modes is almost a diagonal
matrix, with the elements outside of the diagonal being almost zero. The average of
the elements outside of the main diagonal is 1.3× 10−3, while the average value for the
elements in the main diagonal corresponding to the propagative modes is 0.49.

Indeed, the fact that the off-diagonal elements are not exactly zero can be explained
by the convergence of the Lebedev-Laikov quadrature. The presented results have been
obtained with a Lebedev-Laikov scheme of N = 5810 (which is the greatest possible number
of points as defined in [21]). However, it has been checked that, when using grids with
fewer points, these off-diagonal elements take higher values that progressively diminish
when increasing the number of points at the grid, as shown in Figure 4.

This matrix has also been computed for other aperture geometries. Figure 5b shows
the results obtained for a squared aperture with a side a = 4λ0, such as the one depicted in
Figure 5a. As it can be appreciated, this aperture geometry exhibits a behaviour similar
to the circular one, and the average of the off-diagonal elements is 5.4× 10−4, while the
average of the main diagonal elements is 0.49. In addition, in order to study the orthogo-
nality in a geometry that does not present any symmetries, the aperture of Figure 6a [12]
is analysed. The obtained A matrix is represented in Figure 6b and, as it can be observed,
it presents the same diagonal pattern as the circular and squared cases (average value of
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off-diagonal elements equal to 2.7× 10−3 and average value of diagonal elements equal
to 0.45). The study of the convergence of the Lebedev-Laikov quadrature has also been
carried out for these two geometries, and the results are also depicted in Figure 4. As it can
be observed, for the squared and polygonal apertures, the average value of the off-diagonal
elements also diminishes when the number of points in the quadrature is increased, as it
happened for the circular aperture case.

Finally, Table 1 presents the numeric values of the main diagonal of A for the three
studied apertures. Since this matrix presents an elevated number of elements, three subsets
of values are presented for each aperture: propagating modes, modes that are well below
cutoff, and modes that are in the transition region between propagation and cutoff. As it
can be observed, the elements in the main diagonal of A do indeed follow (20) when the
modes are either well above cutoff (propagating) or well below cutoff (evanescent), while
few modes close to cutoff exhibit values in between.

10
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-3

Rectangular
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Figure 4. Average of the off-diagonal elements of A calculated with Lebedev-Laikov schemes of
different number of samples. The results are presented for the three aperture geometries studied in
the paper.
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Figure 5. (a) Representation of the squared aperture (the coordinates of the vertices are normalized
to λ0). (b) Representation of the magnitude of the elements in A for a square waveguide with a side
of a = 4λ0.
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Figure 6. (a) Representation of the polygonal defined aperture (the coordinates of the vertices are nor-
malized to λ0). (b) Representation of the magnitude of the elements in A for the polynomial aperture.

Table 1. Values of A for apertures of different geometry. The values of fcm are normalized to f0.

Circular Squared Polygonal

m fcm |Amm| m fcm |Amm| m fcm |Amm|
1 0.146 0.484 1 0.125 0.480 1 0.154 0.482
2 0.146 0.484 2 0.125 0.480 2 0.186 0.485
3 0.191 0.459 3 0.177 0.461 3 0.241 0.467
4 0.243 0.471 4 0.177 0.459 4 0.265 0.475
5 0.243 0.471 5 0.250 0.481 5 0.314 0.479

...
...

...
74 0.972 0.479 95 0.976 0.489 51 0.972 0.294
75 0.972 0.479 96 0.976 0.489 52 0.983 0.376
76 0.981 0.499 97 0.999 0.033 53 0.990 0.410
77 0.981 0.499 98 0.999 0.033 54 0.999 0.911
78 1.009 0.118 99 1.007 0.091 55 1.001 0.410
79 1.009 0.117 100 1.007 0.092 56 1.020 0.176
80 1.020 0.071 101 1.007 0.092 57 1.022 0.123
81 1.020 0.071 102 1.007 0.091 58 1.032 0.160

...
...

...
196 1.560 0.001 196 1.397 0.033 196 1.922 0.006
197 1.581 0.005 197 1.397 0.003 197 1.927 0.007
198 1.581 0.005 198 1.397 0.003 198 1.927 0.010
199 1.586 0.025 199 1.397 0.003 199 1.929 0.004
200 1.586 0.025 200 1.397 0.003 200 1.942 0.010

Although these examples do not constitute a formal demonstration, it can be concluded
that, at least, the fields radiated by the different modes of an aperture exhibit a certain
orthogonality analogous to that of the waveguide modes.

5. Conclusions

This work has studied the orthogonality of the electromagnetic fields radiated by the
modal field functions of a radiating aperture from a numerical perspective. The guided
fields of these modes are orthogonal between each other at the aperture; however, to
the best of the author’s knowledge, up until now, no work had addressed whether this
orthogonality applies to their radiated fields (e.g., fields radiated by horn antennas or
open-ended waveguides).

In this paper, several numerical examples have been presented, suggesting that this
orthogonality does in fact extend to the radiated fields produced by propagating modes and
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also by modes that are below cutoff. However, in the transition region between propagating
modes and evanescent modes, numerical values show a behaviour in the middle of the two.
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