Effect of Al2O3, ZnO and TiO2 Atomic Layer Deposition Grown Thin Films on the Electrochemical and Mechanical Properties of Sputtered Al-Zr Coating
Abstract
The 316L stainless steels, often used in turbine blades for naval and marine applications, usually suffer from localized pitting corrosion after long exposure to chlorinated environments. The aluminum-zirconium coatings deposited by magnetron sputtering technique can be used to ensure cathodic protection for steels. In this work, we study the influence of atomic layer deposited (ALD) Al2O3, ZnO, and TiO2 thin films on the structural, mechanical, and electrochemical properties of Al-Zr (4 at.% Zr) magnetron sputtered coatings. The morphology, preferred orientation growth, mechanical properties, wettability, and corrosion resistance were investigated. The change in the sputtered Al-Zr morphology is mainly due to the insertion of the ALD layer. The Al-Zr layer deposited on ZnO and TiO2 layers presented a distinctive morphology. The agglomerate particles of AlZr/Al2O3/AlZr, AlZr/ZnO/AlZr and AlZr/TiO2/AlZr coatings exhibited a cauliflower shape. For ALD/PVD coatings, the insertion of an ALD oxide layer promoted the intensity of the peaks corresponding to the (111) crystallographic orientation. The nanoindentation measurements confirmed the enhancement in the mechanical properties, where the hardness increased by about 75%. The ALD oxide layers promoted the hydrophobicity of the coatings. The electrochemical characterization in a 3.5 wt.% NaCl solution also confirmed the role of the ALD oxides layers in delaying the pitting corrosion of the Al-Zr coating by widening the passive region and enhancing the protective efficiency of the passive film.
Origin | Publisher files allowed on an open archive |
---|---|
Licence |