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Cohomology of normic systems and fake Zp-extensions

Luca Caputo and Filippo A. E. Nuccio Mortarino Majno di Capriglio

Abstract. We set up a general framework to study Tate cohomology groups of Galois modules
along Zp-extensions of number fields. Under suitable assumptions on the Galois modules, we
establish the existence of a five-term exact sequence in a certain quotient category whose objects
are simultaneously direct and inverse systems, subject to some compatibility. The exact sequence
allows one, in particular, to control the behaviour of the Tate cohomology groups of the units
along Zp-extensions.

As an application, we study the growth of class numbers along what we call “fake Zp-extensions
of dihedral type”. This study relies on a previous work, where we established a class number
formula for dihedral extensions in terms of the cohomology groups of the units.

1. Introduction

The main goal of this work is to set up a convenient algebraic framework to study Tate coho-
mology groups along Zp-extensions of number fields. Before giving more details, let us fix some
notation. Let p be a prime number, let F be number field and fix a Zp-extension L∞/F , by which
we mean a Galois extension such that Γ = Gal(L∞/F ) is isomorphic to Zp: in particular,

L∞ =
⋃

n≥0

Ln

where we set L0 = F and where each Ln/F is a cyclic Galois extension of degree pn. Write Γn for
the open subgroup Γn = Γpn

= Gal(L∞/Ln) and set Gn = Γ/Γn = Gal(Ln/F ); more generally,
for all m ≥ n ≥ 0, set Gm,n = Gal(Lm/Ln). In this setting, one can attach to each field Ln,
often regarded as a “layer”, several interesting arithmetic objects: the unit group O×

Ln
, the ideal

class group ClLn or its p-Sylow subgroup ALn , the group ULn ⊆ A×
Ln

of idelic units, the idèle class
group CLn , and so forth. Let {Bn}n≥0 denote any of the above collections. Since all the Bn’s are

Gn-modules, the Tate cohomology groups Ĥi(Gn, Bn) are defined, for every i ∈ Z. Moreover, for
all m ≥ n ≥ 0, the inclusion L×

n →֒ L×
m and the norm NLm/Ln

: L×
m → L×

n induce Gm-morphisms
ιLm/Ln

: Bn → Bm and NLm/Ln
: Bm → Bn. Almost by definition, these maps satisfy

(1.1) NLm/Ln
◦ ιLm/Ln

= pm−n and ιLm/Ln
◦NLm/Ln

= NmGm,n

where, for an arbitrary group H , we denote by NmH the norm element in Z[H ]. These morphisms
are fundamental in the study of the behaviour of the groups Bn along the Zp-extension but they

do not systematically induce maps ϕn,m : Ĥi(Gn, Bn) → Ĥi(Gm, Bm) or πm,n : Ĥ
i(Gm, Bm) →

Ĥi(Gn, Bn). Indeed, although the maps

ι∗Lm/Ln
: Ĥi(Gn, Bn) −→ Ĥi(Gn, B

Gm,n
m ) and N∗

Lm/Ln
: Ĥi(Gn, B

Gm,n
m ) −→ Ĥi(Gn, Bn)
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2 L. CAPUTO AND F. A. E. NUCCIO

are always defined, they do not have the expected domain or codomain. When i ≥ 1, one could
take ϕm,n = Inf ◦ι∗Lm/Ln

, where Inf denotes the inflation; and, when i ≤ −1, one could consider the

deflation Defl (see [Wei59]), setting πm,n = N∗
Lm/Ln

◦Defl. But, in general, for a given i ∈ Z, only

one of these would be defined. In particular, a relation like (1.1) involving ϕn,m and πn,m could
not even be stated. Moreover, taking Gn-cohomology kills the Gn-action, so all abelian groups

Ĥi(Gn, Bn) are trivial Gn-modules.
On the other hand, these Tate cohomology groups are certainly interesting arithmetic objects:

they have the advantage of always being finite (at least for all Bn as above) and they occur naturally
in class field theory. For example,

Ker
(
Ĥ1(Gn,O

×
Ln

) −→ Ĥ1(Gn,ULn)
)
∼= Ker

(
ιLn/F : ClF → ClLn

)
for all n ≥ 0

(see, for instance, [Nuc10, Proposition 2.2]) or, even more fundamentally,

Ĥ2(Gal(Hn/Ln), CHn)
∼= ClLn for all n ≥ 0

where Hn denotes the Hilbert class field of Ln. To give one more example, one that has been at
the origin of our investigation, assume that p is odd and suppose that there exists a subfield k ⊆ F
such that, for every n, Ln/k is Galois with dihedral Galois group Dn of order 2pn. Denote by Kn

a subfield of index 2 in Ln/k: then the equality

(1.2)
|ClLn | · |Clk|2

|ClF | · |ClKn |
2
=
|Ĥ0(Dn,O

×
Ln

)|

|Ĥ−1(Dn,O
×
Ln

)|

holds up to a power of 2 (see [CN20, Theorem 3.14]).

Hence, it looks compelling to regard the assignment n 7→ Ĥi(Gn, Bn) as an analogue of n 7→ Bn,
or perhaps of n 7→ ALn , since the ALn are also finite groups. Yet, this seems to immediately
break down, at least insofar techniques from Iwasawa theory are involved: to explain why, it is
probably necessary to clarify what we mean by “studying” or “analysing” the above assignment.

As mentioned, the groups Ĥi(Gn, Bn) are all finite, and the most basic question one could ask is

to describe the behaviour of their orders |Ĥi(Gn, Bn)| as n→ +∞. After all, the whole subject of
Iwasawa theory begun with the celebrated

Theorem (Iwasawa). There exists three integers µL∞
, λL∞

, νL∞ and an index n0 such that

(1.3) |ALn | = pµk∞
pn+λk∞

n+νk∞ for all n ≥ n0.

Recall now the usual strategy of proof of Iwasawa’s theorem: one first considers the inverse limit,
with respect to the norm maps, XIw = lim

←−
ALn and regards it as a module over the completed group

algebra Λ = Zp[[Γ]], showing that as such it is finitely generated and torsion. Secondly, a fine analysis
of the Galois action on XIw, coupled with global class field theory, shows that one can closely relate
ALn with the co-invariants (XIw)Γn ; finally, a structure theorem for Λ-torsion modules of finite
type yields the formula. Inherent to this approach is the asymptotic flavour of Iwasawa’s result: at
several stages, some adjustment is required, which modifies the outcome by a “finite, bounded error

term”. Now, all this breaks down when replacing the finite groups ALn with any of the Ĥi(Gn, Bn):
already, they might not form an inverse system, when i ≥ 1; and, even if they do, the triviality of
the Galois action implies that the co-invariants of the inverse limit coincide with the whole limit

and are, in general, infinite. Hence, they are of no use to recover the finite groups Ĥi(Gn, Bn).
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To describe our approach, it is important to consider the somewhat dual strategy of considering
the direct limit

AL∞ = lim−→
ιLm/Ln

ALn .

As discussed in [Gre73, Introduction] the modulesXIw and the Pontryagin dual HomZp(AL∞ ,Qp/Zp)
essentially carry the same information, and could be used interchangeably; Iwasawa himself occa-
sionally works with the latter module instead of the former (see, for instance, [Iwa81]). When
Bn = O×

Ln
rather than ALn , the direct limit occurs, for instance, in [Iwa83, §5]: there, Iwasawa

claims that the inflation maps

(1.4) Inf : Ĥi(Gn,O
×
Ln

) −→
(
lim
−→

Ĥi(Gm,O×
Lm

)
)
[pn] = Hi(Γ,O×

L∞
)[pn] for i = 1, 2

have kernel and cokernel which have bounded order as n grows. Given that the structure of the

direct limits lim
−→

Ĥi(Gn, Bn) = Ĥi(Γ, B∞) is, in general, quite explicit (but “up to finite groups”)

we interpret this as a weak analogue of Iwasawa’s descent theorem leading to (1.3), replacing the
operation of taking co-invariants by taking the pn-torsion subgroup. Hence, we set out to find
an algebraic setting where the boundedness of kernels and cokernels as in (1.4) could be proven
in general. But we were still confronted with two problems: first, in some formulæ, for instance
in (1.2), negative cohomological degrees must be considered and in this case the Tate cohomology
groups naturally form an inverse, rather than a direct, system; and secondly, that working “up to
finite groups”, would turn all inflation maps occurring in (1.4) into the 0 map.

At this point, we were inspired by Vauclair’s approach in [Vau09], where he defines normic

systems in quite a general context: in particular, all the examples {Bn}n≥0 above are normic
systems. Rather than taking limits, he works in the category whose objects are collections of Gn-
modules simultaneously carrying the structure of a direct and an inverse system, subject to some
compatibility. With this in mind, we define, at least under the assumptions (Inj) and (Gal) of
Definition 2.4 on the normic system {Bn}n≥0, ascending and descending morphisms

Ĥi(Gm, Bm)
πm,n

//
Ĥi(Gn, Bn)

ϕn,m

oo for all m ≥ n ≥ 0

turning the collection of abelian groups Ĥi(Gn, Bn) in what we call a “double system”. Inside the
category1 DSΓ of double systems, we identify a a certain thick subcategory BΓ of double systems
of bounded orders (see Definition 2.20), such that the corresponding quotient category DSΓ/BΓ

turns out to be the framework we were looking for. Indeed, upon restricting to a subcategory

DSco-f.g.
Γ /Bco-f.g.

Γ of DSΓ/BΓ defined by some very natural co-finiteness condition of the direct
limit, we define an endofunctor

L : DSco-f.g.
Γ /Bco-f.g.

Γ −→ DSco-f.g.
Γ /Bco-f.g.

Γ , X = (Xn)n≥0 7−→ (X∞[pn])n≥0

attaching to a double system X = (Xn)n≥0 the double system (X∞[pn])n≥0 (endowed with suitable
transition morphisms), where X∞ = lim

−→
Xn . Writing an ∝ bn to mean that two sequences

{an}, {bn} of natural numbers are eventually proportional (see Definition 2.27), we obtain the
following

1In this introduction, we confine ourself to a special case of our main result, which holds for profinite groups D

which are more general than Γ. Although this generalised approach is crucial for the dihedral applications we have
in mind, we prefer to stick to the case D = Γ here, to lighten notation. In particular, all subscripts Γ decorating the
several categories that we are going to introduce, actually read as D in the body of the paper.
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Corollary 2.32. Let X = (Xn)n≥0 be a double system in DSco-f.g.
Γ , and suppose that X ∼=BΓ

L (X ).
Then

|Xn| ∝ pλXn

where lim
−→
X ∼= (Qp/Zp)

λX ⊕ (finite group).

In this language, we can reinterpret Iwasawa’s claim about the boundedness of the kernels and

cokernels in (1.4) as the statement that the double systems Ĥi(O×
L•

), whose components are the

cohomology groups Ĥi(Gn,ULn), satisfy Ĥ
i(O×

L•
) ∼=BD

L (Ĥi(O×
L•

)) for i = 1, 2. This is proved in

Theorem 3.8 (see also Remark 3.12).
It is worth noting that the rigidity yielded by requiring that the objects in the DSΓ are simul-

taneously inverse and direct systems is forced upon us by an interesting phenomenon: during the
proof of Theorem 3.8, two morphisms in DSΓ need to be shown to become injective in DSΓ/BΓ, in

order to perform some homological algebra. Now, the analogous definitions Binv
Γ (resp. B

dir

Γ ) of the
thick subcategory BΓ can be given for the category of inverse (resp. direct) systems. Yet, it turns
out that the kernel of the first morphism (regarded simply as an inverse system) does not belong
to Binv

Γ , and the kernel of the second one (regarded simply as a direct system) does not belong
to Bdir

Γ : so, working either with direct or with inverse system alone would break our homological
argument. On the other hand, since both kernels belong to BΓ, both DSΓ-morphisms become
injective in DSΓ/BΓ, as wanted: for a more comprehensive analysis of this phenomenon, we refer
to Remark 3.9. We explicitly mention Yamashita’s paper [Yam84], which has been very helpful
at this point: she regards Iwasawa’s boundedness claim concerning (1.4) in the setting of abelian
groups endowed with two (not necessarily compatible) structures of direct and inverse systems, and
this was the starting point for our definitions of DSΓ and BΓ.

With this formalism at our disposal, we are in shape to “let n go to +∞” in (1.2). To state our
result, as well as to motivate our title, we record the

Definition 4.1. Let p be an odd prime. Suppose that there exists a subfield k ⊆ F such that for

every n, Ln/k is Galois, with dihedral Galois group Dn of order 2pn. Denote by Kn a subfield of

index 2 in Ln/k, chosen so that Kn ⊇ Kn−1 for all n ≥ 1, and put K∞ =
⋃
Kn. The extension

K∞/k is said to be a fake Zp-extension of dihedral type, the extensions L∞/k is the Galois closure

of the fake Zp-extension and the field F is said to be the normalizing quadratic extension.

With this definition, one of our main results is the following

Theorem 4.6. LetK∞/k be a fake Zp-extension of dihedral type. There exist constants µfake, νfake ∈
Z[ 12 ] and λfake ∈ Z such that

|AKn | = pµfakep
n+λfaken+νfake for all n≫ 0.

Observe that in a fake Zp-extension of dihedral type, none of the subextensions Kn/k is normal,
so the groups AKn are not Galois modules and Iwasawa’s original formula do not apply. We refer
to §4.2 for a more precise version of the above statement, describing the invariants µfake and λfake

in terms of explicit arithmetic quantities. In §4.3 we derive, in some special cases, explicit bounds
for the values taken by the invariant λfake: as an example, let us state the following result2

2In its actual formulation, the quoted corollary is more precise: in order to avoid too much notation, we content
ourselves with a slightly weaker statement in this Introduction, referring to §4.3 for the full statement.
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Corollary 4.14. Let K∞/Q be a fake Zp-extension of dihedral type: in particular, the normalizing

extension F/Q is imaginary quadratic and the Galois closure L∞/Q is the anticyclotomic extension

of F . Then,

λfake =





λIw+1
2 if p splits in F/Q

λIw

2 if p does not split in F/Q

and therefore λIw is odd if p splits in F and it is even if p does not split.

Corollaries 4.16 and 4.18 extend the above one to more general CM fields beyond the imaginary
quadratic case.

In the Galois setting of Zp-extensions, the invariant λIw responsible for the linear growth in the
exponent of ALn can be interpreted as the Qp-dimension of XIw ⊗ Qp, where XIw = lim

←−
ALn . In

the final Section §4.4 we extend this result to our non-Galois setting, by studying the structure of
the projective limit

Xfake = lim
←−

AKn

with respect to norm maps. We prove the following

Theorem 4.27. Given a fake Zp-extension of dihedral type K∞/k, we have λfake = dimQp Xfake⊗Zp

Qp.

We conclude this Introduction by observing that our results concerning pro-dihedral extensions
are not entirely new. We refer to Remark 4.7 for a comparison with Jaulent’s work [Jau81], to
Remark 4.17 for a comparison with the works [Gil76] by Gillard and [CK82] by Carroll–Kisilevsky,
as well as to Remark 4.15 for some results concerning the anticyclotomic µIw invariant.

This paper has a long history, which has been summarized in [CN20, Acknowledgment]. As
mentioned in loc. cit ., the original arXiv preprint has been split up in two articles, the first be-
ing [CN20]. This work is the second one, focusing on fake Zp-extensions. We are grateful to the
anonymous referee for a thorough reading of our manuscript and for several remarks that improved
the clarity and the readability of the text.

2. Algebraic preliminaries

2.1. Group cohomology: notation and generalities. Given a group G and a G-module B, we
denote by BG (resp. BG) the maximal submodule (resp. the maximal quotient) of B on which G
acts trivially. Moreover, let NmG =

∑
g∈G g ∈ Z[G] be the norm, B[NG] the kernel of multiplication

by NG and IG the augmentation ideal of Z[G] defined as

IG = Ker(Z[G] −→ Z) where the morphism is induced by g 7→ 1 for all g ∈ G.

For every i ∈ Z, let Ĥi(G,B) denote the ith Tate cohomology group ofG with values in B. Similarly,
for i ≥ 0, let Hi(G,B) be the ith cohomology group of G with values in B. For standard properties
of these groups (which will be implicitly used without specific mention) the reader is referred to
[NSW08]. If B′ is another G-module and f : B → B′ is a homomorphism of abelian groups, we say
that f is G-equivariant (resp. G-antiequivariant) if f(gb) = gf(b) (resp. f(gb) = −gf(b)) for every
g ∈ G and b ∈ B.
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2.2. Normic systems and their Tate cohomology. Fix a prime number p. Arithmetic objects
attached to layers of Zp-extensions have a structure of normic system, in the sense of Vauclair
(see [Vau09]). After recalling the definition of a normic system, we will study its Tate cohomology,
which is our primary goal in this paper.

We start with the definition of a normic system, in a slightly different context than the one of
[Vau09, Définition 2.1]. Let Γ be a profinite group isomorphic to Zp, endowed with a decreasing
filtration by closed subgroups Γ0 = Γ ⊇ Γ1 · · · ⊇ Γn · · · for which there exists g = g(Γ) ∈ N, such
that for all m ≥ n ≥ g the equality (Γn : Γm) = pm−n holds. Assume also that we are given an
exact sequence of topological groups

(2.1) 1 −→ Γ −→ D −→ D0 −→ 1.

Set Gn = Γ/Γn and Gm,n = Γn/Γm for all m ≥ n. Since the subgroups Γn are closed, they are
characteristic in Γ and hence normal in D, so that the quotient groups Dn = D/Γn are defined for
all n ≥ 0; in particular, Gn can be regarded as a subgroup of Dn.

Remark 2.1. The most common choice for the filtration {Γn} in the above setting is given by
Γn = Γpn

for all n ≥ 0, and the reader can have this in mind in most of what follows. In that
case, g = 0 and (Γn : Γm) = pm−n for all m ≥ n ≥ 0. The reason for the slight generality
considered above comes from the arithmetic setting considered in Section 3.1, where Γ is the local
decomposition group inside a global Galois group. When the corresponding prime ideal splits, a
shift in the numbering occurs and a more general filtration than {Γpn

} needs to be considered.

Definition 2.2. Let (Γ, {Γn}n∈N,D) be as above. A (Γ, {Γn}n∈N,D)-normic system B = (Bn, jn,m, km,n)n,m∈N

(or simply a D-normic system or a normic system if the groups are understood) is a collection of
Zp[D]-modules Bn together with homomorphisms of Zp[D]-modules

Bm

km,n
// Bn

jn,m

oo for all m ≥ n ≥ 0

satisfying

• (Bn, jn,m) (resp. (Bn, km,n)) is a direct (resp. inverse) system of Zp[D]-modules: in par-
ticular, for all n ≥ 0, the compatibilities jn+1,n+2 ◦ jn,n+1 = jn,n+2 and kn+1,n ◦kn+2,n+1 =
kn+2,n hold;
• Bn is fixed by Γn (in particular, it can be regarded as a Zp[Dn]-module);
• for all m ≥ n ≥ 0, jn,m ◦ km,n = NmGm,n and km,n ◦ jn,m = (Γn : Γm).

If B = (Bn, jn,m, km,n) and B′ = (B′
n, j

′
n,m, k′m,n) are two normic systems, a collection f = (fn) of

maps fn : Bn → B′
n is a morphism of normic systems if it is both a morphism of direct systems

(Bn, jn,m)→ (B′
n, j

′
n,m) and of inverse systems (Bn, km,n)→ (B′

n, k
′
m,n). This defines the category

NSD of normic systems.

The following lemma shows that NSD is abelian, using the concept of category of diagrams. For
a general reference about categories of diagrams see [Gro57, §1.6 and §1.7]: we adopt notation and
definitions from ibid .

Lemma 2.3. The category NSD is a category of diagrams with commuting relations valued in the

abelian category of Zp[D]-modules, so it is abelian.

Proof. Consider the diagram scheme S = (N,Ψd ×Ψi, d) where

Ψd = {(n,m) ∈ N2 such that n ≤ m} and Ψi = {(m,n) ∈ N2 such that m ≥ n}
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and the map d sends every ~vn,m = (n,m) ∈ Ψd to the pair (n,m) and every ~vm,n = (m,n) ∈ Ψi to
the pair (m,n). Fix a topological generator γ0 ∈ Γ and for every (i, j) ∈ N2 consider the set Ri,j of
Zp[D]-relations

(2.2) Ri,j =





{
ei, γ

(Γ:Γi)
0 = ei, ~vk,i~vi,k = (Γi : Γk)ei, ~vℓ,i ~vi,ℓ =

(Γℓ:Γi)∑

a=1

γapℓ

0

}
k≥i,ℓ≤i

if i = j

{
~vk,j~vi,k = ~vi,j

}
i≤k≤j

if j > i
{

~vk,j ~vi,k = ~vi,j

}
i≥k≥j

if i > j

where the ei are auxiliary elements corresponding to the identity, as ibid . Set Σ = (S,R): then
NSD is the category of commutative diagrams D : Σ→ModZp[D] (where ModZp[D] is the category
of Zp[D]-modules) and is therefore abelian thanks to [Gro57, Proposition 1.6.1]. �

Given a normic system B = (Bn, jn,m, km,n) one can consider the Tate cohomology groups

Ĥi(Gn, Bn) for i ∈ Z as well as the usual cohomology groups Hi(Gn, Bn) for i ≥ 0. These groups
acquire the structure of Zp[D0]-modules via the conjugation action of D0.

Definition 2.4. We say that the normic system B = (Bn, jn,m, km,n) satisfies condition (Inj) if

(Inj) jn,m is injective for all m ≥ n ≥ 0

and that it satisfies condition (Gal) if

(Gal) jn,m(Bn) = B
Gm,n
m for all m ≥ n ≥ 0.

Let B = (Bn, jn,m, km,n) be a normic system. Our next task is to construct, under suitable
hypotheses, functorial morphisms of Zp[D0]-modules

Ĥi(Gm, Bm)
Ĥi(k)=Ĥi(km,n)

//
Ĥi(Gn, Bn)

Ĥi(j)=Ĥi(jn,m)

oo for all m ≥ n ≥ 0.

The “ascending” maps Ĥi(j) are well-defined independently of any assumption on the normic
system, and we show in §2.2.4 that they are related to inflation in positive degrees. The definitions

of the “descending” maps Ĥi(k) require condition (Inj) in odd degrees and both conditions (Inj)
and (Gal) in even degrees.

2.2.1. Cohomology maps in degree −1. We first define Ĥ−1(j) by

Ĥ−1(j)(y mod IGnBn) = jn,m(y) mod IGmBm for all y ∈ Ĥ−1(Gn, Bn).

Observe that Ĥ−1(j) is well-defined, because

jn,m(Bn[NmGn ]) ⊆ Bm[NmGm ] and jn,m(IGnBn) ⊆ IGmBm,

since jn,m is Gm-equivariant.

Assume now that B satisfies (Inj). Then we define Ĥ−1(k) by

Ĥ−1(k)(x mod IGmBm) = km,n(x) mod IGnBn for all x ∈ Ĥ−1(Gm, Bm).
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To see that Ĥ−1(k) is also well-defined, observe that

jn,m ◦NmGn ◦ km,n = NmGn ◦ jn,m ◦ km,n

= NmGn ◦NmGm,n

= NmGm .

Since jn,m is assumed to be injective, this shows that km,n(Bm[NmGm ]) ⊆ Bn[NmGn ]. Since km,n

is Gm-equivariant, it is immediate that km,n(IGmBm) ⊆ IGnBn, so Ĥ−1(k) is well-defined.
Observe that we have

Ĥ−1(km,n) ◦ Ĥ
−1(jn,m) = (Γn : Γm) and Ĥ−1(jn,m) ◦ Ĥ−1(km,n) = (Γn : Γm).

Indeed, using the relation between km,n and jn,m in the definition of a normic system, we get

Ĥ−1(km,n) ◦ Ĥ
−1(jn,m)(x mod IGnBn) = km,n ◦ jn,m(x) mod IGnBn

= (Γn : Γm)x mod IGnBn

and

Ĥ−1(jn,m) ◦ Ĥ−1(km,n)(x mod IGnBn) = jn,m ◦ km,n(x) mod IGmBm

= NmGm,nx mod IGmBm

= (Γn : Γm)x mod IGmBm

where the last equality follows from the fact that the action of Gm,n is trivial on Ĥ−1(Gm, Bm).

Moreover, both Ĥ−1(km,n) and Ĥ−1(jn,m) are morphisms of Zp[D0]-modules, because both km,n

and jn,m are Dm-equivariant.

2.2.2. Cohomology maps in degree 0. We first define Ĥ0(j) by

Ĥ0(j)(y mod NmGnBn) = (Γn : Γm)jn,m(y) mod NmGmBm for all y ∈ Ĥ0(Gn, Bn).

Observe that, since jn,m takes values in B
Gm,n
m , there are inclusions (Γn : Γm)jn,m(Bn)

Gn ⊆ (Γn :
Γm)BGm

m ⊆ BGm
m and

(Γn : Γm)jn,m ◦NmGn = NmGn ◦ jn,m ◦ (Γn : Γm) = NmGn ◦ jn,m ◦ km,n ◦ jn,m = NmGm ◦ jn,m

so that (Γn : Γm)jn,m(NmGnBn) ⊆ NmGmBm, showing that Ĥ0(j) is well-defined.

Assume now that B satisfies both (Inj) and (Gal). Then we define Ĥ0(k) by

Ĥ0(k)(x mod NmGmBm) = (jn,m)−1(x) mod NmGnBn for all x ∈ Ĥ0(Gm, Bm).

To check that Ĥ0(k) is well-defined, observe that (Inj) and (Gal) imply that jn,m defines a Gn-

isomorphism of Bn onto B
Gm,n
m , which restricts to an isomorphism of BGn

n onto BGm
m . Therefore,

given x ∈ BGm
m , the element (jn,m)−1(x) ∈ BGn

n is uniquely defined. Moreover, if x = NmGmz for

some z ∈ Bm, then w = NmGm,nz belongs to B
Gm,n
m , so that

x = NmGmz = NmGn(w) = NmGn ◦ jn,m
(
(jn,m)−1(w)

)
= jn,m ◦NmGn

(
(jn,m)−1(w)

)
,

i. e. (jn,m)−1(x) ∈ NmGnBn. This concludes the proof that Ĥ0(k) is well-defined.
As in the case i = −1, we have

Ĥ0(km,n) ◦ Ĥ
0(jn,m) = (Γn : Γm) and Ĥ0(jn,m) ◦ Ĥ0(km,n) = (Γn : Γm)

and both Ĥ0(km,n) and Ĥ0(jn,m) are morphisms of Zp[D0]-modules, because jn,m isDm-equivariant.
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2.2.3. Cohomology maps in arbitrary degree. Fix a topological generator γ0 ∈ Γ. For each

n ∈ N, γ0 maps to a generator gn ∈ Gn and we let χn ∈ Hom(Gn,Q/Z) = Ĥ1(Gn,Q/Z) be the
map sending gn to (Γ : Γn)

−1. We claim that

Inf(χn) = (Γn : Γm)χm for m ≥ n

where Inf : Ĥ1(Gn,Q/Z) → Ĥ1(Gm,Q/Z) is the inflation map. Indeed, since gm maps to gn,
Inf(χn) ∈ Hom(Gm,Q/Z) sends gm to χn(gn) = (Γ : Γn)

−1, which in turn is equal to the ratio (Γn :

Γm)(Γ : Γm)−1 = (Γn : Γm)χm(gm). Since the connecting homomorphism δ(1) : Ĥ1(Gn,Q/Z) →

Ĥ2(Gn,Z) corresponding to the exact sequence

0 −→ Z −→ Q −→ Q/Z −→ 0

induced by the inclusion Z ⊂ Q is an isomorphism, there exists a unique element κn ∈ Ĥ2(Gn,Z)
such that

δ(1)(χn) = κn.

We now go back to the cohomology of the normic system B. Fix i ∈ Z and, for all h ≥ 0, let

(∪κn)
h : Ĥi(Gn, Bn) −→ Ĥi+2h(Gn, Bn)

be the isomorphism obtained by taking the cup product with κn h times. Extend the definition to
h < 0 by setting

(∪κn)
h = inverse of (∪κn)

−h.

If i is odd (resp. even), write i = 2h− 1 and set ε = −1 (resp. i = 2h and ε = 0). Then we define,
for m ≥ n ≥ 0,

Ĥi(j) = Ĥi(jn,m) = (∪κm)h ◦ Ĥε(jn,m) ◦ (∪κn)
−h : Ĥi(Gn, Bn) −→ Ĥi(Gm, Bm).

Similarly, if i is odd (resp. even) and B satisfies (Inj) (resp. both (Inj) and (Gal)), we define

Ĥi(k) = Ĥi(km,n) = (∪κn)
h ◦ Ĥε(km,n) ◦ (∪κm)−h : Ĥi(Gm, Bm) −→ Ĥi(Gn, Bn).

Remark 2.5. The definition of these homomorphisms is independent of the choice of γ0. To see
this, let γ′

0 ∈ Γ be another topological generator, that must be of the form γu
0 for some u ∈ Z×

p . Let

g′n = gun ∈ Gn be the image of γ′
0 and let χ′

n ∈ Ĥ1(Gn,Q/Z) be the map sending g′n to (Γ : Γn)
−1:

it corresponds to a unique class κ′
n ∈ Ĥ2(Gn,Z). We have χn = uχ′

n because

χn(g
′
n) = χn(g

u
n) = uχn(gn) = u · (Γ : Γn)

−1 = uχ′
n(g

′
n)

and in particular

(∪κn)
h = uh(∪κ′

n)
h,

showing that the definitions of Ĥi(j) and of Ĥi(k) are independent of the choice of γ0.

Arguing by induction, one can show that Ĥi(km,n) and Ĥi(jn,m) are Zp[D0]-homomorphisms:
we already observed this in the cases i = −1, 0. To prove the assertion for i ∈ Z, let κ : D → Z×

p be
the homomorphism defined by

gγ0g
−1 = γ

κ(g)
0 for g ∈ D.

For all g ∈ D, denote by g∗ the corresponding conjugation automorphism in cohomology. Then
(see [NSW08, Proposition I.1.5.3])

g∗ ◦ (∪κn) = (∪(g∗ ◦ κn)) ◦ g
∗ = κ(g)−1(∪κn) ◦ g

∗
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since

g∗ ◦ κn = g∗ ◦ δ(1)(χn) = δ(1)(g∗ ◦ χn) = δ(1)(g∗ ◦ χn)

and g∗ ◦ χn : γ0 7→ g−1γ0g. Therefore, on the one hand we can write

Ĥi+2(jn,m) ◦ g∗ = Ĥi+2(jn,m) ◦ g∗ ◦ (∪κn) ◦ (∪κn)
−1

= κ(g)−1Ĥi+2(jn,m) ◦ (∪κn) ◦ g
∗ ◦ (∪κn)

−1

= κ(g)−1(∪κm) ◦ Ĥi(jn,m) ◦ g∗ ◦ (∪κn)
−1.

On the other hand we have

g∗ ◦ Ĥi+2(jn,m) = g∗ ◦ Ĥi+2(jn,m) ◦ (∪κn) ◦ (∪κn)
−1

= g∗ ◦ (∪κm) ◦ Ĥi(jn,m) ◦ (∪κn)
−1

= κ(g)−1(∪κm) ◦ g∗ ◦ Ĥi(jn,m) ◦ (∪κn)
−1.

We deduce that

g∗ ◦ Ĥi(jn,m) = Ĥi(jn,m) ◦ g∗ ⇐⇒ g∗ ◦ Ĥi+2(jn,m) = Ĥi+2(jn,m) ◦ g∗

showing the inductive step. A similar proof works when j is replaced by k.

2.2.4. Comparison with other maps. When i ≥ 1, other maps Ĥi(Gn, Bn) → Ĥi(Gm, Bm)
exist for m ≥ n ≥ 0. These are obtained by composing the inflation map

Inf = Infi : Ĥi(Gn, B
Gm,n
m ) −→ Ĥi(Gm, Bm)

with the map induced by jn,m : Bn → BGm
m in cohomology

j∗ = j∗,in,m : Ĥi(Gn, Bn) −→ Ĥi(Gn, B
Gm,n
m ),

and they are denoted Infi ◦j∗,in,m or simply Inf ◦j∗. In what follows we analyse the relationship of
these maps with the ones defined in §2.2.3.

Remark 2.6. For every [b] ∈ Bn[NmGn ]/IGnBn = Ĥ−1(Gn, Bn), there is an explicit description

of the cup product [b] ∪ κn ∈ Ĥ1(Gn, Bn) as the class ξ
(b)
n of the 1-cocycle sending the generator

gn ∈ Gn to b. This is probably well-known, but we provide a proof because we were unable to find
an explicit reference in the literature. By [NSW08, Proposition I.1.4.8], the cup product [b]∪ κn is
the class of the 2-cocycle

(2.3) gn 7−→
∑

σ∈Gn

σ(b)⊗ σκ̃n(σ
−1, gn) =

∑

σ∈Gn

σ(b)⊗ κ̃n(σ
−1, gn)

where κ̃n is any 2-cochain representing κn. To compute this expression explicitly, recall that
κn = δ(1)(χn) where χn : Gn → Q/Z is the character sending gn to (Γ : Γn)

−1. The definition

of the connecting homomorphism δ(1) : Ĥ1(Gn,Q/Z) → Ĥ2(Gn,Z) is given explicitly in [NSW08,
proof of Theorem I.1.3.2] in terms of homogeneous cocycles: it is the connecting homomorphism
δ : Ker ∂Q/Z → Coker∂Z obtained by applying the snake lemma to the diagram on [NSW08, page 27].
By invoking [NSW08, page 14], we can replace homogeneous cochains by inhomogeneous ones and
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transform the diagram in loc. cit . into the commutative diagram of exact rows

C 1(Gn,Z)

∂2
Z

��

// C 1(Gn,Q)

∂2
Q

��

// C 1(Gn,Q/Z)

∂2
Q/Z

��

// 0

0 // C 2(Gn,Z) // C 2(Gn,Q) // C 2(Gn,Q/Z)

In this notation, χn ∈ Ker ∂2
Q/Z and, by definition of the connecting homomorphism in the snake

lemma, δ(1)(χn) is the class of κ̃n = ∂2
Q(χ

′
n) ∈ Coker∂2

Z, where χ̃n : Gn → Q is any 1-cochain

lifting χn. As lift, choose the cochain χ̃n : g
a
n 7→ a(Γ : Γn)

−1 for 1 ≤ a ≤ (Γ : Γn). By the explicit
description of ∂1

Q on inhomogeneous 1-cochains given in [NSW08, page 14], we obtain

κ̃n(g
a
n, gn) = χ̃n(gn)− χ̃n(g

a+1
n ) + χ̃n(g

a
n) =

{
1 if a = (Γ : Γn)

0 if 1 ≤ a ≤ (Γ : Γn)− 1

It follows that that the sum in (2.3) contains only the summand corresponding to σ = g
(Γ:Γn)
n = idGn

and this term equals b, showing that [b] ∪ κn = ξ
(b)
n .

Lemma 2.7. Let B be a normic system and let i ≥ 1 be an integer. Then Ĥi(j) coincides with

Infi ◦j∗.

Proof. If i is odd (resp. even), write i = 2h − 1 and set ε = −1 (resp. i = 2h and ε = 0). By

definition of Ĥi(j) and since (∪κm)h is an isomorphism, the statement of the lemma is equivalent
to the commutativity of the following diagram, for all m ≥ n ≥ 0:

Ĥε(Gm, Bm)
(∪κm)h

// Ĥi(Gm, Bm)

Ĥε(Gn, Bn)
(∪κn)

h

//

Ĥε(j)

OO

Ĥi(Gn, Bn)

Infi ◦j∗

OO

(2.4)

We claim that commutativity of (2.4) for all i ≥ 1 follows once we can prove it commutes for
i = ε+ 2. Indeed, for arbitrary i ≥ 3 we have

Ĥi(j) = (∪κm)h ◦ Ĥε(jn,m) ◦ (∪κn)
−h

= (∪κm)h−1 ◦ (∪κm) ◦ Ĥε(jn,m) ◦ (∪κm)−1 ◦ (∪κn)
−h+1

(by assumption) = (∪κm)h−1 ◦ Infε+2 ◦j∗ ◦ (∪κn)
−h+1

(compatibility of ∪ and Infi ◦j∗) = Infi ◦j∗.

Hence, it now remains to show that (2.4) is commutative for i = 1, 2

Consider first the case i = 1. Given the definition of Ĥ−1(j) and the explicit description of the
cup product described in Remark 2.6, commutativity of (2.4) is equivalent to

Inf1 ◦j∗(ξ(b)n ) = ξ(j(b))m

and this follows by the definition of the map Inf1 ◦j∗ on cocycles (see [NSW08, § I.5]).
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Suppose now that i = 2. We first show that

H0(Gm, Bm)
(∪κm)

// Ĥ2(Gm, Bm)

H0(Gn, Bn)
(∪κn) //

(Γn:Γm)jn,m

OO

Ĥ2(Gn, Bn)

Inf2 ◦j∗

OO

commutes. Note that in the above diagram we have ordinary cohomology on the left-hand side (as
opposed to Tate cohomology): this allows us to consider inflation in degree 0, which is simply the
identity:

Inf0 : H0(Gn, B
Gm,n
m ) = BGm

m −→ H0(Gm, Bm) = BGm
m .

Let x ∈ H0(Gn, Bn): the compatibility of the cup product with inflation yields

Inf2 ◦j∗(x ∪ κn) = Inf2(jn,m(x) ∪ κn)

= Inf0
(
jn,m(x)

)
∪ Inf2(κn)

= jn,m(x) ∪
(
(Γn : Γm)κm

)

= (Γn : Γm)jn,m(x) ∪ κm.

This shows that the above diagram commutes. To show that (2.4) commutes for i = 2 and conclude
the proof, we just need to observe that the cup product on Tate cohomology is compatible with
that on ordinary cohomology. This can be checked, for instance, using the definition on cochains of
the two cup products (compare [NSW08, (∗), § I.4] and [NSW08, proof of Proposition I.1.4.6]). �

Remark 2.8. Assume that km,n is surjective. Then the map Ĥ0(jn,m) factors through “mul-

tiplication by (Γn : Γm)”, i. e. there is a map ̂n,m : Ĥ0(Gn, Bn) → Ĥ0(Gm, Bm) such that

Ĥ0(jn,m) = (Γn : Γm)̂n,m. This is defined as

̂n,m(y mod NmGnBn) = jn,m(y) mod NmGmBm for all y ∈ BGn
n .

To see that this is well defined, let bn ∈ BGn
n . Then it is clear that jn,m(b) ∈ BGm

m . Suppose
now that bn = NmGn(b

′
n) ∈ NmGnBn. Since km,n is surjective, there exists b′m ∈ Bm such that

km,n(b
′
m) = b′n. Then

jn,m(bn) = jn,m ◦NmGn(b
′
n)

= jn,m ◦NmGn ◦ km,n(b
′
m)

= jn,m ◦ j0,n ◦ kn,0 ◦ km,n(b
′
m)

= j0,m ◦ km,0(b
′
m) = NmGm(bm)

showing that ̂n,m is well-defined. By definition of Ĥ0(j), the relation Ĥ0(jn,m) = (Γn : Γm)̂n,m
holds. Using ̂n,m, Lemma 2.7 can be restated, under the assumption that km,n is surjective, as the
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commutativity of the following diagram :

Ĥ0(Gm, Bm)
(∪κm)

// Ĥ2(Gm, Bm)

Ĥ0(Gn, Bn)
(∪κn) //

(Γn:Γm)̂n,m

OO

Ĥ2(Gn, Bn)

Ĥ2(j)

OO

Remark 2.9. One can wonder whether results similar to that of Lemma 2.7 hold when j is re-
placed by k. Assume that B satisfies (Inj) and (Gal): under this assumption, the inverse maps

(jn,m)−1 : B
Gm,n
m → Bn and Ĥi(km,n) are defined and we have maps

(j∗)−1 = (j∗,im,n)
−1 : Ĥi(Gm, BGm,n

m ) −→ Ĥi(Gm, Bn)

induced by (jm,n)
−1. Write i = 2h or i = 2h− 1, according to whether i is even or odd. Then we

claim that

(2.5) (j∗,im,n)
−1 ◦Defli = (Γn : Γm)−hĤi(km,n) for all i ≤ 0

where Defl denotes the deflation map

Defl = Defli : Ĥi(Gm, Bm) −→ Ĥi(Gn, B
Gm,n
m )

as defined by Weiss (see [Wei59]). Equality (2.5) is clear for i = 0,−1 since in these cases h = 0
and we have

Defl0(x mod NmGmBm) = x mod NmGnB
Gm,n
m for x ∈ BGm

m

as well as

Defl−1(x mod IGmBm) = NmGm,nx mod IGnB
Gm,n
m for x ∈ Bm[NmGm ]

(see [Wei59, (1) and Proposition 1]). For arbitrary i, we argue by backward induction: assume

that (2.5) holds for a given i ≤ 0. Then for x ∈ Ĥi−2(Gm, Bm)

(j∗,i−2
n,m )−1 ◦Defli−2(x) ∪ κn = (j∗,in,m)−1(Defli−2(x) ∪ κn)

= (j∗,in,m)−1 ◦Defli(x ∪ Inf2(κn)) (by [Wei59, Theorem 3])

= (j∗,in,m)−1 ◦Defli(x ∪ (Γn : Γm)κm)

= (Γn : Γm)−(h−1)Ĥi(km,n)(x ∪ κm)

= (Γn : Γm)−(h−1)Ĥi−2(km,n)(x) ∪ κn.

Since the cup product with κn is an isomorphism, (2.5) holds for i− 2.

2.2.5. Functorial behaviour. We now come to the main results of this section, describing the
functorial behaviour of the maps defined in §2.2.3. First of all, observe that if f = (fn) : B → B′ is
a morphism of normic systems then, for every i ∈ Z, there are maps

f∗ = f∗,i
n : Ĥi(Gn, Bn) −→ Ĥi(Gn, B

′
n).
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The diagrams
(2.6)

Ĥi(Gm, Bm)
f∗

// Ĥi(Gm, B′
m)

Ĥi(Gn, Bn)
f∗

//

Ĥi(j)

OO

Ĥi(Gn, B
′
n)

Ĥi(j)

OO

and

Ĥi(Gm, Bm)

Ĥi(k)

��

f∗

// Ĥi(Gm, B′
m)

Ĥi(k)

��

Ĥi(Gn, Bn)
f∗

// Ĥi(Gn, B
′
n)

are commutative (in the rightmost one we are assuming that Ĥi(k) is defined): to show this, it is
enough to consider the cases i = −1, 0 because the isomorphism (∪κn) commutes with f∗

n . Since
fn commutes with jn,m and km,n, the cases i = −1, 0 are easily proved by direct inspection. The

behaviour of the maps Ĥi(j) and Ĥi(k) with respect to connecting homomorphisms is given by the
following two propositions.

Proposition 2.10. Let 0 → B′ → B → B′′ → 0 be an exact sequence of normic systems. Then,

for all m ≥ n ≥ 0, the following diagram with exact rows commutes

0 // H0(Gm, B′
m) // H0(Gm, Bm) // H0(Gm, B′′

m)
δ(0) // Ĥ1(Gm, B′

m) // · · ·

0 // H0(Gn, B
′
n)

j′

OO

// H0(Gn, Bn)

j

OO

// H0(Gn, B
′′
n)

j′′

OO

δ(0) // Ĥ1(Gn, B
′
n)

Ĥ1(j′)

OO

// · · ·

· · · // Ĥ1(Gm, Bm) // Ĥ1(Gm, B′′
m)

δ(1) // Ĥ2(Gm, B′
m) // Ĥ2(Gm, Bm)

· · · // Ĥ1(Gn, Bn)

Ĥ1(j)

OO

// Ĥ1(Gn, B
′′
n)

Ĥ1(j′′)

OO

δ(1) // Ĥ2(Gn, B
′
n)

Ĥ2(j′)

OO

// Ĥ2(Gn, Bn)

Ĥ2(j)

OO

Proof. By Lemma 2.7 we can replace Ĥ1(j′) with Inf ◦(j′)∗, and likewise for the other vertical
maps. The result follows from functoriality of inflation and of the maps j∗, (j′)∗, (j′′)∗. �

The above proposition holds for the full long exact sequence of ordinary cohomology extended
in every positive degree but we will only need it for the truncated exact sequences up to degree 2,
as in the statement. The following proposition, on the other hand, only holds in degrees smaller
or equal than 2, in general. This is because we assume that B′′ only satisfies (Inj) (instead of
both (Inj) and (Gal), as for B and B′). Such formulation of the statement reflects how this result
will be used for arithmetic applications (see for instance the exact sequence 3.10 which is the basic
ingredient of Theorem 3.8).

Proposition 2.11. Let 0→ B′ → B → B′′ → 0 be an exact sequence of normic systems and assume

that B and B′ satisfy (Inj) and (Gal) and that B′′ satisfies (Inj). Then, for all m ≥ n ≥ 0, the
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following diagram with exact rows commutes

0 // H0(Gm, B′
m)

k′

��

// H0(Gm, Bm)

k

��

// H0(Gm, B′′
m)

k′′

��

δ(0) // Ĥ1(Gm, B′
m)

Ĥ1(k′)
��

// · · ·

0 // Ĥ0(Gn, B
′
n) // H0(Gn, Bn) // H0(Gn, B

′′
n)

δ(0) // Ĥ1(Gn, B
′
n) // · · ·

· · · // Ĥ1(Gm, Bm)

Ĥ1(k)
��

// Ĥ1(Gm, B′′
m)

Ĥ1(k′′)
��

δ(1) // Ĥ2(Gm, B′
m)

Ĥ2(k′)
��

// Ĥ2(Gm, Bm)

Ĥ2(k)
��

· · · // Ĥ1(Gn, Bn) // Ĥ1(Gn, B
′′
n)

δ(1) // Ĥ2(Gn, B
′
n) // Ĥ2(Gn, Bn)

Proof. First of all, the existence of vertical maps in degree greater than 0 is guaranteed by the
assumptions on the normic systems.

The commutativity of the two leftmost squares follows immediately from the fact that B′ → B
and B → B′′ are morphisms of normic systems.

The commutativity of the third square is equivalent to (∪κn)
−1 ◦δ(0) ◦k′′ = Ĥ−1(k′)◦(∪κm)−1 ◦

δ(0). Fix b′′ ∈ H0(Gm, B′′
m) and let b ∈ Bm be an element mapping to b′′. By the definition of the

connecting homomorphism, δ(0)(b′′) is represented by the cocycle gm 7→ (gm − 1)b := b′. Similarly,
since km,n(b) maps to k′′m,n(b

′′), the element δ(0) ◦ k′′m,n(b
′′) is represented by the cocycle defined by

gn 7→ (gn − 1)km,n(b) and, in turn, this is the map gn 7→ k′m,n(b
′) because the morphisms k′m,n are

Gm-equivariant. In the notation of Remark 2.6, we thus need to show that

(∪κn)
−1

(
ξ
(k′

m,n(b
′))

n

)
= Ĥ−1(k′) ◦ (∪κm)−1(ξ(b

′)
m ).

Using the description of (∪κm) given in Remark 2.6, this amounts to

[k′m,n(b
′)] = Ĥ−1(k′)([b′])

which follows from the definition of Ĥ−1(k′).

As for the remaining part of the diagram, since the definitions of Ĥ1(k) and Ĥ2(k) rely on
cup products which are isomorphisms compatible with long exact Tate cohomology sequences, it is
enough to show that the shifted diagram

Ĥ−1(Gm, B′
m)

Ĥ−1(k)
��

// Ĥ−1(Gm, Bm)

Ĥ−1(k)
��

// Ĥ−1(Gm, B′′
m)

Ĥ−1(k)
��

δ̂(−1)
// Ĥ0(Gm, B′

m)

Ĥ0(k)
��

// Ĥ0(Gm, Bm)

Ĥ0(k)
��

Ĥ−1(Gn, B
′
n) // Ĥ−1(Gn, Bn) // Ĥ−1(Gn, B

′′
n)

δ̂(−1)
// Ĥ0(Gn, B

′
n) // Ĥ0(Gn, Bn)

(2.7)

is commutative. The two leftmost and the fourth squares are commutative as discussed in (2.6).
As for the third square, let b′′ ∈ B′′

m[NmGm ] and pick b ∈ Bm mapping to b′′. Then, the image of
km,n(b) in B′′

n is k′′m,n(b
′′) and

δ̂(−1) ◦ Ĥ−1(k)([b′′]) = δ̂(−1)([k′′m,n(b
′′)]) = NmGn([km,n(b)]).
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On the other hand,

Ĥ0(k) ◦ δ̂(−1)([b′′]) = Ĥ0(k)([NmGmb])

= (jn,m)−1([NmGmb])

= [(jn,m)−1 ◦ j0,m ◦ km,0(b)]

= [j0,n ◦ kn,0 ◦ km,n(b)] = NmGn([km,n(b)])

showing that the third square in (2.7) is commutative. �

Remark 2.12. Observe that although in §2.2.2 we have considered Tate cohomology of a normic

system and defined morphisms Ĥ0(j) and Ĥ0(k), Propositions 2.10 and 2.11 start with ordinary

cohomology in degree 0. The appearance of ordinary cohomology is somehow exceptional, because
we will mainly be working with Tate cohomology. For instance, in the following section, we will see
that for each i ∈ Z, the ith Tate cohomology groups of a normic system form a double system, a
notion to be defined ibid .

2.3. The category of double systems. In the previous section, we have considered Tate coho-
mology groups of a normic system, showing that (under some conditions) these can be simultane-
ously endowed with the structure of direct systems and of inverse systems of Zp[D0]-modules with
respect to the maps defined in §2.2.3, where D0 is the group appearing in (2.1). In this section, we
focus on the study of such “double systems”.

Definition 2.13. In the setting of Definition 2.2, a (Γ, {Γn}n∈N,D)-double system (or simply a
D-double system or a double system if the groups are understood) X = (Xn, ϕn,m, πm,n)m≥n≥0 is
a collection of Zp[D0]-modules Xn which are Zp-torsion and such that

• (Xn, ϕn,m) is a direct system;
• (Xn, πm,n) is an inverse system;
• ϕn,m ◦ πm,n = πm,n ◦ ϕn,m = (Γn : Γm) for all m ≥ n ≥ 0.

The morphisms HomDSD
(X ,X ′) between two double systems X and X ′ are collections of Z[D0]-

homomorphisms fn : Xn → X ′
n which are both morphisms of direct and of inverse systems. This

defines the category DSD of D-double systems.

The results in §2.2 yield the following

Proposition 2.14. Let B be a normic system. If B satisfies (Inj), then

(2.8) Ĥi(B) =
(
Ĥi(Gn, Bn), Ĥ

i(jn,m), Ĥi(km,n)
)
m≥n≥0

is a double system for every odd integer i. If condition (Gal) is also satisfied, then Ĥi(B) is a

double system for all i ∈ Z.

Remark 2.15. The category DSD is abelian: the proof is analogous to that of Lemma 2.3, by

replacing the requirement ~vℓ,i ~vi,ℓ =
∑(Γℓ:Γi)

a=1 γapℓ

0 in (2.2) with ~vℓ,i ~vi,ℓ = (Γℓ : Γi) for ℓ ≤ i.
Alternatively, one can observe that DSD is a full subcategory of NSD closed under direct sums,
kernels and cokernels and it is therefore abelian, thanks to [Rot09, Proposition 5.92].

Let X = (Xn, ϕn,m, πm,n)m≥n≥0 be a double system, and write ϕn : Xn → lim
−→

Xn for the direct

limit of the maps ϕn,m (for m ≥ n). Similarly, write πn : lim
←−

Xn → Xn for the inverse limit of
πm,n. Let

(2.9) △Xn = Ker
(
ϕn : Xn −→ lim−→Xn

)
⊆ Xn and NXn = Xn/

△Xn
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as well as
(2.10)
†Xn = Im

(
πn : lim

←−
Xn −→ Xn

)
⊆ Xn and ‡Xn = Coker

(
πn : lim
←−

Xn −→ Xn

)
= Xn/

†Xn.

The next proposition shows that △X = (△Xn),
†X = (†Xn), as well as NX = (NXn) and ‡X = (‡Xn)

inherit the structure of double systems from X . It also shows that the assignments X 7→ △X ,
X 7→ †X , X 7→ NX and X 7→ ‡X are functorial.

Proposition 2.16. Let X = (Xn, ϕn,m, πm,n)m≥n≥0 be a double system. The restrictions of πm,n

and ϕn,m endow △X and †X—and thus NX and ‡X—with a structure of double system. These

double systems satisfy:

i) The formation of △X and NX is functorial, and the functor X 7→ △X is left exact. Similarly,

the formation of †X and ‡X is functorial, and the functor X 7→ ‡X is right exact.

ii) Write NX = (NXn, Nϕn,m, Nπm,n)m≥n≥0 and †X = (†Xn,
†ϕn,m, †πm,n)m≥n≥0. Then Nϕn,m

is injective and †πm,n is surjective for all m ≥ n ≥ 0.
iii) For every double system X ′ = (X ′

n, ϕ
′
n,m, π′

m,n)m≥n≥0 such that ϕ′
n,m is injective for m ≥

n ≥ 0, and every morphism f : X → X ′, there exists a unique map Nf : NX → X ′ making

the following diagram commute

X
f

//

    
❆❆

❆❆
❆❆

❆❆
X ′

N
X

Nf

==⑤⑤⑤⑤⑤⑤⑤⑤

Analogously, given a double system X ′′ = (X ′
n, ϕ

′′
n,m, π′′

m,n)m≥n≥0 such that π′′
m,n is surjec-

tive for m ≥ n ≥ 0 (and so X ′′ = †X ′′), every morphism g : X ′′ → X factors through the

subsystem †X , making the following diagram commute

X ′′ g
//

†g
!!
❈❈

❈❈
❈❈

❈❈
X

†X
.
�

>>⑥⑥⑥⑥⑥⑥⑥

Proof. We claim that the restriction of ϕn,m (resp. of πm,n) maps △Xn to △Xm (resp. △Xm to
△Xn). This is obvious for ϕn,m, thanks to the relation ϕm ◦ ϕn,m = ϕn. Concerning πm,n, the
relation ϕn,m ◦ πm,n = (Γn : Γm) shows that for all x ∈ △Xm it holds

ϕn

(
πm,n(x)

)
= ϕm ◦ ϕn,m ◦ πm,n(x) = ϕm

(
(Γn : Γm)x

)
= 0

and hence πm,n(x) ∈ △Xn. The claim implies that, defining △ϕn,m (resp. △πm,n) to be the restriction
of ϕn,m (resp. of πm,n) to

△Xn, we obtain a double system △X which is a subobject of X . Moding out
X by △X defines the double system NX . The claim that †X is a double system which is a subobject
of X such that ‡X = X/†X (in the category DSD) is analogous: the fact that the restriction
†πm,n to †Xm takes values in †Xn is automatic, and the relation ϕn,m ◦ πm,n = (Γn : Γm) ensures
†ϕn,m(†Xn) ⊆ †Xm.

Functoriality as well as the claimed exactness properties of X 7→ △X and of X 7→ ‡X are
straightforward: given a morphism X → X ′, the rightmost square of the diagram (2.11) below is
commutative for all n ≥ 0, implying the existence of the leftmost vertical morphism (making the
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whole diagram commute):

0 // △Xn
//

��

Xn

��

// lim
−→

Xn

��

0 // △X ′
n

// X ′
n

// lim
−→

X ′
n

(2.11)

This shows that X 7→ △X is functorial. Moreover, as discussed in [Gro57, §1.6], a morphism of double
systems is injective (resp. surjective) if an only if each of its components has this property. Hence,
if X →֒ X ′ is injective, (2.11) shows that each component of the induced morphism △X → △X ′ is
injective, so △X →֒ △X is again injective. This is well-known to be equivalent to the exactness on
the left of the functor X 7→ △X (since DSD is abelian), establishing the first part of i). Analogously,
a surjection X ։ X ′ induces a commutative diagram of exact rows

lim
←−

Xn
//

��

Xn

����

//
‡Xn

//

��

0

lim
←−

X ′
n

// X ′
n

//
‡X

′
n

// 0

showing that each component of the induced morphism △X → △X ′ is surjective, finishing the proof
of i).

To prove ii), observe that Nϕm,n is injective for all m ≥ n ≥ 0 by construction: indeed, for
all [x] = x (mod △Xn) ∈ NXn, the definition of Nϕn,m is Nϕn,m[x] = ϕn,m(x) (mod △Xm). Then

Nϕn,m[x] = 0 implies ϕn,m(x) ∈ △Xm, which means ϕmϕn,m(x) = ϕn(x) = 0 and hence x ∈ △Xn

and [x] = 0, establishing the injectivity of Nϕn,m. The proof of the surjectivity of †πm,n is analogous.
We are left with the proof of iii). Let X ′ = (X ′

n, ϕ
′
n,m, π′

m,n) be such that ϕ′
n,m is injective for

m ≥ n ≥ 0, and let f : X → X ′. Write f∞ : lim
−→

Xn → lim
−→

X ′
n for the direct limit of the maps

fn. The injectivity of all ϕ′
n,m implies that ϕ′

n : X
′
n → lim

−→
X ′

n is also injective. It follows that

fn(
△Xn) = 0, because

ϕ′
n

(
fn(x)

)
= f∞

(
ϕn(x)

)
= f∞(0) = 0 =⇒ fn(x) = 0 for all x ∈ △Xn.

In particular, for all n, there exists a unique map Nfn : Xn/
△Xn = NXn → X ′

n making the following
diagram commute

Xn
fn

//

!! !!
❉❉

❉❉
❉❉

❉❉
X ′

n

NXn

Nfn

==③③③③③③③③

We need to check that the collection Nfn defines a (necessarily unique) morphism Nf ∈ HomDSD
(NX ,X

′),
namely that

π′
m,n ◦ Nfm = Nfn ◦ Nπm,n(2.12)

ϕ′
n,m ◦ Nfn = Nfm ◦ Nϕn,m.(2.13)
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This is tantamount to showing the commutativity of the right oblique squares in the following
diagrams:

Xm

πm,n

��

"" ""
❊❊

❊❊
❊❊

❊❊

fm
// X ′

m

π′
m,n

��

N
Xm

Nfm

<<②②②②②②②②

��

Xn

"" ""
❊❊

❊❊
❊❊

❊❊

fn
// X ′

n

N
Xn

Nfn

<<②②②②②②②②

and

Xm

"" ""
❊❊

❊❊
❊❊

❊❊

fm
// X ′

m

N
Xm

Nfm

<<②②②②②②②②

Xn

ϕn,m

OO

"" ""
❊❊

❊❊
❊❊

❊❊

fn
// X ′

n

ϕ′
n,m

OO

N
Xn

OO

Nfn

<<②②②②②②②②

Since the left oblique squares commute, and so do the straight squares and triangles, one obtains
that (2.12) (resp. (2.13)) holds after composing with Xm → NXm (resp. Xn → NXn). Since
Xm → NXm and Xn → NXn are surjective, the required commutativity follows. The argument for
the universal property enjoyed by †X is analogous. This finishes the proof of the proposition. �

From now on, we drop the △ from the transition morphisms △πm,n and △ϕn,m of △X , simply
writing πm,n and ϕn,m for their restrictions to △Xm and to △Xn, respectively. The same convention
is adopted for the other three double systems NX , †X and ‡X .

Remark 2.17. We are grateful to the referee for pointing out that Proposition 2.16-iii) can be
interpreted as saying that X 7→ NX and X 7→ †X , suitably restricted to certain subcategories of
DSD, are adjoint to a forgetful functor. Since we have no use for this in our work, we omit the
details.

Remark 2.18. If X is a double system such that πm,n is injective for all m ≥ n≫ 0, then X = △X ;
similarly, if ϕn,m is surjective for all m ≥ n ≫ 0 and Xn has bounded exponent for every n, then
X = ‡X . To see the first implication, let x ∈ Xn and pick m ≥ n such that (Γn : Γm)x = 0. Writing
(Γn : Γm) = πm,n ◦ϕn,m and using that πm,n is injective, we deduce ϕn,m(x) = 0, hence ϕn(x) = 0
and x ∈ △Xn. This shows X = △X . Similarly, suppose that ϕn,m is surjective for m ≥ n ≫ 0, and
let x ∈ †Xn. Pick m ≥ n such that (Γn : Γm)Xn = 0 and let y ∈ Xm be such that πm,n(y) = x,
which exists because x ∈ †Xn. Surjectivity of ϕn,m guarantees the existence of an element z ∈ Xn

such that ϕn,m(z) = y, and x = πm,n ◦ ϕn,m(z) = (Γn : Γm)z = 0. Then †X = 0 and X = ‡X .

Before stating the next lemma, observe that if X = (Xn) is a double system such that the
exponents of Xn are bounded independently of n, then

(2.14) †X ⊆ △X .

Indeed, for n ≥ 0 and x ∈ †Xn, one can write x = πn(ξ) for some ξ ∈ lim
←−

Xm. The element ξ is

torsion, because every Xm has bounded exponent, and we pick m such that (Γn : Γm)ξ = 0. Then

ϕn(x) = ϕm ◦ ϕn,m ◦ πm,n ◦ πm(ξ) = ϕm ◦ πm

(
(Γn : Γm)ξ

)
= 0

showing x ∈ △Xn, and thus (2.14).

Lemma 2.19. Let X = (Xn, ϕn,m, πm,n)m≥n≥0 be a D-double system such that the orders |Xn|
are bounded independently of n. The following conditions are equivalent:
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BD-1) πm,n :
△Xm → △Xn is an isomorphism for all m ≥ n≫ 0;

BD-2) ϕn,m : ‡Xn → ‡Xm is an isomorphism for all m ≥ n≫ 0;
BD-3)

†Xn = △Xn, or equivalently ‡Xn = NXn, for all n≫ 0.

When any of the above conditions is met, the orders |Xn| are eventually constant, and both πm,n :
†Xm →

†Xn and ϕn,m : NXn → NXm are isomorphisms for all m ≥ n≫ 0.

Proof. To prove that BD-1) implies BD-3), observe that it is enough to show △Xn ⊆ †Xn for all

n≫ 0, in light of (2.14). By BD-1) we can find n such that πm,n :
△Xm

∼
−→ △Xn for all m ≥ n, and

let x ∈ △Xn. For all m ≥ n there exists a unique xm ∈ △Xm such that πm,n(xm) = x. It follows
that ξ = limxm ∈ lim

←−
Xm exists and x = πn(ξ), showing x ∈ †Xn.

Assuming BD-3), Proposition 2.16-ii) implies that ϕn,m : ‡Xn → ‡Xm is injective for all m ≥
n ≫ 0. It follows that n 7→ |‡Xn| is an non-decreasing sequence of bounded, positive integers and
thus eventually constant. As an injection of finite groups of the same order is an isomorphism, this
proves the implication BD-3)⇒BD-2).

Finally, assume BD-2) and let n0 be such that ϕn,m is an isomorphism for all m ≥ n ≥ n0.
Consider the shifted double system

X ′ =
(
X ′

n = Xn+n0 , ϕ
′
n,m = ϕn+n0,m+n0 , π

′
m,n = πm+n0,n+n0

)
m≥n≥0

.

Then X ′ satisfies †X ′
n = †Xn+n0 and

△X ′
n = △Xn+n0 because lim←−

X ′
n = lim
←−

Xn and lim
−→

Xn = lim
−→

X ′
n.

It follows that ‡X
′
n = ‡Xn+n0 and NX

′
n = NXn+n0 for all n ≥ 0, so X ′ satisfies BD-2) for all

m ≥ n ≥ 0. By Proposition 2.16-iii), the natural surjection X ′
։ ‡X ′ factors as

X ′ // //

!! !!
❇❇

❇❇
❇❇

❇❇
‡X

′

N
X ′

== ==④④④④④④④④

On the other hand, the inclusion (2.14) induces a surjection ‡X
′
։ NX

′. Since all groups NX
′
n and

‡X
′
n are finite, the existence of surjections NX

′
n ։ ‡X

′
n and ‡X

′
n ։ NX

′
n implies that these surjec-

tions are isomorphisms, proving BD-3) for the system X ′. Upon reindexing, this implies BD-3) for
X .

To establish the statement concerning the stabilisation of the orders |Xn|, write |Xn| = |△Xn| ·
|NXn|. Thanks to BD-3) this coincides with |△Xn| · |‡Xn|, and both the orders |△Xn| and |‡Xn|
are eventually constant because of BD-1) and BD-2). Replacing in the isomorphisms in BD-1)
and BD-2) the equalities of BD-3) yields the final statement. �

Definition 2.20. Let BD be the full subcategory of DSD whose objects are the D-double systems
of finite p-groups whose order is bounded independently of n and that satisfy any of the equivalent
conditions BD-1)–BD-3) of Lemma 2.19. In particular, the order of the components of the system
is in fact eventually constant, independently of n≫ 0.

Remark 2.21. In Example 2.29, we construct a double system of finite p-groups of constant order
which is not an object of BD.

Example 2.22. Suppose that Γ is filtered by Γn = Γpn

for all n ≥ 0 and consider the double system
X = (Z/p, id, 0), where all components Xn coincide with Z/p, the ascending morphisms are the
identity and the descending ones are the 0 map. One computes that lim←−X = 0 and lim−→X = Z/p,
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so that △Xn = †Xn = 0, and conditions BD-1) and BD-3) (and thus BD-2)) are satisfied, showing
that X is an object of BD.

Similarly, one can consider the system Y = (Z/p, 0, id), that is again an object of BD because
△Yn = †Yn = Yn, so NYn = 0 and conditions BD-3) and BD-2) are satisfied (and so is BD-1), then).

Example 2.23. In this example, denote for simplicity the index (Γn : Γm) by hn,m and write hn for

(Γ : Γn); similarly, write g for g(Γ). In case the filtration {Γn}n≥0 coincides with {Γpn

}n≥0, these
become hn,m = pm−n, hn = pn and g = 0, and the reader may keep this particular case in mind.

Consider the D-double system Z(Γ) (denoted simply Z if the filtered group Γ is understood)
defined as

Z(Γ) =
(
Z/hn, ·hn,m : Z/hn →֒ Z/hm, pr

)
m≥n≥0

.

Here, for m ≥ n, ·hn,m sends x mod hnZ to hn,mx mod hmZ and pr: Z/hm → Z/hn denotes the
canonical projection (we omit the indexes in pr to avoid notation overload); all components have
trivial action of D0. Let n0 ≥ 1: define the shift Z[n0](Γ) = Z[n0] of Z as the double system whose
components are

(Z[n0])n =

{
Z/hnp

−n0 for all n ≥ g + n0

0 for all n < g + n0

with transition morphisms ϕn,n+1 = ·p and πn+1,n = pr for n ≥ n0, and the trivial maps otherwise.
Observe that the requirement n ≥ g + n0 ensures that hnp

−n0 ∈ N and hn+1 = phn. We intend to
show that, although Z[n0] is not isomorphic to Z (none of the components are, in fact, and since
kernels and cokernels are computed component-wise in DSD, the systems cannot be isomorphic),
their “difference” lies in BD in a precise sense.

Define a map ι : Z[n0] → Z by ιn = 0 if n < g + n0 and ιn = ·pn0 : (Z[n0])n = Z/hnp
−n0 →֒

Z/hn = (Z)n if n ≥ g+n0. One easily checks compatibility of ιn with transition maps, so ι defines
an injection ι : Z[n0] →֒ Z in the category DSD. The cokernel of ι is the double system of the
cokernels, hence

(Coker ι)n =

{
Z/pn0 if n ≥ g + n0

Z/hn if n < g + n0

with transition morphisms

ϕn,n+1 = p and πn+1,n =

{
id : Z/pn0 −→ Z/pn0 if n ≥ g + n0

pr : Z/hn+1 −→ Z/hn if n < g + n0

Since the cokernel is non-trivial, the morphism ι is not an isomorphism in DSD. Yet, the direct
limit lim

−→
(Coker ι) is trivial, because for all n ≥ g + n0 and all x ∈ (Coker ι)n, ϕn,2n(x) = pnx = 0.

In particular, (△Coker ι)n = (Coker ι)n for n ≥ n0 and thus condition BD-1) is fulfilled, showing
Coker ι ∈ BD.

Rather than considering the injection ι : Z[n0] → Z one can look at the morphism φ : Z → Z[n0]

defined component-wise by the projections (Z)n = Z/hn → Z/hnp
−n0 = (Z[n0])n, for n ≥ g + n0.

One can verify that the double system (Kerφ, ϕ′, π′) satisfies lim
←−

Kerφ = 0 and ϕ′ = id for all

n≫ 0, showing that Kerφ ∈ BD by condition BD-2).

The following proposition provides a class of double systems belonging to BD.

Proposition 2.24. Let X = (Xn, ϕn,m, πm,n)m≥n≥0 be a double system of finite Zp[D0]-modules

such that either ϕn,m is an isomorphism for m ≥ n≫ 0, or πm,n is an isomorphism for m ≥ n≫ 0:
then X ∈ BD.
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Proof. Observe that if ϕn,m (resp. πm,n) is eventually an isomorphism, then the orders |Xn|
are bounded independently of n and the direct limit ϕn (resp. the inverse limit πn) is also an
isomorphism for n ≫ 0. In particular △Xn = 0 (resp. ‡Xn = 0) for n ≫ 0 and condition BD-1)
(resp. condition BD-2)) of Lemma 2.19 is satisfied, so X ∈ BD. �

Remark 2.25. Proposition 2.24 shows that, for a double system of finite Zp[D0]-modules, the con-
dition of being in BD only depends upon the underlying direct, or inverse, system. This will be
useful for our arithmetic applications, especially at the end of the proof of Theorem 3.8.

We recall the following result concerning quotient categories, for which we refer to [Gab62,
Ch. III,§1]:

Definition/Theorem. A full subcategory C of an abelian category A is called thick (épaisse in

French) if for every exact sequence

0 −→ X ′ −→ X −→ X ′′ −→ 0

in A, the object X belongs to C if and only if both X ′ and X ′′ belong to C. For every thick

subcategory C ⊆ A there exists a quotient category A/C, which is abelian and comes with a full

localising functor

A −→ A/C.

The objects of A/C are the objects of A. Given two objects X,X ′ in A and a morphism f : X → X ′,

its image (still denoted f) in HomA/C(X,X ′) is a monomorphism (resp. epimorphism, isomor-

phism) if and only if Ker f ∈ C (resp. Coker f ∈ C, Ker f and Coker f ∈ C ). If this is the case,

we say that f is a C-monomorphism (resp. C-epimorphism, C-isomorphism).

The main technical result of this section is the following proposition.

Proposition 2.26. The category BD is a thick subcategory of DSD.

Proof. Let 0 → X ′ → X → X ′′ → 0 be an exact sequence in DSD. For every n we have
|Xn| = |X ′

n| · |X
′′
n |, so the order |Xn| is bounded if and only if |X ′

n| and |X
′′
n | are bounded.

By Proposition 2.16-i), for every m ≥ n ≥ 0, there are commutative diagrams

0 // △X ′
m

π′
m,n

��

// △Xm

πm,n

��

// △X ′′
m

π′′
m,n

��

// 0

0 // △X ′
n

// △Xn
// △X ′′

n
// 0

(2.15)

whose rows are exact, except possibly on the right.
Suppose that X ′ and X ′′ are objects in BD, and fix c ≥ g(Γ) such that pcXn = pcX ′

n = pcX ′′
n = 0

for all n ≥ 0. We claim that since X ′′ ∈ BD, rows of (2.15) are exact on the right for n large enough.
For any n ≥ 0 large enough, BD-1) ensures that π

′′
ℓ,n :

△X ′′
ℓ →

△X ′′
n is an isomorphism for all ℓ ≥ n;

we fix ℓ ≥ n + c, so (Γn : Γℓ)Xℓ = pℓ−nXℓ = 0. Let [x] ∈ △X ′′
n . There exists [y] ∈ △X ′′

ℓ such
that [x] = π′′

ℓ,n[y] and if y ∈ Xℓ is a lift of [y], then x = πℓ,n(y) ∈ Xn satisfies x (mod X ′
n) = [x].

Moreover, ϕn(x) = ϕℓϕn,ℓπℓ,n(y) = ϕℓ(p
ℓ−ny) = 0, showing x ∈ △Xn. It follows that △Xn → △X ′′

n

is surjective for all n ≫ 0. In particular, (2.15) has exact rows and the snake lemma shows that
since both π′

m,n and π′′
m,n are isomorphisms, the same holds for πm,n. Hence, if both X ′,X ′′ are in

BD, then also X is in BD.
Conversely, suppose that X ∈ BD and that n ≥ 0 is such that πm,n :

△Xm → △Xn is an
isomorphism for all m ≥ n. Even when the rows in (2.15) are not exact on the right, the restrictions
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π′
m,n :

△X ′
m →

△X ′
n are injective. It follows that n 7→ |△X ′

n| is a non-increasing sequence of positive
integers and thus eventually constant. As an injection of finite groups of the same order is an
isomorphism, this shows X ′ ∈ BD. In order to show that X ′′ ∈ BD, consider the following
commutative diagram, analogous to (2.15):

‡X
′
m

//
‡Xm

//
‡X

′′
m

// 0

‡X
′
n

ϕ′
n,m

OO

//
‡Xn

//

ϕn,m

OO

‡X
′′
n

//

ϕ′′
n,m

OO

0

(2.16)

Exactness of the rows follows from Proposition 2.16-i) and shows that ϕ′′
n,m is surjective, since

ϕn,m : ‡Xn → ‡Xm is an isomorphism by BD-3). Therefore, the orders |‡X ′′
n | are non-increasing,

which implies that ϕ′′
n,m restricted to ‡X

′′
n is actually an isomorphism for m ≥ n≫ 0, yielding that

X ′′ ∈ BD. �

A consequence of the above proposition is that it is possible to form the quotient category
DSD/BD, and to speak about double systems that are BD-isomorphic. For instance, the systems
Z and Z[n0] from Example 2.23 are BD-isomorphic, two BD-isomorphisms being the maps ι and φ
constructed ibid . To mark the difference between morphisms in DSD and morphisms in DSD/BD,
we denote the latter by dashed arrows, thus writing

f : X 99K X ′

for a map f ∈ HomDSD/BD
(X ,X ′).

Gabriel’s theory of quotient categories provides an algebraic framework to study objects, typically
occurring in Iwasawa theory, whose sizes is “eventually equal”. Since this notion is pivotal in our
study, we single it out in the following

Definition 2.27. We say that two sequences {xn}n∈N and {yn}n∈N of positive natural numbers
are eventually proportional if there exists n0 ≥ 0 and a rational number c ∈ Q, independent of n,
such that

xn = cyn for all n ≥ n0.

In this case we write xn ∝ yn. It is clear that ∝ is an equivalence relation.

We isolate the following easy consequence of Lemma 2.19.

Corollary 2.28. Let X and X ′ be two double systems of finite Zp[D0]-modules which are BD-

isomorphic, then |Xn| ∝ |X ′
n|.

Proof. Since X ∼=BD
X ′, there exists a morphism f ∈ HomDSD

(X ,X ′) such that both Ker(f) and
Coker(f) are in BD. Lemma 2.19 implies that |Xn| ∝ |X ′

n|. �

Example 2.29. A slight modification of Example 2.22 yields the following. Suppose, as ibid ., that
Γ is filtered by Γn = Γpn

for all n ≥ 0 and consider the double system X = (Z/p, 0, 0), where
all components Xn coincide with Z/p and all transition morphisms are the 0 map. In particular,
lim
←−
X = lim

−→
X = 0 and therefore Xn = △Xn = ‡Xn. It follows that both

△Xn and ‡Xn are non-zero,
but the transition morphisms πm,m : △Xm → △Xn and ϕn,m : ‡Xn → ‡Xm are the zero map. Thus,
neither of conditions BD-1) nor BD-2) is satisfied, showing that X is not an object in BD, and in
particular it is not BD-isomorphic to the zero system O = (On = 0, 0, 0) (since BD is thick). Yet,
their orders are eventually proportional, showing that being BD-isomorphic is a stronger notion
than having eventually proportional orders.
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For the arithmetic applications relevant to this work, it is enough to restrict to a certain sub-
category of DSD, which we now define. Observe that every Zp-torsion Zp[D0]-module M can be
decomposed as M = Mdiv ⊕Mred, where Mdiv is the maximal Zp-divisible submodule of M and
Mred is the maximal Zp-reduced submodule. This decomposition is in fact one of Zp[D0]-modules,
because D0 acts by automorphisms on the Zp-module underlying M .

For a finite group H , write Modco-f.g.
Zp[H] for the abelian category of Zp-torsion Zp[H ]-modules

M such that Mred is finite and such that Mdiv
∼= (Qp/Zp)

λ for some λ ∈ N. The subcategory

Modfin
Zp[H] ⊆Modco-f.g.

Zp[H] of finite modules (those with λ = 0) is clearly a thick subcategory, so that

the quotient category Modco-f.g.
Zp[H] /Modfin

Zp[H] is well-defined. When H is the trivial group, we drop

it from the notation and simply write Modco-f.g.
Zp

and Modfin
Zp
.

Definition 2.30. For a torsion Zp-module M , we set

corkM = dimQp

(
HomZp(M,Qp/Zp)⊗Zp Qp

)
.

The function cork is well-defined on objects of the quotient category Modco-f.g.
Zp[D0]

/Modfin
Zp[D0],

because they coincide with objects ofModco-f.g.
Zp[D0]

. Moreover, using [Gab62, Ch. III, §1, Corollaire 1],

one sees that it is multiplicative in short exact sequences because corkM = 0 for every M in the
thick subcategory Modfin

Zp[D0]. We will refer at the number corkM as the corank of M .

We can finally define the subcategory DSco-f.g.
D ⊆ DSD mentioned in the Introduction:

Definition 2.31. LetDSco-f.g.
D be the full subcategory ofDSD whose objects X = (Xn, ϕn,m, πm,n)m≥n≥0

satisfy the following conditions:

(co-f.g. A) Every Xn is a finite group such that (Γ : Γn)Xn = 0 for all n≫ 0;

(co-f.g. B) lim
−→
X belongs to Modco-f.g.

Zp[D0]
.

Similarly, let Bco-f.g.
D be the full subcategory of BD consisting of objects satisfying (co-f.g. A).

Observe that DSco-f.g.
D is an abelian category because it is an additive full subcategory of the

abelian category DSD which is closed under kernels and cokernels. Moreover, we claim that Bco-f.g.
D

is a thick subcategory of DSco-f.g.
D . That every object in Bco-f.g.

D lies in DSco-f.g.
D is obvious, because

condition (co-f.g. A) holds by definition and condition (co-f.g. B) follows from condition BD-2) of
Lemma 2.19 (which shows that the direct limit is actually finite). This implies, in particular, that

objects in Bco-f.g.
D can equivalently be defined as those in DSco-f.g.

D which moreover satisfy either of
the conditions of Lemma 2.19. The claim that it is thick is also immediate: given an exact sequence

0 −→ X ′ −→ X −→ X ′′ −→ 0

inDSco-f.g.
D , each of the elements X ′,X ,X ′′ lies inBco-f.g.

D if and only it lies inBD, because (co-f.g. A)

is satisfied automatically by the requirement that the objects in the sequence be in DSco-f.g.
D .

Therefore Bco-f.g.
D ⊆ DSco-f.g.

D is thick because BD ⊆ DSD is thick, and we can consider the

quotient category DSco-f.g.
D /Bco-f.g.

D , which is again abelian.

We now introduce the step-torsion functor S : Modco-f.g.
Zp[D0]

→ DSco-f.g.
D . As in Example 2.23,

denote the index (Γn : Γm) by hn,m and simply write hn for (Γ : Γn); similarly, write g for
g(Γ). Given a Zp-module M and n ∈ N, denote by M [hn] the submodule of M consisting of
elements annihilated by hn. Define S to be the functor that associates to every Zp[D0]-module
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M ∈Modco-f.g.
Zp[D0]

the D-double system

S (M) =
(
Mn = M [hn], ϕn,m = idM : M [hn] →֒M [hm], πm,n = hn,m : M [hm]→M [hn]

)
m≥n≥0

and to every morphism u : M → M ′ the morphism S (u) = (un = u|M [hn] : M [hn] → M ′[hn]).

The fact that S takes values in DSco-f.g.
D is immediate: condition (co-f.g. A) in Definition 2.31 is

satisfied by construction, and condition (co-f.g. B) follows by writing lim
−→

S (M) = lim
−→

M [hn] = M

(since M is Zp-torsion).

It is easy to see that S sends the thick subcategory Modfin
Zp[D0] ⊆Modco-f.g.

Zp[D0]
of finite modules

to Bco-f.g.
D : indeed, given a finite module M ∈ Modfin

Zp[D0], one has M [hn] = M for all n ≫ 0,
and therefore the transition morphisms ϕn,m are the identity idM : M → M for all m ≥ n ≫ 0.

Proposition 2.24 shows S (M) ∈ BD, and since S (M) ∈ DSco-f.g.
D by construction, we obtain

S (M) ∈ Bco-f.g.
D , as claimed. It follows that S induces a functor between quotient categories, still

denoted by the same symbol

(2.17) S : Modco-f.g.
Zp[D0]

/Modfin
Zp[D0] −→ DSco-f.g.

D /Bco-f.g.
D .

Related to S is the limit functor

lim
−→

: DSco-f.g.
D −→Modco-f.g.

Zp[D0]

taking a double system and associating to it the direct limit of the underlying direct system: it

takes values in Modco-f.g.
Zp[D0]

by definition of the category DSco-f.g.
D . By composing it with S , we

obtain the endofunctor
L = S ◦ lim−→ : DSco-f.g.

D −→ DSco-f.g.
D .

Given any object X in Bco-f.g.
D , the direct limit lim

−→
X is finitely generated and of finite exponent,

by Lemma 2.19; it is therefore finite, and the direct limit functor factors as

(2.18) lim
−→

: DSco-f.g.
D /Bco-f.g.

D −→Modco-f.g.
Zp[D0]

/Modfin
Zp[D0]

(see [Gab62, Ch. III, §1, Corollaire 2]). Combining (2.18) with (2.17) shows that L extends to an
endofunctor, still denoted by the same symbol,

L : DSco-f.g.
D /Bco-f.g.

D −→ DSco-f.g.
D /Bco-f.g.

D .

Corollary 2.32. Let X be a double system in DSco-f.g.
D , and suppose that X ∼=BD

L (X ). Then

|Xn| ∝ pλXn, where λX is the corank of lim
−→
X . Moreover, given an exact sequence

0 99K X ′
99K X 99K X ′′

99K 0

in DSco-f.g.
D /Bco-f.g.

D of double systems satisfying the above assumption, the relation

λX = λX ′ + λX ′′

holds.

Proof. As observed in Corollary 2.28, the existence of a BD-isomorphism as in the statement
implies that |Xn| ∝ |(lim−→

X )[hn]|. On the other hand, the explicit structure of the direct limit of
the groups Xn yields

|(lim
−→
X )[hn]| ∝ pλXn.

Given an exact sequence as in the statement, [Gab62, Ch. III, §1, Corollaire 1] yields an exact
sequence

0 −→ Y ′ −→ Y −→ Y ′′ −→ 0
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in DSco-f.g.
D such that the diagram

0 //❴❴❴❴❴ Y ′ //❴❴❴❴❴

∼=B
D

��
✤
✤
✤

Y //❴❴❴❴❴

∼=B
D

��
✤

✤

✤
Y ′′ //❴❴❴❴❴

∼=B
D

��
✤
✤
✤

0

0 //❴❴❴❴❴ X ′ //❴❴❴❴❴ X //❴❴❴❴❴ X ′′ //❴❴❴❴❴ 0

commutes. It yields, again through Corollary 2.28, the chain of eventual proportionalities

pλXn ∝ |Xn| ∝ |Yn| = |Y
′
n| · |Y

′′
n | ∝ |X

′
n| · |X

′′
n | ∝ p(λX′+λX′′ )n

finishing the proof. �

We conclude this section by analysing the exactness of the functor L .

Proposition 2.33. Given an exact sequence

0 −→M ′ v
−→M

u
−→M ′′ −→ 0

in Modco-f.g.
Zp[D0]

, the sequence

(2.19) 0 99K S (M ′)
S (v)
99K S (M)

S (u)
99K S (M ′′) 99K 0

is exact in DSco-f.g.
D /Bco-f.g.

D . In particular, L is an exact functor when regarded as

L : DSco-f.g.
D /Bco-f.g.

D −→ DSco-f.g.
D /Bco-f.g.

D .

Proof. Observe first that S is left exact, since so is the functor M 7→ M [hn] for all n ≥ 0.
Therefore we have an exact sequence

0 −→ S (M ′)
S (v)
−→ S (M)

S (u)
−→ S (M ′′) −→ CokerS (u) −→ 0.

We claim that CokerS (u) ∈ Bco-f.g.
D : this will imply that (2.19) is right exact.

For n ∈ N, let δn : M
′′[hn] → M ′/hnM

′ be the connecting homomorphism of the snake lemma
corresponding to multiplication by hn. The formation of the snake exact sequence being natural,
for m ≥ n we get commutative diagrams
(2.20)

M ′′[hm]
δm // M ′/hmM ′

M ′′[hn]
δn //

?�

OO

M ′/hnM
′

ϕn,m=·hn,m

OO

and

M ′′[hm]
δm //

hn,m

��

M ′/hmM ′

πm,n=modhnM
′

��

M ′′[hn]
δn // M ′/hnM

′

The commutativity of (2.20) together with the exactness of the snake sequence shows that the
cokernel CokerS (u) is a subobject of the double system X = (M ′/hnM

′, ϕn,m, πm,n). Writing
M ′ = M ′

div ⊕M ′
red, we obtain

X =
(
M ′/hnM

′ = M ′
red/hnM

′
red, ϕn,m = ·hn,m, πm,n : M

′
red/hmM ′

red ։ M ′
red/hnM

′
red

)
m≥n≥0

.

Since, by assumption, M ′
red is finite, the quotientM

′
red/hnM

′
red coincides withM ′

red for all n≫ 0 and
the projection πm,n is the identity. Thus, this system satisfies the assumptions of Proposition 2.24,

showing that X ∈ BD and therefore CokerS (u) ∈ Bco-f.g.
D . This concludes the proof of the

exactness on the right of (2.19).
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The final assertion concerning L : DSco-f.g.
D /Bco-f.g.

D → DSco-f.g.
D /Bco-f.g.

D follows from the previ-

ous point, combined with exactness of lim
−→

: DSco-f.g.
D /Bco-f.g.

D →Modco-f.g.
Zp[D0]

/Modfin
Zp[D0]. �

Given any double system X = (Xn, ϕn,m, πm,n) in DSco-f.g.
D , for each n ≥ 0 the map ϕn : Xn →

lim−→X factors through ΦX ,n : Xn → (lim−→X )[hn] = L (X )n. We claim that the diagrams

(2.21)

Xm

ΦX,m
// L (X )m

Xn

ΦX,n
//

ϕn,m

OO

L (X )n
?�

OO

and

Xm

πm,n

��

ΦX,m
// L (X )m

hn,m

��

Xn

ΦX,n
// L (X )n

are commutative, and hence determine a morphism ΦX : X → L (X ) of double systems. The
commutativity of the left square in (2.21) follows from the fact that the direct limit is taken with
respect to the morphism ϕn,m. Concerning that on the right, let x ∈ Xm: we need to show that,
in the direct limit, the equality

hn,mx = πm,nx ∈ lim
−→
X

holds. By definition of direct limit, this follows from the equality hn,mx = ϕm,n

(
πm,nx

)
, which is

a consequence of the relation ϕm,n ◦ πn,m = hn,m. The next corollary shows that this construction
is functorial:

Corollary 2.34. The collection Φ = (ΦX )X∈DS
co-f.g.
D

defines a natural transformation Φ: id
DS

co-f.g.
D /Bco-f.g.

D
→

L of endofunctors of the abelian category DSco-f.g.
D /Bco-f.g.

D .

Proof. Let f : X → X ′ be a morphism of double systems. We need to prove the commutativity of

X
f

//

ΦX

��

X ′

ΦX′

��

L (X )
L (f)

// L (X ′)

(2.22)

Fix n ≥ 0: by construction, L (X )n = (lim
−→
X )[hn] and L (X ′)n = (lim

−→
X ′)[hn]. Thus, commutativ-

ity of (2.22) translates in the requirement that the following diagram commutes, for all n ≥ 0:

Xn
fn

//

ΦX,n

��

X ′
n

ΦX′,n

��

lim
−→
X ′[hn]

lim
−→

f
// lim
−→
X ′[hn]

This is clear. �

Example 2.35. We show that the hypothesis of Corollary 2.32 holds for the double systems Z and
Z[n0] from Example 2.23, where we fix n0 ≥ 1 in what follows. Since lim

−→
Z = Qp/Zp and each

component (Z)n is finite, the system Z actually lies in the subcategory DSco-f.g.
D . We start by

computing L (Z). By definition, L (Z) = S lim
−→
Z, and we find

L (Z)n = Qp/Zp[hn] =
( 1

hn
Z

)
/Z ∼= Z/hn = (Z)n
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with the obvious transition morphisms. In particular, the evaluation ΦZ of the natural transfor-

mation Φ at Z is actually an isomorphism in DSco-f.g.
D , not only in DSco-f.g.

D /Bco-f.g.
D .

Concerning Z[n0] we have seen in Example 2.23 that Z[n0]
∼=BD

Z, and clearly Z[n0] is an element

of DSco-f.g.
D as well. By first applying L to this isomorphism and then composing the resulting

isomorphism with ΦZ , we find

L (Z[n0])
∼=BD

L (Z) ∼=BD
Z ∼=BD

Z[n0] in DSco-f.g.
D /Bco-f.g.

D

showing that ΦZ[n0]
is an isomorphism as well. Note, though, that this is not an isomorphism before

taking the quotient by Bco-f.g.
D . Indeed the direct limits lim

−→
Z and lim

−→
Z[n0] are both isomorphic to

Qp/Zp, showing that

L (Z[n0])
∼= Z 6∼= Z[n0] in DSco-f.g.

D .

3. The double system of the cohomology of units

3.1. Arithmetic set-up. In this section, we apply the algebraic results from Section 2 to an
arithmetic setting arising in Iwasawa theory. Fix a number field k and a finite normal extension
F/k, and set D0 = Gal(F/k). Consider a Zp-extension L∞/F , which is also normal over k: set
D = Gal(L∞/k) and Γ = Gal(L∞/F ), so that there is an exact sequence

(2.1) 1 −→ Γ −→ D −→ D0 −→ 1

as in Section 2.2. Endow Γ with the filtration Γn = Γpn

for all n ≥ 0, so that, with notation as
in loc. cit ., g(Γ) = 0 and define the groups Gn, Gm,n and Dn accordingly. Denote by Ln the subfield
of L∞ fixed by Γn, so that L∞ =

⋃
Ln, F = L0 and [Lm : Ln] = pm−n.

We refer the reader to [Tat67] and to [Ser67] for the global and local class field theory results
that we use. Consider the following commutative diagram of Galois modules with exact rows and
columns:

(3.1)

1

��

1

��

1

��

1 // O×
Ln

//

��

L×
n

//

��

PrLn
//

��

1

1 // ULn
//

��

A×
Ln

//

��

IdLn
//

��

1

1 // QLn
//

��

CLn
//

��

ALn
//

��

1

1 1 1

Here we use the following notation for a number field M : M× denotes the group (M \ {0})⊗ Zp,
IdM is the group of fractional ideals tensored with Zp, PrM is the group of principal ideals tensored

with Zp, AM is the quotient IdM/PrM (i. e. the p-Sylow of the class group of M), A×
M is the idèle

group tensored with Zp, CM is the quotient A×
M/M× (i. e. the idèle class group tensored with Zp),

O×
M is the group of units tensored with Zp, UM is the group of idèles of valuation 0 at every finite
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place tensored with Zp and QM is defined by the exactness of the diagram. Every term in (3.1)
belongs to a D-normic system, in the sense of Definition 2.2, where the transition maps are induced
by the inclusion

ιLm/Ln
: Ln −֒→ Lm

and the (arithmetic) norm
NLm/Ln

: L×
m −→ L×

n .

The collection of all diagrams (3.1) for n ≥ 0 is a commutative diagram in the category NSD. All
these normic systems satisfy (Inj), except for the system (ALn). As for (Gal), it only holds for
the four normic systems in the upper left square and for the idèle class group.

Together with the global objects introduced above, two local normic systems will be needed. For
every prime p of F , fix a prime P∞ in L∞ above p. This choice determines a decomposition group
D(p) ⊆ D as well as a decomposition group Γ(p) = Γ∩D(p) ⊆ Γ. The prime P∞∩Ln of Ln will be
denoted Pn and its decomposition groups in Gn and in Dn will be denoted by Gn(p) and Dn(p),
respectively. When there are only finitely many primes above p in L∞ (this will be the only case of
interest to us), Γ(p) is isomorphic to Zp and we can endow (L×

Pn
) and (O×

LPn
) with a structure of

D(p)-normic system as follows (for a local field E we follow the same convention explained above, so
E× := (E\{0})⊗Zp and O

×
E is the group of units tensored with Zp). Endow Γ(p) with the filtration(

Γ(p)n = Γ(p)∩Γpn)
n∈N

so that Γ(p)/Γ(p)n := G(p)n = Gn(p): this filtration satisfies the condition

of §2.2 with g
(
Γ(p)

)
= g, where pg is the (finite) number of primes in L∞ above p—in other words,

Lg/F is the maximal subextension in L∞/F where p splits completely. The collections (L×
Pn

) and

(O×
LPn

), endowed with the natural extension and norm maps, denoted ιPm/Pn
and NPm/Pn

, are

then D(p)-normic systems. We denote these normic systems by O×
P•

and L×
P•

, respectively. They

satisfy both (Inj) and (Gal). Before passing to the analysis of double systems arising from Tate
cohomology, we establish one lemma on the residual action on the cohomology of local units. First,
we introduce the following notation.

Notation 3.1. Given a number field M2 and an extension M1/M2, denote by T(M1/M2) the
set of primes of M2 which ramify in M1/M2. Given any prime p ⊆ OF , denote by p the prime
p = p ∩ Ok of k and by pgp the number of primes in L∞ above it. Finally, let em/n (resp. fm/n,
dm/n = em/n ·fm/n) denote the ramification index (resp. the inertia degree, the extension degree) of
LPm/LPn . To lighten the typesetting of some formulæ we also introduce the notation ℓ∞ to denote
lnp(f∞) where f∞ is the inertia degree of p in L∞/F . When the prime p needs to be specified, we
write ℓp∞ instead.

The following general lemma will be useful to analyse the action of D0 on the Gn-cohomology
of the idelic units.

Lemma 3.2. Let D be a finite group and let G < H < D be subgroups of D. For every H-module

M and every i ∈ Z, there is an isomorphism

Ĥi(G,M ⊗Z[H] Z[D]) ∼= Ĥi(G,M)⊗Z[H] Z[D]

of D-modules.

Proof. Given any Z[G]-module P , consider the Z[D]-homomorphism

τ : HomZ[G](P,M) ⊗Z[H] Z[D] −→HomZ[G](P,M ⊗Z[H] Z[D])
∑

i

(fi ⊗mi)
)
7−→

(
z 7−→

∑

i

(fi(z)⊗mi)
)
.
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Since Z[D] is Z[H ]-free, [Bou61, Chap.I, §2, n°9, Proposition 10], shows that τ is an isomorphism
whenever P is projective and finitely presented. Now let P • → Z be resolution of the trivial
Z[G]-module Z made of finitely presented projective modules. Then

Hi(G,M ⊗Z[H] Z[D]) = Hi
(
HomZ[G](P

•,M ⊗Z[H] Z[D])
)

∼= Hi
(
HomZ[G](P

•,M)⊗Z[H] Z[D]
)

(3.2)

∼= Hi
(
HomZ[G](P

•,M)
)
⊗Z[H] Z[D](3.3)

= Hi(G,M)⊗Z[H] Z[D].

The isomorphism (3.2) is induced by τ and (3.3) is an isomorphism because Z[D] is Z[H ]-flat. In
particular, we get an isomorphism of Z[D]-modules

Hi(G,M ⊗Z[H] Z[D]) ∼= Hi(G,M)⊗Z[H] Z[D].

To conclude the proof we argue inductively by backward dimension shifting. We start the induction
at i = 1: we have just proved that for every Z[H ]-module N there is a Z[D]-isomorphism

Ĥ1(G,N ⊗Z[H] Z[D]) ∼= Ĥ1(G,N)⊗Z[H] Z[D].

To go from i to i− 1, apply the functor − ⊗Z M to the augmentation map Z[H ] → Z. We obtain
an exact sequence of Z[H ]-modules

0 −→M ′ −→M ⊗Z Z[H ] −→M −→ 0

for a suitable M ′, where M ⊗Z Z[H ] is induced, hence cohomologically trivial. We deduce that

there is an isomorphism Ĥi−1(G,M) ∼= Ĥi(G,M ′) of Z[H ]-modules,inducing a Z[D]-isomorphism

Ĥi−1(G,M)⊗Z[H] Z[D] ∼= Ĥi(G,M ′)⊗Z[H] Z[D].

We also have an exact sequence of Z[D]-modules

0 −→M ′ ⊗Z[H] Z[D] −→M ⊗Z Z[D] −→M ⊗Z[H] Z[D] −→ 0

yielding an isomorphism of Z[D]-modules

Ĥi−1(G,M ⊗Z[H] Z[D]) ∼= Ĥi(G,M ′ ⊗Z[H] Z[D]).

Since, by the inductive hypothesis, Ĥi(G,M ′⊗Z[H]Z[D]) ∼= Ĥi(G,M ′)⊗Z[H]Z[D] as Z[D]-modules,
we obtain a Z[D]-isomorphism

Ĥi−1(G,M ⊗Z[H] Z[D]) ∼= Ĥi−1(G,M)⊗Z[H] Z[D],

concluding the proof. �

Lemma 3.3. Fix n ≥ 0. The decomposition

ULn =
∏

Ln⊂OLn

O×
Ln

together with Shapiro’s lemma induce isomorphisms of D0-modules

(3.4) Ĥi(Gn,ULn)
∼=

⊕

p∈T(L∞/k)

⊕

p|p

Ĥi(Gn(p),O
×
Pn

)

for all i ∈ Z. In particular, there are D0-isomorphisms

(3.5) Ĥi(Gn,ULn)
∼= (Z/en/0)

T(L∞/F ) for i = 1, 2

where D0 acts on (Z/en/0)
T(L∞/F ) through its action on the set T(L∞/F ).
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Proof. We start by analysing the cohomology of local units. Let p ∈ T(L∞/F ) be a prime.
Denoting by vPn the Pn-adic valuation, we have an exact sequence of Dn(p)-modules

(3.6) 0 −→ O×
Pn
−→ L×

Pn

vPn−−−→ Zp −→ 0.

Taking cohomology of the sequence we get, through Hilbert Theorem 90, a Dn(p)-equivariant
identification

(3.7) δ
(0)
Pn

: Z/en/0 = H0(Gn,Z)/ Im(vPn)
∼= Ĥ1(Gn(p),O

×
Pn

).

A similar result holds for i = 2: local class field theory shows that the cup-product with the funda-

mental class induces a Dn(p)-equivariant isomorphism Z/dn/0 = Ĥ0(Gn(p),Z) ∼= Ĥ2(Gn(p), L
×
Pn

).

This restricts to a Dn(p)-equivariant isomorphism

(3.8) (∪uLn/k) : Z/en/0
∼= Ĥ2(Gn(p),O

×
Pn

).

Observe that (3.7) and (3.8) show that Dn(p) acts trivially on Ĥi(Gn(p),O
×
Pn

) for i = 1, 2.

We now proceed with the proof of the lemma. For a prime p of F (resp. a prime p of k), set

Vp
Ln

=
∏

Ln|p

O×
Ln

(resp. Vp
Ln

=
∏

Ln|p

O×
Ln

)

where the product is taken over the prime ideals of Ln dividing p (resp. dividing p). Then ULn

decomposes as

ULn =
∏

p

Vp
Ln

as Dn-modules and, since the local units in unramified extension are cohomologically trivial, this
induces an isomorphism of Dn-modules

Ĥi(Gn,ULn) =
⊕

p∈T(L∞/k)

Ĥi(Gn,V
p
Ln

).

In particular, to establish (3.4) it suffices to work component-wise, and we focus on Ĥi(Gn,V
p
Ln

)
for a fixed prime p ∈ T(L∞/k) from now on. Note that

Vp
Ln

=
⊕

p|p

Vp
Ln

as Gn-modules and this gives a Gn-isomorphism

(3.9) Ĥi(Gn,V
p
Ln

) =
⊕

p|p

Ĥi(Gn,V
p
Ln

).

To analyse the Dn-action, observe that V
p
Ln

is in fact aHn(p)-module whereHn(p) = 〈Gn, Dn(p)〉 ⊆
Dn is the subgroup generated by Gn and Dn(p), and

Vp
Ln

∼= V
p
Ln
⊗Z[Hn(p)] Z[Dn]

as Z[Dn]-modules. In particular, Lemma 3.2 yields an isomorphism of Dn-modules

Ĥi(Gn,V
p
Ln

) ∼= Ĥi(Gn,V
p
Ln

)⊗Z[Hn(p)] Z[Dn] =
⊕

p|p

Ĥi(Gn,V
p
Ln

)

that coincides with (3.9).
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Now observe that Shapiro’s isomorphism factors as

Ĥi(Gn,V
p
Ln

) = Ĥi(Gn,
∏

L|p

O×
L )

ResGn(p)
−−−−−−→ Ĥi(Gn(p),

∏

L|p

O×
L ) =

⊕
L|p

Ĥi(Gn(p),O
×
L )

prPn−−−→ Ĥi(Gn(p),O
×
Pn

)

(see [Tat67, §7.2]) and thus it is Dn(p)-equivariant. Since Dn(p) acts trivially on Ĥi(Gn(p),O
×
Pn

)

in light of the discussion in the first part of the proof, the same holds for Ĥi(Gn,V
p
Ln

) and therefore

the whole Hn(p) acts trivially on Ĥi(Gn,V
p
Ln

). Hence we have

Ĥi(Gn,V
p
Ln

)⊗Z[Hn(p)] Z[Dn] = Ĥi(Gn,V
p
Ln

)⊗Z Z[D0/D0(p)] ∼= Ĥi(Gn(p),O
×
Pn

)⊗Z Z[D0/D0(p)]

as Dn-modules, because Dn/Hn(p) ∼= D0/D0(p). This concludes the proof of the first assertion of
the lemma.

The existence of the isomorphisms (3.5) follows from (3.7) and (3.8). �

3.2. Double systems of Tate cohomology. Given any D-normic system B = (BLn) as in §2.2,
we equivalently denote its direct (resp. inverse) limit as lim

−→
B or lim

−→
BLn or BL∞ (resp. lim

←−
B or

lim
←−

BLn), according to convenience. If B satisfies (Inj) (resp. (Inj) and (Gal)), then for all odd

i ∈ Z (resp. all i ∈ Z) we can consider the collection

Ĥi(B) =
(
Ĥi(Gn, BLn), Ĥ

i(jn,m), Ĥi(km,n)
)
m≥n≥0

which is D-a double system in the language of §2.3 by Proposition 2.14. Since any cohomology
group of Gn is annihilated by pn, for every D-normic system B satisfying (Inj) (resp. both (Inj)

and (Gal)), condition (co-f.g. A) is satisfied for Ĥi(B) for i odd (resp. for all i). Moreover there
are canonical isomorphisms

Hi(Γ, BL∞) ∼= lim
−→

Ĥi(Gn, BLn) for i ≥ 1,

where the limit is taken with respect to the maps Inf ◦j∗. In particular, when i ≥ 1, condi-

tion (co-f.g. B) for Ĥi(B) is equivalent to the condition that Hi(Γ, BL∞) belong to Modco-f.g.
Zp[D0]

, be-

cause the direct systems
(
Ĥi(Gm, BLm), Ĥi(j)

)
and

(
Ĥi(Gm, BLm), Inf ◦j∗

)
coincide by Lemma 2.7.

Hence, when this is the case, the double system Ĥi(B) actually lies in DSco-f.g.
D and can be regarded

as an object of the quotient category DSco-f.g.
D /Bco-f.g.

D . When considering a local normic systems

BP• ∈ {O
×
P•

, L×
P•
}, the cohomology we consider is relative to the decomposition groups Gn(p). To

stress this difference, we denote by a subscript p the corresponding D(p)-double system

Ĥi
p(BP•) =

(
Ĥi(Gn(p), BPn), ιPm/Pn

,NPm/Pn
)m≥n≥0.

The starting point of our study is the exact sequence of double systems

(3.10) Ĥ1(O×
L•

) −→ Ĥ1(UL•) −→ Ĥ
1(QL•) −→ Ĥ

2(O×
L•

) −→ Ĥ2(UL•)

whose existence follows from Propositions 2.10 and 2.11. Let B ∈ {O×
L•

,UL• , QL•} be any of the

normic systems occurring in (3.10). It is well-known that Hi(Γ, lim
−→
B) belongs to Modco-f.g.

Zp[D0]
when

i = 1, 2 (see, for instance, [Iwa83, §2]), so (3.10) is an exact sequence in DSco-f.g.
D .

We first analyse the D-double systems Ĥi(UL•), and we single out their relationship with the

D(p)-double systems Ĥi
p(O

×
P•

) in the following proposition.
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Proposition 3.4. For each prime p ∈ T(L∞/k), the sum
⊕

p|p Ĥ
i
p(O

×
P•

) is a D-double system,

with the D0-action discussed in Lemma 3.3. Moreover the isomorphisms (3.4) induce isomorphisms

of D-double systems

(3.11) Ĥi(UL•)
∼=

⊕

p∈T(L∞/k)

⊕

p|p

Ĥi
p(O

×
P•

) for all i ∈ Z.

Proof. To prove the first assertion we need to show the relation

(3.12) Ĥi(jn,m) ◦ Ĥi(km,n) = Ĥi(km,n) ◦ Ĥ
i(jn,m) = (Γn : Γm) for all m ≥ n ≥ 0

for the transition morphisms of the system
⊕

p|p Ĥ
i(Gn(p),O

×
Pn

). Let np
tr be the first index above

which any of the local Zp-extensions LP∞/Fp (for any p | p) is totally ramified. For every natural
number n ≥ np

tr, we have (Γn : Γm) = pm−n = (Γ(p)n : Γ(p)m), and (3.12) is satisfied since

every Ĥi
p(O

×
P•

) is a D(p)-double system. When n ≤ np
tr, the group

⊕
p|p Ĥ

i(Gn(p),O
×
Pn

) vanishes

because the cohomology of local units in unramified extensions is trivial. Therefore in this case both

Ĥi(jn,m) ◦ Ĥi(km,n) and Ĥi(km,n) ◦ Ĥi(jn,m) are trivial endomorphisms and (3.12) is equivalent

to saying that (Γn : Γm) annihilates
⊕

p|p Ĥ
i(Gn(p),O

×
Pn

) and
⊕

p|p Ĥ
i(Gm(p),O×

Pm
). This is

obvious for
⊕

p|p Ĥ
i(Gn(p),O

×
Pn

) = 0. As for the groups at level m, observe that each group

Ĥi(Gm(p),O×
Pm

) is annihilated by |Gm,np
tr
(p)| = (Γ(p)np

tr
: Γ(p)m) = em/np

tr
= em/0: we have

shown this in Lemma 3.3 for degrees 1 and 2, and periodicity of Tate cohomology yields the same
result for all i ∈ Z. Thus, since (Γ(p)np

tr
: Γ(p)m) divides (Γn : Γm) because n ≤ np

tr, it follows that

(Γn : Γm) also acts as 0 on
⊕

p|p Ĥ
i(Gm(p),O×

Pm
).

Having established that the right-hand side of (3.11) is a D-double system, the fact that (3.11)
is an isomorphism will be an immediate consequence of Lemma 3.3 once we prove that the iso-
morphisms (3.4) are compatible with the ascending and descending morphisms, hence defining
isomorphisms of double systems. Since both the ascending and descending morphisms are relative
to the extension L∞/F (rather than L∞/k), we can and do fix a prime p ⊆ OF and check the
compatibility for the relevant component. Given the explicit definition of Shapiro’s lemma in Tate
cohomology, the required compatibilities correspond to the commutativity, for all i ∈ Z, of the
diagrams3

Ĥi(Gm,
∏

L|p

O×
L )

ResGm(p)
// Ĥi(Gm(p),

∏

L|p

O×
L ) =

∏

L|p

Ĥi(Gm(p),O×
L )

prPm
// Ĥi(Gm(p),O×

Pm
)

Ĥi(Gn,
∏

l|p

O×
l )

ResGn(p)
//

Ĥi(ιLm/Ln)

OO

Ĥi(Gn(p),
∏

l|p

O×
l ) =

∏

l|p

Ĥi(Gn(p),O
×
l )

prPn
// Ĥi(Gn(p),O

×
Pn

)

Ĥi(ιPm/Pn )

OO

(3.13)

3We adopt the typesetting convention of denoting by L the generic prime dividing p in Lm and denoting by l

the generic prime dividing p in Ln. We adopt the notation NL/l and ιL/l to denote the corresponding norm and

extension maps.
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and

Ĥi(Gm,
∏

L|p

O×
L )

ResGm(p)
//

Ĥi(NLm/Ln )

��

Ĥi(Gm(p),
∏

L|p

O×
L ) =

∏

L|p

Ĥi(Gm(p),O×
L )

prPm
// Ĥi(Gm(p),O×

Pm
)

Ĥi(NPm/Pn)

��

Ĥi(Gn,
∏

l|p

O×
l )

ResGn(p)
// Ĥi(Gn(p),

∏

l|p

O×
l ) =

∏

l|p

Ĥi(Gn(p),O
×
l )

prPn
// Ĥi(Gn(p),O

×
Pn

)

(3.14)

All terms in the bottom lines of (3.13) and (3.14) vanish if n ≤ gp, and there is nothing to check:
hence we assume, from now on, that m ≥ n ≥ gp. Observe that Shapiro’s isomorphism is compatible

with the cup-products defining Ĥi(j) and Ĥi(k) for arbitrary i. More precisely

ResGn(p)(x ∪ κn) = ResGn(p)(x) ∪ResGn(p)(κn)

and ResGn(p)(κn) corresponds to the element of Hom(Gn(p),Qp/Zp) defined by

(3.15) ResGn(p)(χn) : γ
pgp

0 7−→ pgp/(Γ : Γn) = (Γ : Γ(p))/(Γ : Γn).

On the other hand, by definition of Ĥi(j) and Ĥi(k) for the local system, they coincide with cup

product with the class κp
n ∈ Ĥ2(Gn(p),Zp) that corresponds to the element of Hom(Gn(p),Qp/Zp)

defined by

(3.16) χp
n : γ

pgp

0 7−→ 1/(Γ(p) : Γn(p)).

Since n ≥ gp, we have Γn(p) = Γn so that (3.15) and (3.16) agree. Therefore it is enough to check
commutativity of both (3.13) and of (3.14) for i = −1 and for i = 0.

Starting with i = −1, let ξ ∈ Ĥi(Gn,
∏

l|pO
×
l ) and Ξ ∈ Ĥi(Gm,

∏
L|pO

×
L ). By [AW67, Propo-

sition 7], restriction in degree −1 is represented by multiplication by the algebraic norm, hence
commutativity of the diagrams (3.13) and (3.14) are equivalent to the equalities

Ĥ−1(ιPm/Pn
) prPn

(
NmGn/Gn(p)ξ

)
= prPm

(
NmGm/Gm(p)

(
Ĥ−1(ιLm/Ln

)ξ
))

(3.17)

and

Ĥ−1(NPm/Pn
) prPm

(
NmGm/Gm(p)Ξ

)
= prPn

(
NmGn/Gn(p)

(
Ĥ−1(NLm/Ln

)Ξ
))

.(3.18)

To check (3.17), suppose that ξ can be represented by (ξl) ∈
∏

l|pO
×
l . Thanks to the assumption

n ≥ gp, the restriction of Galois automorphisms induces a bijection between the sets Gm/Gm(p)
and Gn/Gn(p): denote this bijection by a bar, writing σ for the generic element of Gm/Gm(p) that
is the restriction of σ ∈ Gn/Gn(p). Then, with a slight abuse of notation consisting in identifying
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ξ with the tuple of ξl’s,

Ĥ−1(ιPm/Pn
) prPn

(
NmGn/Gn(p)ξ

)
= Ĥ−1(ιPm/Pn

) prPn



( ∏

σ∈Gn/Gn(p)

σ(ξσ−1l)
)
l|p




= Ĥ−1(ιPm/Pn
)

∏

σ∈Gn/Gn(p)

σ(ξσ−1Pn
)

=
∏

σ∈Gn/Gn(p)

ιPm/Pn
σ(ξσ−1Pn

)

=
∏

σ∈Gm/Gm(p)

σ(ξσ−1Pn
)

= prPm

(( ∏

σ∈Gm/Gm(p)

σ(ισ−1L/σ−1lξσ−1l)
)
L|p

)

= prPm

(
NmGm/Gm(p)

(
Ĥ−1(ιLm/Ln

)ξ
))

establishing (3.17).
The computation for (3.18) is analogous, by replacing the equality σ◦ισ−1Pm/σ−1Pn

= ιPm/Pn
◦σ

with σ ◦Nσ−1Pm/σ−1Pn
= NPm/Pn

◦ σ for all σ ∈ Gm/Gm(p) corresponding to σ ∈ Gn/Gn(p).
The case i = 0 can be handled similarly. This time, restriction reduces to projecting a class mod-

ulo NmGn (resp. modulo NmGm) to the class modulo NmGn(p) (resp. modulo NmGm(p)). Given an

element b mod NmGn ∈ Ĥ0(Gn,
∏

l|pO
×
l ) (resp. an element B mod NmGm ∈ Ĥ0(Gm,

∏
L|pO

×
L ),

the commutativity of diagrams (3.13) and (3.14) can be written as

Ĥ0(ιPm/Pn
) prPn

(
b mod NmGn(p)

)
= prPm

(
Ĥ0(ιLm/Ln

)(b mod NmGm(p))
)

(3.19)

and

Ĥ0(NPm/Pn
) prPm

(
B mod NmGm(p)

)
= prPn

(
Ĥ0(NLm/Ln

)(B mod NmGm(p))
)
.(3.20)

Thanks to the assumption n ≥ gp, the sets {L | p} and {l | p} are in bijection; moreover, the
index (Γn : Γm) equals pm−n. Thus, writing b = (bl)l|p, the relation (3.19) reduces to the chain of
equalities

Ĥ0(ιPm/Pn
) prPn

(
b mod NmGn(p)

)
= Ĥ0(ιPm/Pn

)
(
bPn mod NmGn(p)

)

=
(
ιPm/Pn

bp
m−n

Pn
mod NmGm(p)

)

= prPm

(
ιL/lb

pm−n

l mod NmGm(p)

)
L|p

= prPm

(
Ĥ0(ιLm/Ln

)(b mod NmGm(p))
)
.

Equation (3.20) can be checked similarly. �

We will use the above proposition to obtain an explicit description of the double system of the
cohomology of local units. First, we need a lemma.

Lemma 3.5. Let p ∈ T(L∞/F ) be a prime of F and set E = Fp. For every s ∈ N, set Es = LPs

and let uEs/E ∈ H2(Gs(p), E
×
s ) be the fundamental class of Es/E. Then, for m ≥ n ≥ 0, the
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diagrams

Ĥ0(Gm(p),Zp)
(∪uEm/E )

// Ĥ2(Gm(p), E×
m)

Ĥ0(Gn(p),Zp)
(∪uEn/E)

//

·dm/n

OO

Ĥ2(Gn(p), E
×
n )

Ĥ2(ιEm/En)

OO

and

Ĥ0(Gm(p),Zp)
(∪uEm/E )

// Ĥ2(Gm(p), E×
m)

Ĥ0(Gn(p),Zp)
(∪uEn/E )

//

��

Ĥ2(Gn(p), E
×
n )

��

Ĥ2(NEm/En )

commute, where the map Ĥ0(Gm(p),Zp)→ Ĥ0(Gn(p),Zp) is the canonical projection and dm/n =
[Em : En] is the degree of the local extension.

Proof. For the first diagram, the proof is similar to that of Lemma 2.7 for i = 2, replacing κ by
the fundamental class and using that

Ĥ2(ιEm/En
)(uEn/E) = Inf2 ◦ι∗Em/En

(uEn/E) = dm/nuEm/E

(see [Ser62, Ch. XI §3], note that Serre’s Inf is our Inf ◦ι∗Em/En
).

To analyse the second diagram, let χp
s ∈ Ĥ1(Gs(p),Qp/Zp) be the element introduced in (3.16)

and set κp
s = δ(1)χp

s ∈ Ĥ2(Gs(p),Zp), for s ≥ 0. As discussed in §2.2.3, the relation

(3.21) χp
n(prm,n σ) = χp

m(σ)dm/n

holds for all σ ∈ Gm(p)ab ⊗ Zp = Gm(p) where prm,n : Gm(p) → Gn(p) is the surjective map

induced by the restriction to En. Given a ∈ Zp, set y = (∪κp
m)−1

(
(a mod |Gm(p)|) ∪ uEm/k

)
∈

Ĥ0(Gm(p), E×
m) so that

(3.22) y ∪ κp
m = (a mod |Gm(p)|) ∪ uEm/E .

If y ∈ (E×
m)Gm(p) = E× represents y, then it also represents Ĥ0(NEm/En

)(y) ∈ Ĥ0(Gm(p), E×
m).

Denote by ( · , Em/E) : E× → Gm(p)ab ⊗ Zp the reciprocity map of local class field theory. Then,
with notation as in [Ser62, Ch. XI],

invE
[
Ĥ2(NEm/En

)
(
(a mod |Gm(p)|) ∪ uEm/E

)]
= invE

[
(∪κp

n) ◦ Ĥ
0(NEm/En

)(ym)
]

= invE
[
Ĥ0(NEm/En

)(y) ∪ δ(1)χp
n

]

(by [Ser62, Ch. XI, Proposition 2]) = 〈χp
n,
(
y, En/E

)
〉

(by [Ser62, p.178, (4)]) = 〈χp
n, prm,n

(
(y, Em/E)

)
〉

(by (3.21)) = 〈χp
m,

(
y, Em/E

)pm−n

〉

(by [Ser62, Ch. XI, Proposition 2]) = dm/n invE
[
y ∪ δ(1)χp

m

]

(by (3.22)) = dm/n invE
[
(a mod |Gm(p)|) ∪ uEm/E

]

= invE
[
(a mod |Gm(p)|) ∪ (dm/nuEm/E)

]

(by [Ser62, Ch. XI, §3]) = invE
[
(a mod |Gm(p)|) ∪ Inf2 ◦ι∗Em/En

(uEn/E)
]

= invE
[
Inf2 ◦ι∗Em/En

(
(a mod |Gn(p)|) ∪ uEn/E

)]

= invE
[
(a mod |Gn(p)|) ∪ uEn/E

]
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where the last equality follows from the definition of the absolute invE as the limit, relative to
inflation, of invE at finite levels. Since invE is injective, we conclude that

Ĥ2(NEm/En
)
(
(a mod |Gm(p)|) ∪ uEm/E

)
= (a mod |Gn(p)|) ∪ uEn/E

showing that the second diagram is commutative. �

Remark 3.6. Consider the normic system Zp• =
(
Zp, id, dm/n

)
m≥n≥0

. Then in the left (resp. in the

right) diagram of the statement of Lemma 3.5, the left vertical map is in fact Ĥ0(id) (resp. Ĥ0(dm/n)).

In particular, the lemma can be reformulated as saying that the double systems Ĥ0
p(Zp•) and

Ĥ2
p(L

×
P•

) are isomorphic, an isomorphism being the cup-product with the fundamental classes.

Corollary 3.7. The isomorphisms (3.5) define isomorphisms of D-double systems

(3.23) Ĥi(UL•)
∼=BD

ZT(L∞/F ) for i = 1, 2

where Z = Z(Γ) denotes the double system introduced in Example 2.23 and where D0 acts on

ZT(L∞/F ) through its action on the set T(L∞/F ). In particular, there are BD-isomorphisms

Ĥi(UL•)
∼=BD

L
(
Ĥi(UL•)

)
∼=BD

ZT(L∞/F ) for i = 1, 2.

Proof. For a prime p ∈ T(L∞/k), the maps (3.5) arise from isomorphisms of D0-modules

(3.24)
⊕

p|p

Ĥi(Gn(p),O
×
Pn

) ∼=
⊕

p|p

Z/en/0

induced by (3.7) and (3.8). Considering the groups on the right-hand side as the terms of the
D-double system ⊕p|pZ(Γ)[gp+ℓ∞], we are going to prove that

(3.25)
⊕

p|p

Ĥi
p(O

×
P•

) ∼=
⊕

p|p

Z(Γ)[gp+ℓ∞]

as D-double systems: this is enough to prove the main assertion of the corollary because, arguing
as in Example 2.23, we see that

⊕

p|p

Z(Γ)[gp+ℓ∞]
∼=BD

⊕

p|p

Z(Γ)

where D0 acts by conjugation on the set {p | p}.
To prove (3.25), we need to check that isomorphisms (3.24) are compatible with the transition

maps of the double systems. Since transition maps are defined component-wise, we can perform
this check on the components corresponding to a fixed prime p above p.

The sequences (3.6) induce a short exact sequence of D(p)-normic systems

(3.26) 0 −→ O×
P•
−→ L×

P•
−→

(
Zp, jn,m = em/n, km,n = fm/n

)
−→ 0.

The first two normic systems in (3.26) satisfy both (Inj) and (Gal), and the third satisfies (Inj).
By applying Propositions 2.10 and 2.11 to (3.26) we obtain commutative diagrams

H0(Gm(p),Zp)
δ(0) // Ĥ1(Gm(p),O×

Pm
)

H0(Gn(p),Zp)
δ(0) //

Ĥ0(jn,m)

OO

Ĥ2(Gn(p),O
×
Pn

)

Ĥ2(ιPm/Pn )

OO

and

H0(Gm(p),Zp)
δ(0) // Ĥ2(Gm(p),O×

Pm
)

H0(Gn(p),Zp)
δ(0) //

��

Ĥ0(kn,m)

Ĥ2(Gn(p),O
×
Pn

)

��

Ĥ2(NPm/Pn)
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Note that the cohomological connecting homomorphisms are precisely the maps inducing the iso-
morphisms (3.7), so we have shown the required compatibility for i = 1.

Concerning the case i = 2, the sequence (3.26) induces an injection Ĥ2
p(O

×
P•

) →֒ Ĥ2
p(L

×
PL•

) of

double systems. The isomorphisms (3.8) are the restriction to Ĥ2(Gn(p),O
×
Pn

) of the reciprocity
isomorphisms

(3.27) θn : Ĥ
2(Gn(p), L

×
Pn

) ∼= Ĥ0(Gn(p),Zp).

Hence, it is enough to show that the isomorphisms in (3.27), commute with the transition morphisms
for arbitrary m ≥ n ≥ 0, which is precisely Lemma 3.5.

The final statement concerning L follows from the first combined with Example 2.35. �

The following theorem is the main result of this section.

Theorem 3.8. In the quotient category DSco-f.g.
D /Bco-f.g.

D the following sequence is exact

(3.28) 0 99K Ĥ1(O×
L•

) 99K Ĥ1(UL•) 99K Ĥ
1(QL•) 99K Ĥ

2(O×
L•

) 99K Ĥ2(UL•).

By applying the functor L = S ◦ lim
−→

, it gives rise to the exact sequence

(3.29)

0 99K L
(
Ĥ1(O×

L•
)
)
99K L

(
Ĥ1(UL•)

)
99K L

(
Ĥ1(QL•)

)
99K L

(
Ĥ2(O×

L•
)
)
99K L

(
Ĥ2(UL•)

)

and there is a commutative diagram of exact sequences

0 //❴❴❴ Ĥ1(O×
L•

) //❴❴❴❴❴

��
✤

✤
✤

Ĥ1(UL•) //❴❴❴❴❴ //❴❴❴❴❴

∼=

��
✤

✤

✤
Ĥ1(QL•) //❴❴❴❴❴

� _

��
✤

✤

✤
Ĥ2(O×

L•
) //❴❴❴❴❴

��
✤

✤
✤

Ĥ2(UL•)

∼=

��
✤

✤

✤

0 //❴❴ L
(
Ĥ1(O×

L∞
)
)

//❴❴ L
(
Ĥ1(UL∞)

)
//❴❴ L

(
Ĥ1(QL∞)

)
//❴❴ L

(
Ĥ2(O×

L∞
)
)

//❴❴ L
(
Ĥ2(UL∞)

)

(3.30)

Proof. Since the sequence (3.10) is already exact in DSco-f.g.
D , exactness of (3.28) amounts to

(3.31) Ker
(
Ĥ1(O×

L•
) −→ Ĥ1(UL•)

)
∈ BD.

To show this, observe that the ascending transition morphisms of this system are the restriction of

Ĥ1(j) : Ĥ1(Gn,O
×
Ln

) −→ Ĥ1(Gm,O×
Lm

).

Lemma 2.7, together with injectivity of inflation in degree 1, implies that Ĥ1(j) is injective, be-

cause j∗ is the identity in this case. Moreover, for every n ≥ 0, the kernel Ker
(
Ĥ1(Gn,O

×
Ln

) →

Ĥ1(Gn,ULn)
)
is isomorphic to the capitulation kernel Ker

(
AF → ALn

)
(see, for instance, [Nuc10,

Proposition 2.2]), and therefore its order is constant for n large enough. It follows that the maps

Ĥ1(j) are isomorphisms for n≫ 0, and Proposition 2.24 yields (3.31). Since L is an exact functor

when restricted to DSco-f.g.
D /Bco-f.g.

D by Proposition 2.33, exactness of (3.29) follows. By applying
Corollary 2.34 to (3.29), we find the commutative diagram (3.30), where the second and fifth verti-
cal maps are isomorphisms by Corollary 3.7. What remains to be proved is that the third vertical
morphism of (3.30) is injective. To check this, recall that by Lemma 2.7 the following triangle
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commutes

Ĥ1(Gn, QLn)
Ĥ1(jn,m)

//

j∗,1n,m ((P
PP

PP
PP

PP
PP

P
Ĥ1(Gm, QLm)

Ĥ1(Gn, Q
Gm,n

Lm
)

Inf

66♥♥♥♥♥♥♥♥♥♥♥♥

for all m ≥ n ≥ 0. In particular, Ker
(
Ĥ1(jn,m)

)
= Ker(j∗,1n,m), because inflation is injective in

degree 1. Taking Gn-cohomology of the exact sequence

0 −→ QLn −→ Q
Gm,n

Lm
−→ Q

Gm,n

Lm
/QLn −→ 0

shows that Ker(j∗,1n,m) is a quotient of a submodule of Q
Gm,n

Lm
/QLn. Taking direct limits, the natu-

rality of the connecting homomorphism guarantees that in fact

Ker
(
Ĥ1(QL•) −→ L

(
Ĥ1(QL•)

))
is a quotient of a subsystem of

(
QΓn

L∞
/QLn , ιLm/Ln

,NLm/Ln

)
.

Now, Q
Gm,n

Lm
/QLn is isomorphic to Ker

(
ALn → ALm

)
, as shown in [Nuc10, proof of Proposition 2.2],

the isomorphism ibid . being the connecting homomorphism of the snake lemma. Again these
isomorphisms give rise to an isomorphism of double systems

(
QΓn

L∞
/QLn, ιLm/Ln

,NLm/Ln

)
∼=

(
Ker(ALn → AL∞), ιLm/Ln

,NLm/Ln

)

thanks to the naturality of the snake lemma. Hence, in order to prove that j∗,1 = (j∗,1n,m) is a BD-

monomorphism, it is enough to show that the double system
(
Ker(ALn → AL∞), ιLm/Ln

,NLm/Ln

)

belongs to BD. This follows from Proposition 2.24, because the norm is eventually an isomorphism
on capitulation kernels as shown, for example, in [Oza95, Proposition]. �

Remark 3.9. In the Introduction we mentioned that two morphisms in (3.30) become injective in

the quotient category DSco-f.g.
D /Bco-f.g.

D but their kernels do not belong to the corresponding thick
subcategories when regarded simply as direct (resp. inverse) systems. The morphisms in questions

are Ĥ1(QL•)→ L
(
Ĥ1(QL•)

)
and Ĥ1(O×

L•
)→ Ĥ1(UL•), respectively. This is the main reason that

led us to introduce the notion of double systems.

We now move forward to the study the global counterpart of Corollary 3.7. Before, we need the
following technical lemma:

Lemma 3.10. Let A1, . . . , A5, B1, . . . , B5 be objects of an abelian category and let f1, . . . , f5 be

morphisms in the category making the following diagram with exact rows commute:

A1

f1

��

// A2

f2

��

// A3

f3

��

// A4

f4

��

// A5

f5

��

0 // B1
// B2

// B3
// B4

// B5

Suppose that f2 is an isomorphism and f5 is injective. Then there is an exact sequence

0 −→ Coker f1 −→ Ker f3 −→ Ker f4 −→ 0.

In particular, if f3 is injective, then f4 is injective as well and f1 is surjective.



40 L. CAPUTO AND F. A. E. NUCCIO

Proof. Completing with 0 the rows of the diagram of the statement, we obtain cochain complexes,
which we denote by A and B respectively, satisfying Ai = Ai and Bi = Bi for 1 ≤ i ≤ 5. Thus we
have a map f : A → B of cochain complexes and we consider the cochain complexes K = Ker f ,
I = Im f and C = Coker f . We obtain two exact sequences of complexes

(3.32) 0 −→ K −→ A −→ I → 0 and 0 −→ I −→ B −→ C −→ 0.

The exactness of the rows of the diagram in the statement can be recast as Hi(A ) = 0 for all
i 6= 1, 5 and Hi(B) = 0 for all i 6= 5. In particular, the zig-zag lemma applied to the exact
sequences in (3.32) yields isomorphisms

(3.33) H1(C ) ∼= H2(I ) ∼= H3(K ) and H2(C ) ∼= H3(I ) ∼= H4(K ).

The exact sequence of the statement can be obtained from the exact sequence

(3.34) 0 −→ Ker
(
K3 −→ K4

)
−→ K3 −→ K4 −→ K4/ Im

(
K3

)
−→ 0

as follows. The assumptions on f2 and f5 mean that K2 = K5 = 0 and C2 = 0: in particular,
H2(C ) = 0 and (3.33) implies H4(K ) = 0. Therefore the fourth term K4/ Im

(
K3

)
in (3.34) is

also trivial since it is isomorphic to H4(K ), since K5 = 0. Similarly, K2 = 0 implies H3(K ) =
Ker

(
K3 → K4

)
, and invoking again (3.33) we can rewrite (3.34) as

0 −→ H1(C ) −→ K3 = Ker f3 −→ K4 = Ker f4 −→ 0.

The fact thatH1(C ) coincides with C1 = Coker f1 follows again from C2 = 0, finishing the proof. �

Corollary 3.11. The D-double systems Ĥi(O×
L•

) and L
(
Ĥi(O×

L•
)
)
= S (Hi(Γ,O×

L∞
)) are BD-

isomorphic for i = 1, 2.

Proof. Apply Lemma 3.10 to the commutative diagram (3.30) of Theorem 3.8: we obtain a sur-
jection

(3.35) Ĥ1(O×
L•

) 99K99K L
(
Ĥ1(O×

L•
)
)

as well as an injection

(3.36) Ĥ2(O×
L•

) ֒99K L
(
Ĥ2(O×

L•
)
)
.

The morphism in (3.35) is clearly also injective (and therefore an isomorphism), because so is the
composition

Ĥ1(O×
L•

) 99K L
(
Ĥ1(O×

L•
)
)
99K L

(
Ĥ1(UL•)

)
,

as shown in Theorem 3.8.
Passing to cohomology in degree 2, consider the morphisms, for m ≥ n ≥ 0,

Ĥ0(ιLm/Ln
) : O×

F /NLn/FO
×
Ln
−→ O×

F /NLm/FO
×
Lm

x 7−→ xpm−n

Set

τn = lim
−→
m

Ĥ0(ιLm/Ln
) : O×

F /NLn/FO
×
Ln
−→

(
lim
−→
m

O×
F /NLm/FO

×
Lm

)
[pn] =

(
L

(
Ĥ0(O×

L•
)
))

n
.

By definition of Ĥ2(ιLm/Ln
) as Ĥ2(ιLm/Ln

) = (∪κm) ◦ Ĥ0(ιLm/Ln
) ◦ (∪κn)

−1 (see §2.2.3), BD-
surjectivity in (3.36) is equivalent to the claim that the double system C with components (C)n =
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Coker(τn) is in BD, or also that the image of τ = (τn) in the quotient category DSD/BD is a
surjective morphism. Consider the D-double system
(3.37)

O×
F /(O

×
F )

p•

=
(
O×

F /(O
×
F )

pn

, ϕn,m : x 7−→ xpm−n

mod (O×
F )

pm

, πm,n : x 7−→ x mod (O×
F )

pn
)
m≥n≥0

.

Let NO×
L•

be the double subsystem of O×
F /(O

×
F )

p•

whose components are NLn/FO
×
Ln

/(O×
F )

pn

. By

the structure theorem of units in number fields, one immediately sees that O×
F /(O

×
F )

p•

is BD-

isomorphic to ZrkZp O×
F and in particular belongs to DSco-f.g.

D (and the same holds for NO×
L•

).
We can therefore apply Proposition 2.33 and Corollary 2.34 to the tautological exact sequence

0→ NO×
L•
→ O×

F /(O
×
F )

p•

→ Ĥ0(O×
L•

)→ 0 and obtain a commutative diagram inDSco-f.g.
D /Bco-f.g.

D

0 //❴❴❴❴ NO×
L•

//❴❴❴❴❴

��
✤

✤

✤
O×

F /(O
×
F )

p•
//❴❴❴❴❴

��
✤

✤

✤
Ĥ0(O×

L•
)

τ

��
✤

✤

✤
//❴❴❴❴ 0

0 //❴❴❴ L
(
NO×

L•

)
//❴❴❴ L

(
O×

F /(O
×
F )

p•)
//❴❴❴ L

(
Ĥ0(O×

L•
)
)

//❴❴❴ 0

Example 2.35 shows that the middle vertical map is an isomorphism. The snake lemma implies that
the right vertical morphism is surjective, concluding the proof that (3.36) is an isomorphism. �

Remark 3.12. In [Iwa83] Iwasawa obtains a general description of the cohomology groupsHi(Γ,O×
L∞

)
“up to finite groups”, which becomes explicit under the assumption that F is totally real and that
it satisfies Leopoldt conjecture (see [Iwa83, Proposition 5 and Section 4]). His analysis is performed
only at the limit, and conveys no information on the full “double system” (a notion which does
not appear ibid .). One of our motivations for this work was to unravel the purely group-theoretical
content of his results so that it could be generalized to other settings and other normic systems.
More precisely, to obtain an Iwasawa-like formula for the growth of the orders of cohomology groups
of units from the description of the cohomology groups Hi(Γ,O×

L∞
), one is naturally led to consider

the morphisms λn and µn of [Iwa83, p. 199], which are precisely our maps Ĥi(O×
L•

)→ L
(
Ĥi(O×

L•
)
)
.

The groups Hi(Γ,O×
L∞

)[pn] =
(
L

(
Ĥi(O×

L•
)
)
n
follow an Iwasawa-like formula, since

Hi(Γ,O×
L∞

) ∼= (Qp/Zp)
ri ⊕ (finite group)

by Iwasawa’s description. One can deduce from this that the cohomology groups of units at finite
levels also follows an Iwasawa-like formula if both kernels and cokernels of λn and µn are eventually
constant: Corollary 3.11 makes this precise. Formulæ for the cohomology groups of units at finite
levels will be made explicit in the next section.

4. Fake Zp-extensions of dihedral type

4.1. Definitions. In the rest of the paper assume that p ≥ 3 is odd, and that D is pro-dihedral:
by this, we mean that D0 has order 2 and the split exact sequence

(2.1) 1 −→ Γ −→ D −→ D0 −→ 1

induces a non-trivial action of D0 on Γ. Many results we obtain are likely to easily generalise to
the case where D0 is a finite group of order prime to p whose characters are Zp-valued.

The image of a fixed splitting D0 → D is a subgroup Σ0 ⊆ D, which intersects each Γn trivially.
It is hence isomorphic to its image Σ0 ⊆ Dn, still denoted by the same symbol by a slight abuse of
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notation. For n ≤ ∞, let Kn be the subfield of Ln fixed by Σ0 and write k = K0. The corresponding
diagram of fields is the following:

L∞

Σ0
■■

■■
■■

■

Γn

Γ
D∼=D0⋉Γ

K∞

✤
✤
✤
✤
✤
✤

Ln

■■
■■

■■
■

Gn

Dn

✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴

Kn

✤

✤

✤

✤

✤

F

D0 ❏❏
❏❏

❏❏
❏❏

❏

k

(4.1)

The collection of fields {Kn}n≥0 share some similarities with a Zp-extension: indeed, each extension
Kn+1/Kn has degree p and the only possible ramified primes lie above p, because so is for the
extension L∞/F . Yet, a crucial difference is that none of the extension Kn+1/Kn, let alone the
whole K∞/k, is Galois. This motivates the following

Definition 4.1. Assume that p ≥ 3 is odd and consider the setting of diagram (4.1). The extension
K∞/k is a fake Zp-extension of dihedral type, the field L∞ is the Galois closure of the fake Zp-
extension and F/k is called the normalizing quadratic extension.

If B is a Zp[D]-module, then it is uniquely 2-divisible. By restriction, it admits an action of Σ0,
which we can see as an action of D0 via the splitting D0 → D. Accordingly, it admits a functorial
decomposition B = B+⊕B− where we denote by B+ (resp. B−) the maximal submodule on which
D0 acts trivially (resp. as −1). Such decomposition is obtained by writing b = 1+σ

2 b + 1−σ
2 b for

b ∈ B, where σ generates D0. Then

(4.2) BD0 = B+ ∼= B/B− = BD0 .

This applies in particular to Zp[Dn]-modules and their Gn-cohomology. In fact we can say a bit
more in this case, as explained in the next proposition which is [CN20, Proposition 2.1] (the final
statement about Γ-cohomology follows from the result at finite levels by taking direct limits):

Proposition 4.2. Let B be a uniquely 2-divisible Dn-module. Then, for every i ∈ Z, restriction

induces functorial isomorphisms

Ĥi(Dn, B) ∼= Ĥi(Gn, B)+.

Moreover, the Tate isomorphism Ĥi(Gn, B) ∼= Ĥi+2(Gn, B) is D0-antiequivariant. In particular,

for every i ∈ Z, there are isomorphisms

Ĥi(Gn, B)− ∼= Ĥi+2(Gn, B)+ ∼= Ĥi+2(Dn, B)

Ĥi(Gn, B)+ ∼= Ĥi+2(Gn, B)− ∼= Ĥi(Dn, B)
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of abelian groups. In particular, given any D-normic system B = (BLn), there are functorial

isomorphisms

Hi(Γ, BL∞)+ ∼= Hi(D, BL∞) for i ≥ 1.

Proposition 4.2 induces a decomposition of double systems Ĥi(B) = Ĥi(B)+⊕Ĥi(B)−, where, for

every n,
(
Ĥi(B)±

)
n
= Ĥi(Gn, BLn)

±; an entirely analogous argument applies to the double system

of the cohomology of a local normic system, inducing a decomposition Ĥi
p(B) = Ĥ

i
p(B)

+⊕Ĥi
p(B)

−

whenever D(p) is pro-dihedral.

4.2. An Iwasawa-like formula. In this section we state and prove Theorem 4.6, which is one
of our main results. Fix a fake Zp-extension of dihedral type K∞/k and adopt the conventions
introduced in §4.1. For future reference, we add the following piece of notation to Notation 3.1:

Notation 4.3. Denote by T(L∞/k)s ⊆ T(L∞/k) the set of primes of k that ramify in L∞/k and
split in F/k. Also, denote by τ(L∞/k) and by τ(L∞/k)s, respectively, the number of primes in
T(L∞/k) and in T(L∞/k)s.

The first step is Corollary 4.4 below, which is a signed version of Corollary 3.7 and of Corol-
lary 3.11. Here, Z = Z(Γ) again denotes the double system introduced in Example 2.23.

For a group H and a H-module B, we denote by ĥi(H,B) the order of Ĥi(H,B), whenever this
group is finite.

Corollary 4.4.

i) For i = 1, 2, there are BΓ-isomorphisms Ĥi(UL•)
+ ∼=BΓ

ZT(L∞/k) and Ĥi(UL•)
− ∼=BΓ

ZT(L∞/k)s that induce Modfin
Zp
-isomorphisms

(4.3)

Ĥi(D,UL∞) ∼=Modfin
Zp

(
Qp/Zp

)T(L∞/k)
and Ĥi(Γ,UL∞)− ∼=Modfin

Zp

(
Qp/Zp

)T(L∞/k)s
i = 1, 2.

ii) For each choice of a symbol ∗ ∈ {∅,±} and every i ∈ Z, there exists integers λ(i,O×
L•

)∗ ∈
Z≥0 such that

ĥi(Gn,O
×
Ln

)∗ ∝ pn·λ(i,O
×
L•

)∗ .

iii) For every i ∈ Z these invariants satisfy

λ(i,O×
L•

)± = λ(i + 4,O×
L•

)±(4.4)

as well as

λ(i,O×
L•

) = λ(i,O×
L•

)+ + λ(i,O×
L•

)−(4.5)

λ(i,O×
L•

)± = λ(i + 2,O×
L•

)∓(4.6)

ĥi(Dn,O
×
Ln

) ∝ pn·λ(i,O
×
L•

)+(4.7)

λ(2i,O×
L•

) = λ(2i+ 1,O×
L•

)− 1.(4.8)

In particular,

λ(2i − 1,O×
L•

)+ − λ(2i,O×
L•

)+ = λ(2i− 2,O×
L•

)+ − λ(2i+ 1,O×
L•

)+ + 1.(4.9)
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Proof. i) Recall that Corollary 3.7 yields BD-isomorphisms

Ĥi(UL•)
∼=BD

ZT(L∞/F ) for i = 1, 2

where D0 acts by permutation on the set T(L∞/F ). We are thus reduced to analyse the objects(
ZT(L∞/F )

)±
. Starting with the plus component, let

(4.10) x =
(
xP [P]

)
P∈T(L∞/F )

with xP ∈ Z

be an element of
(
ZT(L∞/F )

)+
. For primes P above a non-split prime in F/k we have σP = P,

while for primes in T(L∞/F ) dividing a prime that splits in F/k we have σP 6= P. The condition
σx = x translates into

(4.11) xP = xσP for every P ∈ T(L∞/F ) dividing a split prime in F/k

and no constraint on the coefficients xP when P lies above a non-split prime. Let p ∈ T(L∞/k)
denote the prime below P ∈ T(L∞/F ): the surjection sending x to the element

(
xP [p]

)
p∈T(L∞/k)

is injective thanks to (4.11), so defines an isomorphism
(
ZT(L∞/F )

)+∼= ZT(L∞/k). Concerning the
minus component, the same analysis as above shows that an element x as in (4.10) satisfies σx = −x
if and only if

xP =

{
0 if P lies above a non-split prime in F/k;

−xσP if P divides a prime that splits in F/k.

Therefore, the morphism sending x ∈
(
ZT(L∞/F )

)−
to the element

(
xP [p]

)
p∈T(L∞/k)s

defines an isomorphism
(
ZT(L∞/F )

)−∼= ZT(L∞/k)s . This concludes the proof of the first part of i),
and (4.3) follows by taking direct limits.
ii) When ∗ = ∅, Corollaries 2.32 and 3.11 imply the statement for i = 1, 2: the case for general
i ∈ Z follows by periodicity of Tate cohomology. For the signed invariants, let i = 1, 2 and take

±-parts for the action of D0 on the isomorphism Ĥi(O×
L•

) ∼=BD
L

(
Ĥi(O×

L•
)
)
of Corollary 3.11: we

obtain

Ĥi(O×
L•

)± ∼=BΓ
L

(
Ĥi(O×

L•
)
)±

= S
(
lim
−→

Ĥi(Gn,O
×
Ln

)
)±

= S
((
lim
−→

Ĥi(Gn,O
×
Ln

)
)±)

= S
(
lim
−→

(
Ĥi(Gn,O

×
Ln

)±
))

= L
(
Ĥi(O×

L•
)±

)
.

Corollary 2.32 implies that there exist λ(i,O×
L•

)± ∈ Z≥0 such that

|Ĥi(Gn,O
×
Ln

)±| ∝ pn·λ(i,O
×
L•

)± for i = 1, 2.
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Combining Proposition 4.2 with the periodicity of Tate cohomology permits to extend the definition
to all i by setting

(4.12) λ(i,O×
L•

)± =





λ(2,O×
L•

)∓ if i ≡ 0 (mod 4)

λ(1,O×
L•

)± if i ≡ 1 (mod 4)

λ(2,O×
L•

)± if i ≡ 2 (mod 4)

λ(1,O×
L•

)∓ if i ≡ 3 (mod 4)

iii) The equalities in (4.4) and (4.6) follow by (4.12). That in (4.5) is a direct consequence of the

decomposition Ĥi(Gn,O
×
Ln

) = Ĥi(Gn,O
×
Ln

)+ ⊕ Ĥi(Gn,O
×
Ln

)−, while (4.7) follows from Proposi-
tion 4.2. As for (4.8), it comes from the fact that the Herbrand quotient of global units satisfies

ĥ2i(Gn,O
×
Ln

)

ĥ2i+1(Gn,O
×
Ln

)
=

ĥ2(Gn,O
×
Ln

)

ĥ1(Gn,O
×
Ln

)
=

1

pn

together with the relation

ĥ2i(Gn,O
×
Ln

)

ĥ2i+1(Gn,O
×
Ln

)
∝ pn(λ(2i,O

×
L•

)−λ(2i+1,O×
L•

))

which has been shown in the first part of the proof. The last relation (4.9) follows by combining (4.8)
with (4.5) and (4.6). �

Remark 4.5. Observe that H2j+3(Γ,O×
L∞

) = 0 for all j ≥ 0 because Γ has strict cohomological

dimension 2. Nevertheless, λ(2j + 3,O×
L•

) = λ(1,O×
L•

) is non-zero, in general, showing that the

BD-isomorphism between Ĥi(O×
L•

) and L
(
Ĥi(O×

L•
)
)
of Corollary 3.11 does not hold for i ≥ 3.

Recall now [CN20, Theorem 3.14] which, applied to the dihedral extension Ln/k, says that

(4.13) |ALn | =
|AKn |

2|AF |

|Ak|2
ĥ0(Dn,O

×
Ln

)

ĥ−1(Dn,O
×
Ln

)
.

For every number field M , let εM be the p-power of the order of the p-Sylow of its class group,
so that

|AM | = pεM .

Building upon Corollary 4.4, we find the following

Theorem 4.6. Let K∞/k be a fake Zp-extension of dihedral type with Galois closure L∞/k and

normalizing quadratic extension F/k. There exist constants µfake, νfake ∈ Z[ 12 ] and λfake ∈ Z such

that

(4.14) εKn = µfakep
n + λfaken+ νfake for all n≫ 0.

Moreover, if we denote by µIw, λIw the Iwasawa invariants of the Zp-extension L∞/F , then

µfake =
µIw

2
and λfake =

λIw + λ(−1,O×
L•

)+ − λ(0,O×
L•

)+

2
∈ Z≥0

where λ(−1,O×
L•

)+ and λ(0,O×
L•

)+ are as in Corollary 4.4-ii).
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Proof. By taking p-adic valuation in (4.13) and rearranging terms we obtain

2εKn = εLn + 2εk − εF + vp
(
ĥ−1(Dn,O

×
Ln

)
)
− vp

(
ĥ0(Dn,O

×
Ln

)
)
.

By Iwasawa’s theorem quoted in the Introduction, the growth of εLn is controlled by the three
invariants µIw, λIw, νIw. Formula (4.14) follows from Corollary 4.4-(4.7).

The only thing which is left to be checked is that λfake is an integer: this follows by computing
the difference εKn+1 − εKn for any n big enough so that the (4.14) holds. We find

εKn+1 − εKn = µfakep
n+1+λfake(n+1)+ νfake−µfakep

n−λfaken− νfake = µfakep
n(p− 1)+λfake ∈ Z

and since (p− 1) is even we have µfakep
n(p− 1) ∈ Z, whence λfake ∈ Z. �

Remark 4.7. Under the hypothesis that F/Q is an abelian extension such that Gal(F/Q) is killed
by (p− 1), and that L∞/Q is Galois, the above result is a particular case of [Jau81, Théorème 3].

In [CN20], explicit bounds for the ratio of class numbers are determined. Such bounds can be
translated into bounds for λfake, as shown in the next corollary. For a number field M , set

βM =

{
0 if M does not contain any primitive pth root of unity

1 otherwise

Corollary 4.8. The following inequalities hold

λIw + a

2
≥ λfake ≥

λIw − b

2

where a = rkZ(O
×
F ) + βF + 1 and b = rkZ(O

×
k ) + βk.

Proof. By [CN20, Corollary 3.15], we have

(4.15) − an ≤ vp

(
|ALn | · |Ak|

2

|AF | · |AKn |
2

)
≤ bn

where vp denotes the p-adic valuation. When n ≫ 0, using Theorem 4.6 we can write the central
term of the above chain of inequalities as (λIw − 2λfake)n+ κ where κ is a constant independent of
n. We deduce that

(2λfake − λIw − a)n ≤ κ ≤ (b+ 2λfake − λIw)n

and, since these inequalities hold for every n≫ 0, we must have

(2λfake − λIw − a) ≤ 0 and (b+ 2λfake − λIw) ≥ 0

which is equivalent to the statement. �

We end this section by showing that the constant λ(−1,O×
L•

)+ appearing in Corollary 4.4-ii)
and in Theorem 4.6 has a more direct description in terms of arithmetic invariants of the extension
L∞/k. In what follows, adopt the notation introduced in §3.1 as well as those of Notation 4.3.

Definition 4.9. For every n such that every ramified prime in L∞/Ln is totally ramified, denote
by ΠLn ⊆ ALn the subgroup generated by the classes of the form

[
NmGn/Gn(p)Pn

]
∈ ALn

for p running through the set T(Ln/F ). One sees immediately that ΠLn is in fact a Dn-submodule
of ALn , so that the plus and minus components Π±

Ln
are well-defined.
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According to the above definition, the subgroups ΠLn are defined only for n ≫ 0. This shall
cause no harm to our arguments, because we will be interested in the behaviour of their order for
n→ +∞: in particular, they do not directly give rise to a normic system, although the relations of
Definition 2.2 are satisfied for m ≥ n≫ 0.

Proposition 4.10. There exists λΠ , λ
±
Π ∈ Z≥0 such that |ΠLn | ∝ pλΠn and |Π±

Ln
| ∝ pλ

±
Πn. They

are related to the invariants obtained in Corollary 4.4-ii) as follows:

(4.16)
λ(1,O×

L•
) = τ(L∞/F )−λΠ , λ(1,O×

L•
)+ = τ(L∞/k)−λ+

Π and λ(−1,O×
L•

)+ = τ(L∞/k)s−λ
−
Π .

Proof. Let Y = (Yn, ϕn,m, πm,n) be the cokernel of the first map in (3.10), so that, by Theorem
3.8, there is a short exact sequence

(4.17) 0 99K Ĥ1(O×
L•

) 99K Ĥ1(UL•) 99K Y 99K 0

in DSco-f.g.
D /Bco-f.g.

D . The first two terms satisfy Ĥ1(O×
L•

) ∼=BD
L

(
Ĥ1(O×

L•
)
)
and Ĥ1(UL•)

∼=BD

L
(
Ĥ1(UL•)

)
, by Corollary 3.11 and by Corollary 3.7, respectively. Since the functor L is exact,

we obtain Y ∼=BD
L

(
Y
)
. Thanks to Corollary 2.32, there exists λY such that |Yn| ∝ pλYn and

Corollary 3.7 implies

(4.18) λ(1,O×
L•

) = τ(L∞/F )− λY .

Moreover, given any D-double system X satisfying X ∼=BD
L (X ), we deduce X± ∼=BΓ

L (X±)
because the functor L commutes with the action of D0: hence, (4.18) admits the signed versions

(4.19) λ(1,O×
L•

)+ = τ(L∞/k)− λ+
Y and λ(1,O×

L•
)− = τ(L∞/k)s − λ−

Y .

To conclude the proof we show that

(4.20) |Π∗
Lm
| ∝ |Y ∗

n |

for all choices of a sign ∗ ∈ {∅,±}: one obtains the sought-for constant λΠ by setting λ∗
Π = λ∗

Y .
We give the proof of (4.20) for ∗ = ∅; the other cases follow since all morphisms considered in the
proof are D0-equivariant.

For m ≥ n ≥ 0, let δ
(0)
m,n : H0(Gm,n, ALm) → Ĥ1(Gm,n, QLn) and δ̂

(0)
m,n : Ĥ0(Gm,n, ALm) →

Ĥ1(Gm,n, QLm), respectively, be the connecting homomorphisms induced by the bottom row in (3.1)

for regular (resp. Tate) cohomology. For brevity, write δ
(0)
n (resp. δ̂

(0)
n ) to denote δ

(0)
n,0 (resp. δ̂

(0)
n,0).

Observe that, for all m ≥ n ≥ 0, the equality

δ̂(0)m,n(ΠLm) = δ(0)m,n(ΠLm)

holds, where ΠLm denotes the image of ΠLm ⊆ H0(Gm,n, ALm) in Ĥ0(Gm,n, ALm). In particu-
lar, [Nuc10, Proposition 2.1], yields an isomorphism

(4.21) Yn
∼= δ̂(0)n (ΠLn) = δ(0)n (ΠLn) for all n ≥ 0.

Therefore, to prove (4.20) we are left to show that Ker
(
δ
(0)
n |ΠLn

)
has constant order for n large

enough. Let ntr be the first index such that all ramified primes in L∞/Lntr
are totally ramified and
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consider, for n ≥ ntr, the commutative diagram

Ĥ0(Gn,ntr
,ULn)

��

α

((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

Ĥ0(Gn,ntr
, QLn) // Ĥ0(Gn,ntr

, CLn) // Ĥ0(Gn,ntr
, ALn)

δ̂(0)n,ntr // Ĥ1(Gn,ntr
, QLn) // 0

(4.22)

The compatibility of local and global class field theory shows that α is surjective: indeed, its image
is the product of all inertia subgroups in Gn,ntr

, and this is the whole Gn,ntr
since Ln/Lntr

is totally

ramified at all primes where it ramifies. It follows that δ̂
(0)
n,ntr

is injective and therefore, for all
n ≥ ntr,

(4.23) Ker(δ(0)n,ntr
) = NmGn,ntr

(ALn) and Ker(δ(0)n,ntr
) ∩ ΠLn = NmGn,ntr

(ALn) ∩ΠLn .

Since Ln/Lntr
is totally ramified, the arithmetic norm is surjective on ideal class groups and we

obtain

(4.24) NmGn,ntr
(ALn) = ιLn/Lntr

◦NLn/Lntr
(ALn) = ιLn/Lntr

(ALntr
).

This already shows that the order |NmGn,ntr
(ALn)| is bounded independently of n; the same holds, a

fortiori for the order |NmGn,ntr
(ALn)∩ΠLn |. Moreover, form ≥ n ≥ ntr, (4.24) yields identifications

ιLm/Ln

(
NmGn,ntr

(ALn)
)
= ιLm/Ln

(
ιLn/Lntr

(ALntr
)
)
= ιLm/Lntr

(ALntr
) = NmGm,ntr

(ALm).

It follows that, for all m ≥ n ≫ ntr, the maps ιLm/Ln
are surjections between groups of bounded

orders: they are therefore isomorphisms. In particular, through (4.23), they induce injections

ιLm/Ln
: Ker(δ

(0)
n,ntr

) ∩ ΠLn →֒ Ker(δ
(0)
m,ntr

) ∩ ΠLm ; again, since the orders |Ker(δ
(0)
n,ntr

) ∩ ΠLn | =
|NmGn,ntr

(ALn)∩ΠLn | are bounded, this shows that the extension maps are actually isomorphisms

(4.25) ιLm/Ln
: Ker(δ(0)n,ntr

) ∩ ΠLn = Ker
(
δ(0)n,ntr

|ΠLn

) ∼=
−→ Ker(δ(0)m,ntr

) ∩ ΠLm = Ker
(
δ(0)m,ntr

|ΠLm

)

for all m ≥ n≫ ntr. Observe now that, for all n ≥ ntr, there is a commutative triangle

ΠLn

δ(0)n
��

δ(0)n,ntr

**❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚

δ
(0)
n (ΠLn)

ResGn,ntr // δ
(0)
n,ntr

(ΠLn)

It induces an inclusion Ker
(
δ
(0)
n |ΠLn

)
⊆ Ker

(
δ
(0)
n,ntr
|ΠLn

)
. This implies that |Ker

(
δ
(0)
n |ΠLn

)
| is

bounded independently of n, a bound being the order |Ker
(
δ
(0)
n,ntr
|ΠLn

)
|, which is independent

of n ≫ ntr by (4.25). Moreover, restricting the isomorphism in (4.25) to Ker
(
δ
(0)
n |ΠLn

)
induces

inclusions, for m ≥ n≫ ntr,

ιLm/Ln
: Ker

(
δ(0)n |ΠLn

)
−֒→ Ker

(
δ(0)m |ΠLm

)
.

Once more, these are inclusions among groups of bounded order, and are therefore isomorphisms,

showing that |Ker
(
δ
(0)
n |ΠLn

)
| is constant for n large enough. �
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Remark 4.11. For later reference, we extract from the above proof the fact that Ker(δ̂
(0)
n ) is bounded

independently of n (and actually eventually trivial, although we will not need this). Indeed, we

have shown that δ̂
(0)
n,ntr

is injective for all n ≥ ntr, and the commutative triangle

Ĥ0(Gn, ALn)

δ̂(0)n

��

δ̂(0)n,ntr

**❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

Ĥ1(Gn, QLn)
ResGn,ntr // Ĥ1(Gn,ntr

, QLn)

yields an injection Ker(δ̂
(0)
n ) ⊆ Ker(δ̂

(0)
n,ntr

). In particular, Ker(δ̂
(0)
n,ntr

) = 0 for all n ≥ ntr.

4.3. Formulæ for λ(0,O×

L•

)+ in special cases. In this section, we fix a fake Zp-extension of

dihedral type K∞/k and we place ourselves in the setting introduced in §4.1. The invariant λfake

of Theorem 4.6 is explicitly related to the constants λ(−1,O×
L•

)+ and λ(0,O×
L•

)+, and we have
provided an arithmetic description of the former in Proposition 4.10. In this section, we show that
in some cases also the latter can be interpreted in more explicit arithmetic terms. In the next
proposition, write r1(k) and r2(k), respectively, for the number of real embeddings and of pairs of
conjugate complex embeddings of k, respectively.

Proposition 4.12. Suppose that one of the following conditions holds:

(a) F/k is totally imaginary and k is totally real, so that F is a CM field with k as totally real

subfield;

(b) k is either Q or an imaginary quadratic field;

(c) p is totally split in F/Q, all primes of F above p ramify in L∞/F and the Leopoldt conjecture

holds for F (and p).

With the same notation introduced in Notation 4.3 and in Proposition 4.10, we have

λ(0,O×
L•

)+ =





τ(L∞/F )− λΠ − 1 in case (a)

0 in case (b)

r1(k) + r2(k)− 1 in case (c)

Proof. (a) By [Was97, Theorem 4.12] we know (recall that all abelian groups under consider-

ation are Zp-modules) that O×
F = O×

k = (O×
F )

+: it follows that Ĥ0(Gn,O
×
Ln

)− = 0, so that

λ(0,O×
L•

)− = 0. Corollary 4.4-(4.5) yields λ(0,O×
L•

)+ = λ(0,O×
L•

) and Corollary 4.4-(4.8) finally

gives λ(0,O×
L•

)+ = λ(1,O×
L•

)− 1. The result follows from Proposition 4.10.

(b) When k is Q or imaginary quadratic the unit group O×
k is finite, so λ(0,O×

L•
)+ = 0.

(c) To prove the statement, we first define an ancillary normic system. For every n ≥ 0, let

VLn
=

∏

l⊆OLn

l|p

O×
l

be the Zp-module of semi-local p-adic units of Ln. Clearly, this gives rise to a D-normic system
V whose nth component is VLn

. The diagonal embedding O×
Ln
→֒ VLn

induces a morphism of

normic systems O×
L•
→֒ VL•

which gives rise, through (2.6), to a morphism Ĥ0(O×
L•

)
u

99K Ĥ0(VL•
)

in DSco-f.g.
D /Bco-f.g.

D . Consider now the D-double system O×
F /(O

×
F )

p•

introduced in (3.37) together
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with the semi-local counterpart

VF /(VF )
p•

=
(
VF /(VF )

pn

, ϕn,m : x 7→ xpm−n

mod (VF )
pm

, πm,n : x 7→ x mod (VF )
pn
)
m≥n≥0

;

the diagonal embedding induces a morphism O×
F /(O

×
F )

p• v
99K VF /(VF )

p•

in DSco-f.g.
D /Bco-f.g.

D . The

inclusions (O×
F )

pn

⊆ NLn/FO
×
Ln

(resp. (VF )
pn

⊆ NLn/FVLn
) give rise to a commutative diagram in

DSco-f.g.
D /Bco-f.g.

D

(4.26)

1

��
✤
✤
✤ 1

��
✤
✤
✤ 1

��
✤
✤
✤

1 //❴❴❴ Kerw

��
✤

✤

✤

��
✤

✤

✤
//❴❴❴❴ Ker v

��
✤

✤

✤
//❴❴❴❴❴ Keru

��
✤

✤

✤

1 //❴❴❴ NO×
L•

//❴❴❴

w

��
✤

✤

✤
O×

F /(O
×
F )

p•
//❴❴❴

v

��
✤

✤

✤
Ĥ0(O×

L•
) //❴❴❴

u

��
✤

✤

✤
1

1 //❴❴❴ NVL•

//❴❴❴ VF /(VF )
p•

//❴❴❴ Ĥ0(VL•
) //❴❴❴ 1

whereNO×
L•

andNVL•
denote, respectively, the double system whose components are NLn/FO

×
Ln

/(O×
F )

pn

and NLn/FVLn
/(VF )

pn

. We now make the following claims:

Claim A) When p is totally split in F/Q and all primes above p ramify in L∞/F , the double
system NVL•

belongs to BD;

Claim B) Assuming the Leopoldt conjecture for F and p, the morphism v is a BD-monomorphism.

Assuming the claims, let us derive point (c). Claim B) implies that Kerw = 0, so Claim A) yields

NO×
L•

∼=BD
0: we get an isomorphism

(4.27) O×
F /(O

×
F )

p• ∼=BD
Ĥ0(O×

L•
)

and, taking plus parts,

(4.28) O×
k /(O

×
k )

p• ∼=BΓ
Ĥ0(O×

L•
)+.

The structure theorem of global units gives O×
k /(O

×
k )

p• ∼=BΓ
Zr1(k)+r2(k)−1 and (c) follows, by

combining Example 2.35 with Corollary 2.32. We are therefore left with the proof of the claims.
Concerning Claim A), fix n ≫ 0 such that all primes above p are totally ramified in L∞/Ln:

for every p | p in F and every ln | p in Ln, the extension Lln/Fp is a cyclic extension of Qp, with

ramification degree pn−ℓp∞ (where ℓp∞ is as in Notation 3.1), and local class field theory implies that

Nln/pO
×
ln

= (Z×
p )

pn−ℓ
p
∞
. It follows that

NLn/FVLn
∼=

∏

ln⊆OLn

l|p

(Z×
p )

pn−ℓ
p
∞
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and thus the double system NVL•
coincides with the “constant” double system
∏

ln⊆OLn

l|p

(
Z/pℓ

p
∞ , id, p

m−n)
)
m≥n≥0

which lies in BD by Proposition 2.24.
Concerning Claim B), [Mik87, Lemma 2] shows that the Leopoldt conjecture is equivalent to the

existence of ν ≥ 0 such that

O×
F ∩ (VF )

pn

=
(
O×

F ∩ (VF )
pn−1)p

for all n > ν

or, equivalently, such that

(4.29) O×
F ∩ (VF )

pn

=
(
O×

F ∩ (VF )
pν )pn−ν

for all n > ν.

On the other hand, the nth component of Ker v is
(
O×

F ∩ (VF )
pn)

/(O×
F )

pn

which can be rewritten,
using (4.29), as

(
Ker v

)
n
=

(
O×

F ∩ (VF )
pν )pn−ν

/
(
(O×

F )
pν )pn−ν

for all n > ν.

Set M = O×
F ∩ (VF )

pν

and N = (O×
F )

pν

: then N ⊆ M are two finitely generated Zp-modules such

that M/N =
(
Ker v

)
0
is finite. It follows that they have the same rank, and this shows that

(
Ker v

)
n
= Mpn−ν

/Npn−ν

has order bounded independently of n ≥ 0.

To conclude the proof, we show that the D-double system Ker v satisfies condition BD-3), namely
that †Ker vn = △Ker vn for all n ≫ 0. We need to compute the direct and inverse limits of the
D-double system

(
Mpn

/Npn

, ϕn,m : x 7−→ xpm−n

mod Npm

, πm,n : x 7−→ x mod Npn)
.

Since both M and N are finitely generated Zp-modules, the inverse limit functor is exact and

lim
←−

(
Ker v

)
n
= lim
←−

(
Mpn

/Npn)
= lim
←−

Mpn

/ lim
←−

Npn

=
⋂

n≥0

Mpn

/
⋂

n≥0

Npn

= 0.

In particular,

(4.30) †Ker vn = 0 for all n ≥ 0.

On the other hand, the torsion submodule of M is finite, say M [p∞] = M [pt]. It follows that the
morphism ϕn : M

pn

/Npn

→ lim
−→

Mpn

/Npn

is injective for n ≥ t: to see this, suppose x̄ ∈ Ker(ϕn)

is represented by some x ∈ Mpn

and let x0 ∈ M be such that x = xpn

0 . To say that ϕn(x̄) = 0

means that there exists m ≥ n such that ϕn,m(x̄) = 0 or, equivalently, xpm−n

∈ Npm

. Hence, there

exists y ∈ N such that xpm

0 = xpm−n

= yp
m

: therefore x0 = y · ζ for some ζ ∈ M [p∞] = M [pt].

Since n ≥ t, this yields x = xpn

0 = yp
n

∈ Npn

, so that x̄ = 0. In particular,

(4.31) △Ker vn = 0 for all n≫ 0

and combining (4.30) with (4.31) establishes conditionBD-3), concluding the proof of Claim B). �

Before proceeding, we need a small digression concerning the Gross conjecture. Retain the same
notation as in the rest of the paper but suppose that F is a CM number field4 and write Lcyc

for its cyclotomic extension. Denote by M0 the maximal p-extension of Lcyc which is unramified

4The Gross conjecture can actually be stated in greater generality, but we will not need this.
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everywhere and abelian over F , and by M ′
0 ⊆M0 the maximal p-extension of Lcyc which is totally

split at every prime above p in Lcyc and abelian over F . Denote by k = F+ the maximal totally real
subfield of F and by c the non-trivial element of Gal(F/k). It acts upon Gal(M ′

0/F ), decomposing
it as a direct sum

Gal(M ′
0/F ) = Gal(M ′

0/F )c=1 ⊕Gal(M ′
0/F )c=−1.

The Gross conjecture is

Conjecture (Gross). The group Gal(M ′
0/F )c=−1 is finite.

The original formulation of Gross conjecture as in [Gro81, Conjecture 1.15 and (1.21)] is proven
to be equivalent to the above formulation5 in [FG81, (6.6) and p. 457].

Lemma 4.13. Let F be a CM field which is Galois over Q and which satisfies both the Leopoldt and

the Gross conjectures. Suppose that L∞/F is a Zp-extension which is Galois over Q and is different

from the cyclotomic Zp-extension Lcyc/F : write L̃ for the compositum L̃ = L∞Lcyc. Assume that

a prime of L∞ above p is unramified in L̃/L∞. Then every prime L′ of L∞ above p is unramified

in L̃/L∞ and Frob(L′, L̃/L∞) has infinite order in the group Gal(L̃/L∞).

Proof. Let L be a prime of L∞ above p that is unramified in L̃/L∞, and let L̃ be a prime of L̃

above L; set Lcyc = L̃ ∩ Lcyc for its restriction to Lcyc and l = L̃ ∩ F for its restriction to F . Let

Lcyc = L
(1)
cyc, . . . ,L

(s)
cyc be all the primes in Lcyc above p. The diagram of fields and primes is as

follows:

L L̃

❅❅
❅❅

❅❅
❅❅

❅

��
��
��
��
�

L L∞

❅❅
❅❅

❅❅
❅❅

Lcyc

⑥⑥
⑥⑥
⑥⑥
⑥⑥

{Lcyc = L
(1)
cyc, . . . ,L

(s)
cyc}

l F

p Q

The assumption that L∞ is Galois over Q implies that L is infinitely ramified because L∞/F must

eventually ramify at one, and hence at all primes above p in F . It also implies that L̃/Q is Galois

and therefore each prime L′ of L∞ dividing p is unramified in L̃/L∞, establishing the first part of

the lemma. For the same reason, if we can prove that Frob(L, L̃/L∞,) has infinite order, then the

same is true for all other Frob(L′, L̃/L∞). A similar argument shows that the splitting behaviour

of L
(i)
cyc in L̃/Lcyc is the same as that of Lcyc, for all 1 ≤ i ≤ s.

Suppose by contradiction that Frob(L, L̃/L∞) has finite order or, equivalently, that it is trivial in

the group Gal(L̃/L∞) ∼= Zp: in particular, (Lcyc)Lcyc(L∞)L = (L∞)L or equivalently (Lcyc)Lcyc ⊆
(L∞)L . This means in particular that (Lcyc)Lcyc = (L∞)L since Gal((L∞)L/Fl) ∼= Zp does not

5We have made a small change of notation with respect to [FG81]: in particular, the field that we call M0 is
called L0 in loc. cit . and the superscript (−)c=−1 is simply denoted (−)− in loc. cit . These changes were forced by
the fact that L0 = F already has a meaning in our work, and the (−)−-notation is normally used for Dn-modules
rather than for D0 ×Gal((Lcyc)n/L0)-modules.
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have any non-trivial quotient isomorphic to Zp. Then the extension L̃/Lcyc is totally split at Lcyc

and hence, by the above considerations, it is totally split at each of the L
(i)
cyc. This implies that

L̃ ⊆ M ′
0 (we follow the same notation as in the above formulation of the Gross conjecture). By

hypothesis, the totally real subfield k of F satisfies the Leopoldt conjecture and hence admits a

unique Zp-extension, so that Gal(L̃/Lcyc) = Gal(L̃/Lcyc)
c=−1. The inclusion L̃ ⊆M ′

0 then implies

that Gal(M ′
0/Lcyc)

c=−1
is infinite, because Gal(L̃/Lcyc) ∼= Zp, violating the Gross conjecture. This

provides the required contradiction and establishes the lemma. �

In the remainder of this section, we focus on some special cases to relate the invariant λfake

appearing in Theorem 4.6 to the classical invariants λIw.

Corollary 4.14. Suppose that k = Q, so that F is an imaginary quadratic field and L∞/F is the

anticyclotomic Zp-extension of F . Then, with notation as in Proposition 4.10,

λ(−1,O×
L•

)+ = λΠ = λ+
Π = τ(L∞/Q)s ∈ {0, 1} and λ(0,O×

L•
)+ = λ−

Π = 0.

In particular,

λfake =





λIw+1
2 if p splits in F/Q

λIw

2 if p does not split in F/Q

and therefore λIw is odd if p splits in F and it is even if p does not split.

Proof. Once the formulæ for λ(0,O×
L•

) and λ(−1,O×
L•

) are established, the formula for λfake and
the claim about its parity follow readily from Theorem 4.6.

In the setting where k = Q and F is imaginary quadratic, both conditions (a) and (b) of
Proposition 4.12 are satisfied. The equality λ(0,O×

L•
)+ = 0 is proved Proposition 4.12-(b) and

Proposition 4.12-(a) implies that

(4.32) τ(L∞/F ) = λΠ + 1.

Assume first that p does not split in F/Q, so τ(L∞/F ) = 1. Then (4.32) reads 1 = λΠ + 1, so

λΠ = λ+
Π = λ−

Π = 0 = τ(L∞/Q)s and Proposition 4.10 gives λ(−1,O×
L•

)+ = τ(L∞/Q)s − λ−
Π = 0,

establishing the corollary in this case.
If p splits in F/Q, write pOF = pq and let P = P(1), . . . ,P(s) (resp. Q = Q(1), . . .Q(s)) be

the prime ideals of L∞ that lie above p (resp. above q). Let Lcyc be the cyclotomic Zp-extension

of F = L0 and set L̃ = LcycL∞. Since F/Q is abelian and totally imaginary, it satisfies the as-
sumptions of Lemma 4.13 by [Gro81, Corollary 2.14] and [Was97, Corollary 5.32]. Now, observe

that P is unramified in L̃/L∞ because Fpi
∼= Qp and Qp admits no totally ramified Z2

p-extension.

Lemma 4.13 implies that the global extension L̃/L∞ is unramified everywhere, because it is clearly
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unramified outside of p. Denoting by M∞ the maximal abelian p-extension of L∞ which is unram-
ified everywhere, we find the following diagram of fields and of Galois groups:

M∞

H

X

L̃

❊❊
❊❊

❊❊
❊❊

❊

Y =X/H
③③
③③
③③
③③
③

L∞

❊❊
❊❊

❊❊
❊❊

❊

D

Lcyc

①①
①①
①①
①①

F

Q

For all 1 ≤ j ≤ s, consider the Frobenius elements Frob(P(j),M∞/L∞) and Frob(Q(j),M∞/L∞) in
X = Gal(M∞/L∞). The groupD acts on the set

{
Frob(P(j),M∞/L∞),Frob(Q(j),M∞/L∞)

}
j=1,...,s

by conjugation: given 1 ≤ j ≤ s, for each τ ∈ D and a lift τ̃ ∈ Gal(M∞/Q) we have

τ̃ Frob(P(j),M∞/L∞)τ̃−1 = Frob(τP(j),M∞/L∞)

and similarly when replacing P(j) by Q(j). On the one hand, this action becomes trivial on the
classes

Frob(P(j),M∞/L∞) (mod H) and Frob(Q(j),M∞/L∞) (mod H)

in Y , because Gal(L̃/Q) ∼= D×Gal(Lcyc/F ) with D acting trivially on Y . On the other, the action
factors throughDntr

= Gal(Lntr
/Q), where Lntr

is such that L∞/Lntr
is totally ramified at one (and

hence all) primes above p, because Γntr
acts trivially on all P(j),Q(j). Since Frob(P(j),M∞/L∞)

(mod H) = Frob(P(j), L̃/L∞) and similarly when replacing P(j) by Q(j), it follows that, in Y , the
equality
(4.33)∏

j

Frob(P(j), L̃/L∞) Frob(Q(j), L̃/L∞) (mod H) =
∏

τ∈Dntr

Frob(τP, L̃/L∞) = Frob(P, L̃/L∞)2s

holds. Having set this up, consider the element

x =
∏

j

Frob(P(j),M∞/L∞) Frob(Q(j),M∞/L∞) ∈ X.

Lemma 4.13 and (4.33) imply that x (mod H) is the (2s)th power of an element of infinite order,
so it again has infinite order: in particular, x has infinite order as element of X . Via the Artin map
of global class field theory, x corresponds to the inverse limit of the generators of Π+

n : in particular,
the orders |Π+

n | cannot be bounded, showing that λ+
Π ≥ 1. Since τ(L∞/F ) = 2, (4.32) yields

λΠ = λ+
Π + λ−

Π = 1, and therefore we must have λ+
Π = 1, finishing the proof of the corollary. �

Remark 4.15. It has been shown in [HW18, Corollary 26] that, in some special cases, µIw = 0 for
the anticyclotomic extension of an imaginary quadratic field: in particular, in these cases, µfake = 0.
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Finis and Hida (see [Fin06, Hid10] and the references therein) prove that, under mild assumptions,
the analytic anticyclotomic invariant µan

Iw vanishes. As Hida and Tilouine observe in [HT94, §1,
Comment 4] the fact that their proof of the anticyclotomic main conjecture requires tensoring with
Q prevents a direct comparison between µan

Iw and µIw.

As it is clear from the proof of Corollary 4.14, the situation where p does not split in F/Q is
significantly easier to consider. In particular, the full assumptions that F/Q is imaginary quadratic
is not needed, and we single out this case in the next corollary:

Corollary 4.16. Suppose that F is a CM field and that k is its totally real subfield. Assume that

there is a unique prime above p in F/Q. Then

λfake =
λIw

2
so that λIw is even.

Proof. By Proposition 4.12-(a), we have λ(0,O×
L•

)+ = τ(L∞/F ) − λΠ − 1. On the other hand,
since there is a unique prime above p in F , the constant τ(L∞/F ) equals 1 and from the trivial
bound λ(0,O×

L•
)+ ≥ 0 we obtain

λ(0,O×
L•

)+ = λΠ = 0.

In particular, λ−
Π = 0. Moreover, since the unique prime in k above p does not split in F/k, we

also have τ(L∞/k)s = 0, so that Proposition 4.10 yields λ(−1,O×
L•

)+ = 0. The result follows from
Theorem 4.6. �

Remark 4.17. The parity result concerning the Iwasawa invariant λIw of the anticyclotomic Zp-
extension of an imaginary quadratic field F obtained in Corollary 4.14 is not new: it has already
been found by Gillard in [Gil76, Théorème 2 and Théorème 1–Corollaire], and by Carroll and
Kisilevsky in [CK82, Theorem 5]. Moreover, Carroll and Kisilevsky obtain ibid . a result similar
to Corollary 4.16, which holds for more general semi-direct products beyond the pro-dihedral case,
although under the additional assumption that F/Q is abelian with Galois group of exponent
divisible by (p− 1).

The next corollary improves Corollary 4.8 under the assumption that F is a CM field, generalizing
Corollary 4.14 to more general number fields beyond the imaginary quadratic case. As observed in
Remark 4.19, its assumptions are satisfied when F/Q is abelian.

Corollary 4.18. Suppose that F/Q is a CM field of degree 2d, and that k is its totally real subfield.

Assume that p splits completely in F/Q and that L∞/Q is Galois. Then, with notation as in

Proposition 4.10,

(4.34) λfake ≥
λIw + 1− d

2
.

If, moreover, F/Q is Galois and satisfies both the Gross and the Leopoldt conjectures, then λΠ = d,

λ−
Π ≤ d− 1, λ+

Π ≥ 1 and

(4.35) λfake ≥
λIw + 2− d

2
.

Proof. The hypotheses imply that τ(L∞/F ) = 2d and τ(L∞/k)s = [k : Q] = d. Moreover,
condition (a) of Proposition 4.12 is satisfied: we find

(4.36) λ(0,O×
L•

)+ = τ(L∞/F )− λΠ − 1 = 2d− λΠ − 1.
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The formula of Theorem 4.6 becomes, through (4.36) and Proposition 4.10,

2λfake = λIw +
(
d− λ−

Π

)
− (2d− λΠ − 1) = λIw − d+ λ+

Π + 1.

Since λ+
Π ≥ 0, the estimate (4.34) follows.

Assume the Gross and the Leopoldt conjectures for F and that F/Q is Galois: the estimate in
case (c) of Proposition 4.12 reads λ(0,O×

L•
)+ = d− 1, which yields λΠ = d through (4.36). We now

proceed to prove that λ+
Π ≥ 1: this will imply both estimates λ−

Π ≤ d−1 and (4.35). The proof goes

along the same lines as those of Corollary 4.14. Denote by G the Galois group Gal(L∞/Q) and set

L̃ = L∞Lcyc, where Lcyc is the cyclotomic Zp-extension of F . Since F/Q is Galois, so is Lcyc/Q

and the Galois group Gal(L̃/Q) is the direct product G × Gal(Lcyc/F ). Write pOk = q1 · · · qd
and qiOF = qiqd+i: each prime qj is divided by the same number of primes in L∞/F , so let

qjOL∞ = Q
(1)
j · · ·Q

(s)
j be its factorisation in L∞, for 1 ≤ j ≤ 2d. The localisations Fqj are all

isomorphic to Qp, and hence admit no totally ramified Z2
p-extension, showing that Q = Q

(1)
1 is

unramified in L̃/L∞ and so Lemma 4.13 guarantees that L̃ ⊆ M∞, where M∞ is the maximal
p-extension of L∞ which is unramified everywhere. The diagram of fields is as follows:

M∞

H

X

L̃

❊❊
❊❊

❊❊
❊❊

❊

Y =X/H
③③
③③
③③
③③
③

L∞

❊❊
❊❊

❊❊
❊❊

❊

G

Lcyc

①①
①①
①①
①①

F

Q

The group G permutes the ideals Q
(i)
j and acts trivially on Gal(L̃/L∞), so the equivalent of (4.33)

reads
(4.37)∏

i,j

Frob(Q
(i)
j ,M∞/L∞) (mod H) =

∏

τ∈Gal(Lntr
/Q)

Frob(τQ, L̃/L∞) = Frob(Q, L̃/L∞)2ds ∈ Y

where, as ibid ., Lntr
is such that L∞/Lntr

is totally ramified at all primes above p. The element

x =
∏

i,j

Frob(Q
(i)
j ,M∞/L∞) ∈ X

has infinite order by Lemma 4.13 and corresponds, via the Artin map of global class field theory,
to an element in lim

←−
Π+

n . This shows λΠ+ ≥ 1, finishing the proof. �

Remark 4.19. In the proof of (4.34), the hypothesis that L∞/Q is Galois is only needed to ensure
that all primes in F above p ramify completely in L∞/Q, in order to apply Proposition 4.12-(c).
In particular, the inequality holds also under this weaker assumption.
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One condition that guarantees that all assumptions of Corollary 4.18 are satisfied is that the
group Gal(F/Q) is abelian with exponent divisible by (p− 1): this is shown in [CK82, Theorem 1],
together with the result that both the Gross and the Leopoldt conjectures hold for abelian number
fields.

4.4. The structure of the limits of class groups. As in the previous section, fix a fake Zp-
extension of dihedral type K∞/k and adopt the conventions introduced in §4.1. Let B = (BLn) ∈
{O×

L•
,UL• , QL• , CL• , AL•} be any of the five normic systems occurring either in the left column

or in the bottom row of (3.1). As in §3.2, set BL∞ = lim
−→

BLn (resp. BK∞ = lim
−→

BKn , letting

BKn = B+
Ln

) where the limit is taken with respect to ιLm/Ln
(resp. with respect to ιKm/Kn

).
In this section we make no use of double systems: only direct and inverse systems will appear.

Indeed, the focus will be on the structure of direct and inverse limits, which are coarser invariants.
Moreover, one easily realises that the direct system of class groups with ideals extension as mor-
phisms satisfies neither (Inj) nor (Gal), and the assumptions of Proposition 2.11 are not fulfilled,
so its Gn-cohomology does not give rise to a double system fitting in a cohomological long exact
sequence. In fact, the analysis of the direct and inverse limits of class groups relies on our previous
work [CN20], and we need to consider morphisms between 0th Tate cohomology groups which are

different from the map Ĥ0(ιLm/Ln
) defined in §2.2.2, because of the factor pm−n appearing there.

To define these morphisms, observe that, for m ≥ n ≫ 0, NLm/Ln
: ALm → ALn is surjective and

so, by the arguments of Remark 2.8, we have maps

ι̂Lm/Ln
: Ĥ0(Gn, ALn) −→ Ĥ0(Gm, ALm) and ι̂+Lm/Ln

: Ĥ0(Dn, ALn) −→ Ĥ0(Dm, ALm).

We can therefore take direct limits with respect to these maps, and define the groups6

Ĥ0(Γ, AL∞) := lim
−→

ι̂Lm/Ln

Ĥ0(Gn, ALn) and Ĥ0(D, AL∞) := lim
−→

ι̂+
Lm/Ln

Ĥ0(Dn, ALn).

Being direct limits of finite D0-modules, these are Zp-torsion Zp[D0]-modules; moreover, via Propo-

sition 4.2, they satisfy Ĥ0(Γ, AL∞)+ ∼= Ĥ0(D, AL∞), extending the isomorphisms ibid . for i ≥ 1.
More generally, in this section, we tacitly identify plus parts of all Gn-cohomology groups (resp. of
all Γ-cohomology groups) with Dn-cohomology (resp. D-cohomology).

4.4.1. An Euler–Poincaré formula for fake Zp-extensions of dihedral type. The main
result of this section is Theorem 4.22, which can be seen as a relationship between dihedral versions
of Herbrand quotients of class groups and of units, at least in the limit. This theorem will also be
pivotal in the next section to interpret the invariant λfake as the dimension of a Qp-vector space.

We begin by relatingH1(D, AL∞) toH2(D, QL∞) on the one hand, and Ĥ0(D, AL∞) toH1(D, QL∞)
on the other.

Proposition 4.20. There is an isomorphism of Zp-modules

Ĥ0(D, AL∞) ∼= H1(D, QL∞)

and an exact sequence

0 99K H1(D, AL∞) 99K H2(D, QL∞) 99K H2(D, CL∞) 99K 0

in the category Modco-f.g.
Zp

/Modfin
Zp
. Moreover, H2(D, CL∞) ∼= Qp/Zp.

6In [NSW08, Definition I.1.9.3], the notation Ĥ0(G,M) denotes a different construction, which we do not need,
hence we allow ourselves this inconsistency.
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Proof. By Proposition 2.10, we have a commutative diagram

H0(Dm, ALm)
δ(0) // Ĥ1(Dm, QLm)

H0(Dn, ALn)
δ(0) //

ιLm/Ln

OO

Ĥ1(Dn, QLn)

Ĥ1(ιLm/Ln)

OO

(4.38)

The definition of Ĥ1(ιLm/Ln
) given in Remark 2.8 makes it clear that (4.38) induces the commu-

tative diagram

Ĥ0(Dm, ALm)
δ̂(0) // Ĥ1(Dm, QLm)

Ĥ0(Dn, ALn)
δ̂(0) //

ι̂Lm/Ln

OO

Ĥ1(Dn, QLn)

Ĥ1(ιLm/Ln)

OO

From [CN20, Proposition 3.4], the rows of the above diagram are isomorphisms, and so by taking
limits we obtain the first statement of the proposition.

Arguing as in the proof of [CN20, Proposition 3.4], we get an exact sequence

0 −→ Ĥ1(Gn, ALn) −→ Ĥ2(Gn, QLn) −→ Ĥ2(Gn, CLn) −→ Ĥ2(Gn, ALn) −→ Ĥ3(Gn, QLn) −→ 0

with its plus counterpart

0 −→ Ĥ1(Dn, ALn) −→ Ĥ2(Dn, QLn) −→ Ĥ2(Dn, CLn) −→ Ĥ2(Dn, ALn) −→ Ĥ3(Dn, QLn) −→ 0.

By Proposition 4.2, this exact sequence can be shortened as

(4.39) 0 −→ Ĥ1(Dn, ALn) −→ Ĥ2(Dn, QLn) −→ Ĥ2(Dn, CLn) −→ Ker
(
δ̂(0)n

)−
−→ 0

where δ̂
(0)
n : Ĥ0(Gn, ALn) → Ĥ1(Gn, QLn) is the morphism analysed in Remark 4.11. As shown

ibid ., Ker(δ̂
(0)
n ) is bounded independently of n, and taking direct limits of (4.39) we obtain the

exact sequence of the statement.
Concerning the final isomorphism, an argument similar to the one used to prove the commutativ-

ity of the left-hand diagram of Lemma 3.5 shows that the direct system (Ĥ2(Dn, CLn), Ĥ
2(ιLm/Ln

))

is isomorphic to (Ĥ0(Dn,Zp), Ĥ
0(jn,m)) ∼= ( 1

pnZp/Zp, incl) (where incl denotes the inclusion
1
pnZ →֒

1
pmZ), finishing the proof. �

Remark 4.21. The proof of the above proposition actually shows that there is an exact sequence

0 −→ H1(D, AL∞) −→ H2(D, QL∞) −→ H2(D, CL∞) −→ V −→ 0

in the category Modco-f.g.
Zp

with V in Modfin
Zp
. Since we are only interested in comparing coranks of

divisible Zp-modules, here and in what follows we content ourselves to work in Modco-f.g.
Zp

/Modfin
Zp
.

We can now proceed to the proof of the main result of this section, that we regard as an Euler–
Poincaré formula:

Theorem 4.22. Given a fake Zp-extension of dihedral type K∞/k with normal closure L∞/k, we
have

cork Ĥ0(D, AL∞)− corkH1(D, AL∞) = corkH2(D,O×
L∞

)− corkH1(D,O×
L∞

) + 1.
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Proof. Taking direct limits in (3.28) we obtain the exact sequence in Modco-f.g.
Zp

/Modfin
Zp

0 99K H1(Γ,O×
L∞

) 99K H1(Γ,UL∞) 99K H1(Γ, QL∞) 99K H2(Γ,O×
L∞

)
v∞
99K H2(Γ,UL∞).

By construction, the rightmost morphism v∞ : H2(Γ,O×
L∞

) 99K H2(Γ,UL∞) is the image, in the

quotient category, of the direct limit of the morphisms H2(Gn,O
×
Ln

) → H2(Gn,ULn). It follows
that we can complete the above sequence as

0 99K H1(Γ,O×
L∞

) 99K H1(Γ,UL∞) 99K H1(Γ, QL∞) 99K H2(Γ,O×
L∞

) 99K H2(Γ,UL∞) 99K H2(Γ, QL∞) 99K 0

where the final 0 is a consequence of Γ having strict cohomological dimension equal to 2. By taking
plus parts we get, through Corollary 4.4-(4.3),

corkH1(D, QL∞)− corkH2(D, QL∞) = corkH1(D,UL∞)− corkH2(D,UL∞) + corkH2(D,O×
L∞

)

− corkH1(D,O×
L∞

)

= corkH2(D,O×
L∞

)− corkH1(D,O×
L∞

).

Moreover, by Proposition 4.20,

corkH2(D, QL∞) = corkH1(D, AL∞) + 1

and

corkH1(D, QL∞) = cork Ĥ0(D, AL∞),

finishing the proof. �

4.4.2. Interpretation of λ
fake

. Let Λ = Zp[[Γ]] denote the Iwasawa algebra of the group Γ =
Gal(L∞/F ). In this section we show that the invariant λfake obtained in Theorem 4.6 is also the
dimension of the Qp-vector space Xfake ⊗Zp Qp, where

Xfake = lim
←−

AKn ,

the inverse limit being taken with respect to norms. The analogous result for XIw (with λIw

replacing λfake) is well-known and comes from the structure theorem for finitely generated torsion
Λ-modules together with a classical descent argument (see [Iwa73, §1.2 and Theorem 7]). Since
Xfake is not stabilized by Γ, and hence it is not a Λ-submodule of XIw, we argue in a different way.
Our approach is to work with direct, rather than inverse, limits because they are easier to analyse
in our setting. We then recover the result about inverse limits via a purely algebraic argument due
to Yamashita.

Tensoring the exact sequence [CN20, (3.1)] with Zp, we obtain

(4.40) 1 −→ Ker ηn −→ AKn ⊕AK′
n

ηn
−→ ALn −→ Coker ηn −→ 1

where the map ηn is defined via the formula

ηn (c, c′) = ιLn/Kn
(c)ιLn/K′

n
(c′) for c ∈ AKn , c

′ ∈ AK′
n
.

The explicit definition of ηn makes it evident that, for m ≥ n, the relations

(4.41) ηm ◦
(
ιKm/Kn

⊕ ιK′
m/K′

n

)
= ιLm/Ln

◦ ηn

hold. We can therefore take direct limits with respect to the extension maps to obtain an exact
sequence

(4.42) 1 −→ Ker η∞ −→ AK∞ ⊕AK′
∞

η∞
−→ AL∞ −→ Coker η∞ −→ 1

where η∞ = lim−→ ηn.
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The first step of our strategy is to interpret, in Lemmas 4.23 and 4.24, Ker η∞ and Coker η∞ in
terms of the cohomology groups of AL∞ . We then invoke Theorem 4.22 to compare their coranks.

Lemma 4.23. The modules Ker η∞ and Ĥ0(D, AL∞) are Modfin
Zp
-isomorphic.

Proof. Recall from [CN20, Proposition 3.2] that

Ker ηn ∼= H0(Dn, ALn)

and the isomorphism, called θ ibid ., is defined by sending (x, x′) ∈ Ker ηn ⊆ AKn ⊕ AK′
n

to
ιLn/Kn

(x). Hence, the diagram for m ≥ n ≥ 0

Ker ηm
∼ // H0(Dm, ALm)

Ker ηn

ιKm/Kn⊕ιK′
m/K′

n

OO

∼ // H0(Dn, ALn)

ιLm/Ln

OO

commutes, showing that

(4.43) Ker η∞ ∼= H0(D, AL∞).

The definition of Tate cohomology groups gives another commutative diagram

0 // NmDmALm
// H0(Dm, ALm) // Ĥ0(Dm, ALm) // 0

0 // NmDnALn

ιLm/Ln

OO

// H0(Dn, ALn)

ιLm/Ln

OO

// Ĥ0(Dn, ALn)

ι̂Lm/Ln

OO

// 0

yielding the exact sequence

0 −→ lim−→NmDnALn −→ H0(D, AL∞) −→ Ĥ0(D, AL∞) −→ 0.

The groups NmDnALn have bounded order since

|NmDnALn | = |ιLn/kNLn/kALn | ≤ |ιLn/kAk| ≤ |Ak|,

so their direct limit is certainly a finite group. We conclude using (4.43). �

Lemma 4.24. The modules Coker η∞ and H1(D, AL∞) are Modfin
Zp
-isomorphic.

Proof. As in the proof of [CN20, Proposition 3.2], Remark 3.1 ibid . yields the exact sequence

0 −→ ALm [NmGm ]/
(
ALm [NmGm ] ∩ Im ηm

)
−→ Coker ηn

NmGn−→ NmGnALn/NmDnALn −→ 0.

We actually have commutative diagrams, for m ≥ n ≥ 0,

0 // ALm [NmGm ]/
(
ALm [NmGm ] ∩ Im ηm

)
// Coker ηm

NmGm // NmGm(ALm)/NmGm(Im ηLm) // 0

0 // ALn [NmGn ]/
(
ALn [NmGn ] ∩ Im ηn

)
ιLm/Ln

OO

// Coker ηn

ιLm/Ln

OO

NmGn // NmGn
(ALn)/NmGn(Im ηn)

pm−nιLm/Ln

OO

// 0
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By [CN20, (2.7)] and by definition of Ĥ−1(ιLm/Ln
) (see §2.2.1), this can be rewritten as

0 // Ĥ−1(Gm, ALm)− // Coker ηm
NmGm // NmGm(ALm)/NmGm(Im ηLm) // 0

0 // Ĥ−1(Gn, ALn)
−

Ĥ−1(ιLm/Ln)

OO

// Coker ηn

ιLm/Ln

OO

NmGn
// NmGn

(ALn)/NmGn(Im ηn)

pm−nιLm/Ln

OO

// 0

Moreover, the cup product with κn induces an isomorphism Ĥ−1(Gn, ALn)
− ∼= Ĥ1(Dn, ALn), and

by definition of Ĥ1(ιLm/Ln
), together with Lemma 2.7, the diagram becomes

0 // Ĥ1(Dm, ALm) // Coker ηm
NmGm // NmGm(ALm)/NmGm(Im ηLm) // 0

0 // Ĥ1(Dn, ALn)

Inf ◦ι∗Lm/Ln

OO

// Coker ηn

ιLm/Ln

OO

NmGn
// NmGn

(ALn)/NmGn(Im ηn)

pm−nιLm/Ln

OO

// 0

The groups on the right have bounded order since |NmGnALn | ≤ |AF |, by the same argument as
at the end of the proof of Lemma 4.23. Taking direct limits we obtain the statement. �

Combined with Theorem 4.22, the above lemmas yield the following

Corollary 4.25. We have

2 corkAK∞ − corkAL∞ = corkKer η∞ − corkCoker η∞ = λ(2,O×
L•

)+ − λ(1,O×
L•

)+ + 1

where λ(1,O×
L•

)+ and λ(2,O×
L•

)+ are the invariants defined in Corollary 4.4-ii).

Proof. From the exact sequence (4.42), we obtain

2 corkAK∞ − corkAL∞ = corkKer η∞ − corkCoker η∞

(Lemmas 4.23 and 4.24) = cork Ĥ0(D, AL∞)− corkH1(D, AL∞)

(Theorem 4.22) = corkH2(D,O×
L∞

)− corkH1(D,O×
L∞

) + 1

(Corollary 2.32 and Corollary 4.4-ii) ) = λ(2,O×
L•

)+ − λ(1,O×
L•

)+ + 1. �

We are now in shape to relate the invariant λfake to the Zp-module structure of Xfake, but we
first need a final lemma:

Lemma 4.26. The equalities

corkAL∞ = dimQp XIw ⊗Zp Qp and corkAK∞ = dimQp Xfake ⊗Zp Qp

hold.

Proof. The first equality can be deduced from [Iwa73, Theorem 11]. Here we give an alternative
proof, following that of [Yam84, Lemma 2], which also yields the second equality.

Since XIw is a finitely generated torsion Λ-module, we know, by the structure theorem of such
modules, that there exists β ∈ N such that pβXIw is a finitely generated torsion Λ-module with
trivial µ-invariant. Since pβXIw = lim

←−
pβALn , we deduce that the Zp-ranks of p

βALn are bounded

and thus so are those of pβAKn . As arithmetic norms are eventually surjective on ALn , their
restriction to pβALn is also eventually surjective, and likewise when restricting to pβAKn . Similarly,
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the kernel of the extension map restricted to pβALn has bounded order and, again, the same holds
when restricting to pβAKn . We can therefore apply [Yam84, Lemma 1] to obtain that

cork(pβAL∞) = dimQp(p
βXIw ⊗Zp Qp) and cork(pβAK∞) = dimQp(p

βXfake ⊗Zp Qp).

This concludes the proof because, for every Zp-module M , dimQp(p
βM⊗ZpQp) = dimQp(M⊗ZpQp)

and cork(pβM) = corkM . �

Finally, we obtain the main result of this section.

Theorem 4.27. Given a fake Zp-extension of dihedral type K∞/k, we have λfake = dimQp Xfake⊗Zp

Qp.

Proof. By the structure theorem of finitely generated Λ-modules, we know that

(4.44) dimQp XIw ⊗Zp Qp = λIw.

Now, using Theorem 4.6, we deduce

2λfake = λIw + λ(−1,O×
L•

)+ − λ(0,O×
L•

)+

(Corollary 4.4-(4.9) and -(4.4)) = λIw + λ(2,O×
L•

)+ − λ(1,O×
L•

)+ + 1

(by (4.44)) = dimQp XIw ⊗Zp Qp + λ(2,O×
L•

)+ − λ(1,O×
L•

)+ + 1

(Lemma 4.26) = corkAL∞ + λ(2,O×
L•

)+ − λ(1,O×
L•

)+ + 1

(Corollary 4.25) = 2 corkAK∞

(Lemma 4.26) = 2 dimQp

(
Xfake ⊗Zp Qp

)
. �
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MR0102537 Zbl 0118.26104 2.2, 2.2, 2.3

[Gro81] Gross, B.H. p-adic L-series at s = 0. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3) (1981) 979–994 (1982).
MR0656068 Zbl 0507.12010 4.3, 4.3

[Hid10] Hida, H. The Iwasawa µ-invariant of p-adic Hecke L-functions. Ann. of Math. (2) 172(1) (2010) 41–137.
MR2680417 Zbl 1223.11131 4.15



COHOMOLOGY OF NORMIC SYSTEMS AND FAKE Zp-EXTENSIONS 63

[HT94] Hida, H.; Tilouine, J. On the anticyclotomic main conjecture for CM fields. Invent. Math. 117(1) (1994)
89–147. MR1269427 Zbl 0819.11047 4.15

[HW18] Hubbard, D.; Washington, L.C. Iwasawa invariants of some non-cyclotomic Zp-extensions. J. Number
Theory 188 (2018) 18–47. MR3778621 Zbl 1455.11147 4.15

[Iwa73] Iwasawa, K. On Zl-extensions of algebraic number fields. Ann. Math. (2) 98 (1973) 246–326. MR0349627
Zbl 0285.12008 4.4.2, 4.4.2

[Iwa81] ——. Riemann–Hurwitz formula and p-adic Galois representations for number fields. Tohoku Math. J. (2)
33 (1981) 263–288. MR0624610 Zbl 0468.12004 1

[Iwa83] ——. On cohomology groups of units for Zp-extensions. Amer. J. Math. 105(1) (1983) 189–200. MR0692110
Zbl 0525.12009 1, 3.2, 3.12
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