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Introduction

Multi-Target Tracking (MTT) is a fundamental system to interpret the perceived environment of mobile robots such as autonomous vehicles [START_REF] Armingol | Chapter 2-Environmental Perception for Intelligent Vehicles, Intelligent Vehicles: Enabling Technologies and Future Developments[END_REF][START_REF] Brummelen | Autonomous vehicle perception: the technology of today and tomorrow[END_REF]. These cars require precise knowledge of their surrounding environment in order to ensure safe and comfortable driving (Boumediene et al. 2014(Boumediene et al. , 2014;;[START_REF] Steyer | Grid-based environment estimation using evidential mapping and particle tracking[END_REF]). The MTT system estimates the status of detected objects surrounding the vehicle at different times by single or multiple sensors. Data Association is a central problem in MTT which assigns targets to the predicted tracks in order to update their status. Targets refer to the detected objects at the current time and tracks refer to the known objects in the scene. A dynamic environment, like the road environment, makes the object association more difficult because of the appearance/disappearance of objects in the perceived scene.

Usually, the assignment problem is resolved by the probability theory. Several methods have been proposed as the well-known Global Nearest Neighbour (GNN) method and the Joint Probability Data Association Filter (JPDAF) [START_REF] Blackman | Multiple-target Tracking with Radar Applications[END_REF][START_REF] Fortmann | Sonar tracking of multiple targets using joint probabilistic data association[END_REF][START_REF] Bar-Shalom | Tracking and Data Fusion: A Handbook of Algorithms[END_REF]. GNN provides the optimal pairing by minimizing the global distance between detections and known objects. JPDAF is based on a weighted linear combination of all detections to estimate status of known objects. More details about these methods can be found in [START_REF] Bar-Shalom | Multitarget-Multisensor Tracking: Principles and Techniques[END_REF][START_REF] Blackman | Design and Analysis of Modern Tracking Systems[END_REF][START_REF] Bar-Shalom | Tracking and Data Fusion: A Handbook of Algorithms[END_REF].

Recently, the belief function theory has also been used to cope with the association problem (Boumediene et al. 2014;[START_REF] Mercier | Object association with belief functions, an application with vehicles[END_REF]. This theory, also called Dempster-Shafer Theory (DST) [START_REF] Dempster | A generalization of bayesian inference[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] allows to reason about uncertainty thanks to the belief functions that are often interpreted as lower and upper bound of unknown probability measures. In fact, sensor's detections can be inaccurate and incomplete. However, the DST models these imperfect information through a distribution of belief masses which quantify the confidence granted. Thereafter, these masses are combined by Dempster's rule to make decisions. Because Dempster's rule has been used and promoted by Shafer in his mathematical theory of evidence, it is also often denoted as DS rule in the literature.

Rombaut [START_REF] Rombaut | Decision in multi-obstacle matching process using Dempster-Shafer's theory[END_REF] formalizes the association problem by DST to reconstruct the environment of intelligent vehicles. This approach measures the confidence of the association hypotheses between perceived and known obstacles by combining belief masses using DS rule. This approach is extended in [START_REF] Gruyer | Multi-hypotheses tracking using the Dempster-Shafer theory, application to ambiguous road context[END_REF]; [START_REF] Mercier | Object association with belief functions, an application with vehicles[END_REF] to track vehicles where the association process is based on the Transferable Belief Model (TBM) [START_REF] Smets | The transferable belief model[END_REF]. This latter is a subjective and non-probabilistic interpretation of the Belief theory. In TBM, the decisionmaking is based on the pignistic probabilities derived from the belief quantities. Several alternative probabilistic transformations have been proposed in the literature. Our previous work [START_REF] Boumediene | Evaluation of probabilistic transformations for evidential data association[END_REF] evaluates some of them on real-data in the context of the DST framework. In [START_REF] Mercier | Object association with belief functions, an application with vehicles[END_REF], the decision is performed by maximizing the joint pignistic probability. However, this probability is computed for all possible associations which grows the computation time exponentially with the objects number. To tackle this problem, the decision is made by selecting associations corresponding to local maxima of pignistic probabilities (Boumediene et al. 2014;[START_REF] Daniel | Multi-object association decision algorithms with belief functions[END_REF]. More recently, Denoeux et al. [START_REF] Denoeux | Optimal object association in the Dempster-Shafer framework[END_REF] express DS rule in terms of contour functions and plausibility functions which reduces the complexity and makes this approach applicable for real-time applications.

All those aforementioned approaches use Dempster's rule which provides a counter-intuitive behavior specially in high and low conflicting situations [START_REF] Zadeh | On the validity of dempster's rule of combination[END_REF]Smarandache and Dezert 2015). In fact, DS rule redistributes the conflicting mass on all elements which can cause the lost of the information specificity and then generates unacceptable results. In addition, serious mistakes have been shown in logical fundamentals of the DST framework (Dezert et al. 2012;[START_REF] Tchamova | On the behavior of Dempster's Rule of combination and the foundations of Dempster-Shafer theory (Best paper awards)[END_REF][START_REF] Smarandache | Examples where the conjunctive and Dempster's rules are insensitive[END_REF]. To overcome those drawbacks, a more sophisticate rule has been proposed and defined in the framework of Dezert-Smarandache Theory (DSmT) (Smarandache and Dezert 2015). Based on the Proportional Conflict Redistribution (PCR) process, PCR6 rule preserves the information specificity by transferring the conflicting mass only to the elements involved in the conflict and proportionally to their individual masses. However, PCR6 has an exponential complexity and that is why it is rarely used for real-time applications.

In this paper, we propose a new evidential data association based on the DSmT framework. The first contribution is to reduce the complexity of the combination step based on PCR6 rule developed originally in the framework of Dezert-Smarandache Theory. The proposed approach focuses on the significant pieces of information when combining and removes unreliable and useless information. Consequently, the complexity is reduced without degrading substantially the decision-making. The second contribution is to propose a new simple decision-making algorithm based on a global optimization. Experimental results obtained on a well-known intelligent transportation systems dataset show the benefits of this new approach in terms of computation time reduction and association accuracy.

The rest of this paper is organized as follows. In Sect. 2, few basics of the DSmT are presented. Section 3 details the new proposed evidential data association approach and its experimental validation is presented in Sect. 4. Finally, Sect. 5 concludes this paper.

Fundamentals of DSmT

In the Belief theory context, a problem is modelled by a finite set of hypotheses H i likely to be the solutions, called Frame of Discernment (FoD). In the general DSmT framework, the elements of the FoD do not need to be mutually exhaustive as in the DST framework, but in the particular context of our application presented in this paper, we work with Shafer's model of the FoD where all elements of the FoD are mutually exclusive and exhaustive, that is:

where H i are denoted as singletons, the lowest piece of dis- cernible knowledge in the FoD.

Basic belief assignment

A basic belief assignment (bba) or mass function associated to a given source is defined as a function m ∶ 2 Θ → [0, 1] satisfying: where m(A) is the mass of belief that supports A. The source is totally ignorant if m(Θ) = 1 and so the bba is considered as vacuous function. Whether m(A) > 0 , A is called a focal element of the bba m(.). Thus F(m) = {A ∈ 2 Θ ∕m(A) > 0} defines the set of focal elements.

(1)

Θ = ⋃ k i=1 � H i � with H i ∩ H j = � (2) ∑ A∈2 Θ m(A) = 1

Vacuous extension

Some sources of information can express on different FoDs but related. However, in order to combine them, it is necessary to work with the same common frame. For that, it can be defined a finer FoD [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]. Let Ω a finer frame of Θ where every element of Θ is mapped into one or more ele- ments of Ω (Cf. Fig. 1). Therefore, the refinement function matches proposition A from 2 Θ to 2 Ω according to:

The vacuous extension m Θ↑Ω defines the bba on Ω from the bba m Θ defined on Θ and the refinement :

Belief combination

The belief combination consists in merging the measures of evidence m Θ i of M distinct sources S i , defined on the same frame Θ , to a new distribution of evidence. For that, the Pro- portional Conflict Redistribution rule 6 (PCR6) have been proposed in [START_REF] Martin | A new generalization of the proportional conflict redistribution rule stable in terms of decision[END_REF] and theoretically justified in Smarandache and Dezert (2015). In fact, PCR6 rule overcomes the drawbacks of the Dempster rule [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]) by redistributing proportionally the partial conflict only on elements involved in this conflict. The formula of PCR6 is defined by m PCR6 (�) = 0 and ∀A ∈ 2 Θ �{�} by Dez- ert and Dezert (2021); Dezert et al. (2021):

(3)

� {𝜌({𝜃}), 𝜃 ∈ Θ} is a partition of Ω ∀A ⊆ Θ, 𝜌(A) = ⋃ 𝜃∈A 𝜌({𝜃}). (4) m Θ↑Ω (𝜌(A)) = m Θ (A), ∀A ⊆ Θ 0, otherwise.
(5)

m PCR6 (A) = m Conj (A) + � j∈{1,…,F}�A∈ j ∧ j (�) ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ � � i∈{1,…,M}�A j i =A m Θ i (A j i ) � ⋅ j (�) ∑ A∈ j � ∑ i∈{1,…,M}�A j i =A m Θ i (A j i ) � ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ,
where ∧ is the logical conjunction 1 and j is a pos- sible M-uple of focal elements with

A j i ∈ F(m Θ i ) , that is j ≜ A j 1 , A j 2 , … , A j M . F is the cardinality of F(m Θ 1 , m Θ 2 , … , m Θ M )
which is the set of all possible M-uple. And where

j (A j 1 ∩ A j 2 ∩ ⋯ ∩ A j M ) ≜ ∏ M i=1 m Θ i (A j i ) ,
and

j (�) = j (A j 1 ∩ A j 2 ∩ ⋯ ∩ A j M ) defines the conflicting mass product of j if A j 1 ∩ A j 2 ∩ ⋯ ∩ A j M = �
and the conjunctive rule m Conj is given by:

Probabilistic transformation

Decision-making consists of selecting a solution among all possible hypotheses. Usually, the decision must be made among elements of the frame. However, the belief combination also generates masses for disjunctive propositions. Therefore, it is necessary to redistribute the masses of these unions on elements of Θ in order to make a decision. For that, Dezert-Sma- randache Probability (DSmP) transformation is defined (Dezert et al 2012) where DSmP(�) = 0 and ∀A ∈ 2 Θ �{�}:

Where ≥ 0 is used to adjust the effect of element's cardi- nality ( C(.) ) in the proportional redistribution. In addition, permits to compute DSmP when encountering zero masses. Typically, = 0.001 because with a smaller the Probabilis- tic Information Content (PIC) (Sudano 2002) is higher. The PIC indicates the level of the available knowledge to make a correct decision. PIC = 0 indicates that no knowledge exists to make a correct decision.

Data association using DSmT

Four steps are needed to solve the data association problem: modeling, estimation, combining, and decision-making. However, PCR6 rule combination has an exponential complexity which makes it not appealing for real-time applications. This is why in this paper, only k-significant sources are combined (with k lesser than the original number or sources available). Thereafter, a simple global optimization is used to make association decisions.

(6) m Conj (A) = ∑ A j 1 ∩…∩A j M =A M ∏ i=1 m Θ i (A j i ). (7) DSmP 𝜀 (A) = � Y∈2 Θ ∑ Z ⊆ A ∩ Y C(Z) = 1 m(Z) + 𝜀 ⋅ C(A ∩ Y) ∑ Z ⊆ Y C(Z) = 1 m(Z) + 𝜀 ⋅ C(Y)
Fig. 1 Illustration of the refinement function [START_REF] Mercier | Object association with belief functions, an application with vehicles[END_REF] 1 i.e. x ∧ y means that conditions x and y are both true.

Data modelling

Let us consider n detected objects at time t and m known objects at previous time t -1 . In this context, data association aims at matching the n detected objects X i to the m known ones Y j under certain conditions:

• multiple associations are not accepted, a detected object is associated with only one known object at most and vice versa, • multiple new objects can appear,

• multiple known objects can disappear.

The distances between the attributes of objects (position, velocity, etc.) are considered as pieces of evidence. For a given distance, its belief will be expressed on the elementary FoD i,j = {yes (i,j) , no (i,j) } which models the relevance of the association between X i and Y j . Therefore, three bba masses are constructed for each pairwise objects ( X i , Y j ):

• m i,j (yes (i,j) ) : degree of belief that X i is associated with Y j , • m i,j (no (i,j) ) : degree of belief that X i is not associated with Y j ,

• m i,j ( i,j ) : represents the ignorance.

Belief estimation

The estimation of belief masses is related to the considered application. The most suitable model for data association applications [START_REF] Boumediene | Evidential Data association: benchmark of belief assignment models[END_REF] is the non-antagonist model [START_REF] Gruyer | Multi-hypotheses tracking using the Dempster-Shafer theory, application to ambiguous road context[END_REF][START_REF] Rombaut | Decision in multi-obstacle matching process using Dempster-Shafer's theory[END_REF]) defined by:

where I i,j ∈ [0, 1] is an index of similarity between X i and Y j . Φ 1 (.) and Φ 2 (.) are two cosine functions defined as follows:

(8) m Θ i,. j (Y (i,j) ) = 0 ,I i,j ∈ [0, ] Φ 1 (I i,j ) , I i,j ∈ [ , 1] (9) m Θ i,. j ( Ȳ(i,j) ) = Φ 2 (I i,j ) , I i,j ∈ [0, 𝜏] 0 ,I i,j ∈ [𝜏, 1] (10) m Θ i,. j (Θ i,. ) = 1 -m Θ i,. j ( Ȳ(i,j) ) , I i,j ∈ [0, 𝜏] 1 -m Θ i,. j (Y (i,j) ) , I i,j ∈ [𝜏, 1], (11) ⎧ ⎪ ⎨ ⎪ ⎩ Φ 1 (I i,j ) = 2 � 1 -cos( I i,j -) � Φ 2 (I i,j ) = 2 � 1 + cos( I i,j ) �
where 0 < 𝛼 < 1 is the reliability factor of the data source and 0 < 𝜏 < 1 represents the impartiality of the association process.

k-Significant sources combination

Before decision-making, sources should be combined which is possible only if they express on the same FoD. Hence, to determine who is associated to the detected object X i , a new FoD is defined Θ i,. (12). This new frame is composed of the m possible X i -to-Y j associations denoted Y (i,j) and the appearance hypothesis of object X i denoted by Y (i, * ) :

Therefore, Θ i,. is a refinement frame of the previous FoDs i,j in which the belief is initially expressed (Cf. Fig. 2). Based on a vacuous extension (3), initial belief functions m i,j are expressed on Θ i,. as follows:

where Ȳ(i,j) represents the hypothesis "X i is not asso- ciated to Y j " which corresponds to the union of all association hypotheses expect the Y (i,j) , i.e.

Ȳ(i,j) = {Y (i,1) , … , Y (i,j-1) , Y (i,j+1) , … , Y (i,m) , , Y (i, * ) } . It should be noted that no information is initially considered on Y (i, * ) .
This information appears during combination step.

Once the sources are expressed on the same frame, the bbas are combined with the PCR6 rule. However, combining all sources increases the time-consuming and can be reach an exponential complexity when the number of sources is important. To overcome this drawback, this paper proposes a new method to reduce the combination complexity without sacrificing too much the decision quality.

The proposed approach selects only information having belief in top k highest masses. Formally, for each X i object, initial masses on association hypotheses are sorted:

(12) Θ i,. = Y (i,1) , Y (i,2) , … , Y (i,m) , Y (i, * ) . (13) ⎧ ⎪ ⎨ ⎪ ⎩ m Θ i,. j (Y (i,j) ) = m 𝜃 i,j (yes (i,j) ) m Θ i,. j ( Ȳ(i,j) ) = m 𝜃 i,j (no (i,j) ) m Θ i,. j (Θ i,. ) = m 𝜃 i,j (𝜃 i,j )
Fig. 2 The refinement frames of i,j : Θ i,.

where b 1 is highest mass of belief, so the source that gener- ated it is the most significant for matching X i . On other hand, the least important source is that which generates the lowest belief b m . Now, only k most significant sources are selected for their combination. Therefore, for each X i assignment, Θ i,. is defined as follows:

with z ∈ {1, … , m} and k < m . Consequently, Θ i,. con- tains only the most relevant hypotheses and ignores others ( b z < b k ). By this simple selection procedure one reduces the computation complexity of the combination process.

If b k = 0 , b k-1 is used to select significant sources. In the case where no b k > 0 , the object X i is considered as an appearance and is associated directly to Y (i, * ) . Thereafter, initial mass functions m i,j (.) is hence transferred to Θ i,. by the refinement defined in (13) and the PCR6 rule of combination (5) is applied.

Decision-making

The assignment decision is based on the DSmP i,. matrix which is the probabilistic approximation of the combined masses. Table 1 presents the DSmP i,. of the detected-to- known objects association. Each line defines the association probabilities of the detected object X i with all known ones Y j . DSmP i,. (Y (i, * ) ) defines the appearance probability of X i . It is useful to note that multiple objects can appear/disappear. Different decision-making strategies have been proposed according to the desired objectives [START_REF] Daniel | Multi-object association decision algorithms with belief functions[END_REF][START_REF] Mercier | Object association with belief functions, an application with vehicles[END_REF]. There are two approaches depending on the type of optimization: global or local. The first approach selects the "best" associations optimizing a global cost function [START_REF] Gruyer | Multi-objects association in perception of dynamical situation[END_REF][START_REF] Royère | Data association with believe theory[END_REF]. The Joint Pignistic Probability (JPP) BetP ∏ n i=1 is defined as the cost function in [START_REF] Mercier | Object association with belief functions, an application with vehicles[END_REF]:

(14) b 1 ≥ b 2 ≥ ⋯ ≥ b z ≥ ⋯ ≥ b m b z = m i,j (yes (i,j) ), and z, j ∈ {1, … , m} (15) Θ i,. = Y (i,z) ∕b z ≥ b k , Y (i, * ) (16) BetP ∏ n i=1 = BetP 1,. (Y (1,j 1 ) ) × … × BetP n,. (Y (n,j n ) )
with j i ∈ {1, 2, … , m, * } . Among all possible solutions for the detected-to-known association, the best is that maximizing BetP ∏ n i=1

. However, when the number of possible associations is important, this optimization generates a high computational complexity. To cope with this inconvenience, another approach consists of resolving the assignment problem by a local optimization. The Local Pignistic Probability (LPP) [START_REF] Daniel | Multi-object association decision algorithms with belief functions[END_REF] makes the association decisions according to local maxima of the pignistic matrix ( BetP i,. ). The LPP method performs a successive selection of n local maxima while respecting the association constrains (Cf. Sect. 3.1). However, local optimization is considered as a sub-optimal solution.

In this paper, a new simple global optimization is applied/proposed. Firstly, the last column ( Y (i, * ) ) of the DSmP matrix is removed in order to select "best" associations by using the well-known Munkres algorithm (Munkres 1957). The complexity of this algorithm is only O(n 3 ) (Munkres 1957). Secondly, for each selected association Y (i,j) , if DSmP i,. (Y (i,j) ) < DSmP i,. (Y (i, * ) ) the association Y (i,j) is removed and the object X i is considered to be a new object ( Y (i, * ) ).

Illustrative example

Let us consider the simulated example presented in Fig. 3. The scenario shows 5 detected objects and 4 known objects. By observing the corresponding initial bba presented in Table 2, one can already assume some associations. For instance, with m Θ 3,. (yes (3,1) ) = 0.85 and m Θ 2,. (yes (2,4) ) = 0.75 , X 3 and X 2 are most likely to be associated respectively to Y 1 and Y 4 . As for the detected object X 5 , no source supports its association with a known objects, so it can be an appearance.

Therefore, it is possible to make decisions by combining only some information? To answer, the proposed method is applied with k = 2 . The selected information for the detected-to-known association are represented by ( 17):

Regarding the association of X 1 , the two highest belief masses (0.48 and 0.45) are respectively related to the Y (1,2) and Y (1,1) hypotheses which makes them relevant for decision-making. Thus, we work with the frame ( 0.75 > 0.47 > 0.32 > 0.00 ). For X 3 and X 4 , there is only one piece of information with a non-null belief for their association. Therefore, Θ 3,. ={Y (3,1) , Y (3, * ) } and Θ 4,. ={Y (4,3) , Y (4, * ) } . Concerning X 5 , no source believes on its association, so X 5 is a new detected object which means an appearance Y (5, * ) . In this case, the decision is directly made without combination. Consequently, the cardinality of each Θ i,. (17) is reduced which means less computation time when combining.

Θ 1,. ={Y (1,1) , Y (1,2) , Y (1, * ) } instead the set of all hypoth- eses {Y (1,1) , Y (1,2) , Y (1,3) , Y (1,4) , Y (1, * ) }
To make decision, the selected information are combined by ( 5) and transformed to DSmP probabilities by (7). Table 3 represents DSmP i,. (.) based on the two most significant mass ( 17)

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ Θ 1,. = � Y (1,1) , Y (1,2) , Y (1, * ) � Θ 2,. = � Y (2,3) , Y (2,4) , Y (2, * ) � Θ 3,. = � Y (3,1) , Y (3, * ) � Θ 4,. = � Y (4,3) , Y (4, * ) �
direct decision: X 5 appears.

functions. The dimension of each DSmP i,. vector is smaller than usual (Cf. Table 4) and corresponds to the number of relevant associations. In this context, the complexity of decisionmaking can be reduced too. In addition, it can be observed that the proposed approach preserves the relevant association probabilities. Therefore, the same decisions (18) are made through Tables 3 and4.

(18)

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ X 1 → Y 2 X 2 → Y 4 X 3 → Y 1 X 4 → Y 3 X 5 appears.
Table 2 Initial mass functions for the scenario in Fig. 3 S 1,1 ,4 ( 2,4 ) = 0.10

⎧ ⎪ ⎨ ⎪ ⎩ m 1,1 (yes (1,1)) ) = 0.45 m 1,1 (no (1,1) ) = 0.35 m 1,1 ( 1,1 ) = 0.20 S 1,2 ⎧ ⎪ ⎨ ⎪ ⎩ m 1,2 (yes (1,2) ) = 0.48 m 1,2 (no (1,2) ) = 0.32 m 1,2 ( 1,2 ) = 0.20 S 1,3 ⎧ ⎪ ⎨ ⎪ ⎩ m 1,3 (yes (1,3) ) = 0.00 m 1,3 (no (1,3) ) = 0.95 m 1,3 ( 1,3 ) = 0.05 S 1,4 ⎧ ⎪ ⎨ ⎪ ⎩ m 1,4 (yes (1,4) ) = 0.00 m 1,4 (no (1,4) ) = 0.99 m 1,4 ( 1,4 ) = 0.01 S 2,1 ⎧ ⎪ ⎨ ⎪ ⎩ m 2,1 (yes (2,1) ) = 0.00 m 2,1 (no (2,1) ) = 0.99 m 2,1 ( 2,1 ) = 0.01 S 2,2 ⎧ ⎪ ⎨ ⎪ ⎩ m 2,2 (yes (2,2) ) = 0.32 m 2,2 (no (2,2) ) = 0.58 m 2,2 ( 2,2 ) = 0.10 S 2,3 ⎧ ⎪ ⎨ ⎪ ⎩ m 2,3 (yes (2,3) ) = 0.47 m 2,3 (no (2,3) ) = 0.43 m 2,3 ( 2,3 ) = 0.10 S 2,4 ⎧ ⎪ ⎨ ⎪ ⎩ m 2,4 (yes (2,4) ) = 0.75 m 2,4 (no (2,4) ) = 0.15 m 2
S 3,1 ⎧ ⎪ ⎨ ⎪ ⎩ m 3,1 (yes (3,1) ) = 0.85 m 3,1 (no (3,1) ) = 0.05 m 3,1 ( 3,1 ) = 0.10 S 3,2 ⎧ ⎪ ⎨ ⎪ ⎩ m 3,2 (yes (3,2) ) = 0.00 m 3,2 (no (3,2) ) = 0.90 m 3,2 ( 3,2 ) = 0.10 S 3,3 ⎧ ⎪ ⎨ ⎪ ⎩ m 3,3 (yes (3,3) ) = 0.00 m 3,3 (no (3,3) ) = 0.90 m 3,3 ( 3,3 ) = 0.10 S 3,4 ⎧ ⎪ ⎨ ⎪ ⎩ m 3,4 (yes (3,4) ) = 0.00 m 3,4 (no (3,4) ) = 0.99 m 3,4 ( 3,4 ) = 0.01 S 4,1 ⎧ ⎪ ⎨ ⎪ ⎩ m 4,1 (yes (4,1) ) = 0.00 m 4,1 (no (4,1) ) = 0.99 m 4,1 ( 4,1 ) = 0.01 S 4,2 ⎧ ⎪ ⎨ ⎪ ⎩ m 4,2 (yes (4,2) ) = 0.00 m 4,2 (no (4,2) ) = 0.90 m 4,2 ( 4,2 ) = 0.10 S 4,3 ⎧ ⎪ ⎨ ⎪ ⎩ m 4,3 (yes (4,3) ) = 0.50 m 4,3 (no (4,3) ) = 0.40 m 4,3 ( 4,3 ) = 0.10 S 4,4 ⎧ ⎪ ⎨ ⎪ ⎩
m 4,4 (yes (4,4) ) = 0.00 m 4,4 (no (4,4) ) = 0.99 m 4,4 ( 4,4 ) = 0.01

S 5,1 ⎧ ⎪ ⎨ ⎪ ⎩
m 5,1 (yes (5,1) ) = 0.00 m 5,1 (no (5,1) ) = 0.90 m 5,1 ( 5,1 ) = 0.10

S 5,2 ⎧ ⎪ ⎨ ⎪ ⎩
m 5,2 (yes (5,2) ) = 0.00 m 5,2 (no (5,2) ) = 0.85 m 5,2 ( 5,2 ) = 0.15

S 5,3 ⎧ ⎪ ⎨ ⎪ ⎩
m 5,3 (yes (5,3) ) = 0.00 m 5,3 (no (5,3) ) = 0.90 m 5,3 ( 5,3 ) = 0.10

S 5,4 ⎧ ⎪ ⎨ ⎪ ⎩
m 5,4 (yes (5,4) ) = 0.00 m 5,4 (no (5,4) ) = 0.90 m 5,4 ( 5,4 ) = 0.10 Table 3 BetP i,. based on 2-significant mass functions. 0.00 0.00 0.00 0.00 1.00

Θ i,. Y (i,1) Y (i,2) Y (i,3) Y (i,4) Y (i, * )
This section evaluates the proposed approach on real data coming from the well-known KITTI dataset [START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF]. First, the dataset description is presented, followed by the experimental setting. Secondly, the obtained results are analyzed and commented. It is noted that this evaluation focuses only on data association, so no tracking is done.

Datasets

The KITTI vision dataset provides data recorded from different sensors mounted on a moving vehicle on urban roads [START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF]. It contains camera images, laser scans, and GPS/IMU data. The dataset also includes object labels classified in 8 categories. For this evaluation, only image data have been used where detections are defined by 2D bounding box tracklets. Four object classes have been considered: pedestrian, cyclist, car, and van. Table 5 presents a part of these sequences according to their different road context and the number of detections. On some sequences, the vehicle mainly moving at a speed less than 30 km/h which is common in urban areas, e.g. sequences 6, 13, 14, and 19. Sequence 16 was recorded when the vehicle stopped at a crosswalk, i.e. speed = 0 km∕h . On other sequences, the vehicle was moving at a speed sometimes exceeding 50 km/h, e.g. sequences 4 and 8. Figure 4 illustrates the number of objects per image and their proportion on each of the sequences where more than 30000 associations have been evaluated. To the best of our knowledge, no study has been evaluated on so many real data. These latter cover different road scenarii containing various objects as shown in Fig. 5.

Experimental setting

The matching process is based on the distance between objects attributes. In this work, only 2D position in the image plane is considered as pieces of evidence. Thus, the distance d i,j is defined as follows:

where

d left i,j ( d right i,j
) is the Euclidean distance between top-left (bottom-right) points of the bounding boxes of objects X i and Y j as illustrated in Fig. 6.

The critical parameters to estimate belief masses are: = 0.9 , = 0.5 and = 0.001 for DSmP transformation. The proposed approach is written in C++ and runs on Intel core i7 2.20 GHz with 8 GB RAM.

Results and analysis

The performance of the k-significant sources combination refers to its capacity to reduce complexity while maintaining a high decision quality. Therefore, the evaluation focuses on where ET t is the execution time of the frame t, TA t and GT t are the numbers of true associations and ground truth associations respectively.

Table 6 compares the running time of the combination step using two approaches according to the number of objects. The first is to combine all the sources and the second combines the k-significant sources where k ∈ [2, 4] . To show the real-time aspect of the proposed approach, the association process is applied for 24 frames. The results confirm that the proposed approach needs low computation time than combining all sources. The smaller the number of combined sources, the shorter the computation time. With n = m = 13 , the proposed approach (k = 2) needs 1.33ms on 24 frames while combining all sources takes ≃ 4 minutes which is not acceptable for real-time applications. In addition, combining all sources grows exponentially the computation cost with (n, m) while the time complexity of the proposed approach is polynomial which makes it well-suited for real-time applications (Cf. Fig. 7).

Table 7 compares the complexity of the proposed decision-making algorithm with the JPP method according to (20) Fig. 6 The illustration of the distance between a detected and a known object [START_REF] Boumediene | Evidential Data association: benchmark of belief assignment models[END_REF] the number of objects. Both of these methods are based on a global optimization. The results show that the proposed algorithm needs low computation time than JPP to make association decisions. With more than 4 perceived/detected objects, the complexity is reduced by more than 97% . For instance, with n = m = 7 , our proposed algorithm needs less than 1ms to assign perceived objects on 24 frames while JPP takes too large time, more than ≃ 46 minutes. Figure 8 confirms that our algorithm is characterized by a polynomial complexity while JPP has a high exponential complexity which makes impossible its application on the KITTI sequences. For this reason, the rest of the results presented in this section are obtained by our simple decision-making algorithm.

� CT = ∑ t ET t recall = ∑ t TA t ∑ t GT t
To measure the gain on complexity, the variation in the computation time of a system without ( CT i w ) and with the k-significant sources combination ( CT i k ) is computed for each sequence (i) (21). The higher gain, the better complexity reduction we get. In the same manner, the recall gain is computed (22) . The higher Gain i recall , the better decision-quality we get. A higher Gain i recall preserves well the decision-quality.

The weighted average of gain based on all sequences is given by: where the weight w i is w i = n i ∕ ∑ 20 i=0 n i and n i being the num- ber of associations of the i-th sequence.

Figure 9 presents the weighted average of the computation time gain versus k. These results are obtained by varying the number of significant sources selected, i.e. k. For all dataset, more than 30000 associations, the gain exceeds 99.90% which is well-suited for real-time applications. This gain is explained by the fact that our approach has a polynomial complexity while combining all sources is characterized by an exponential (21) 7). In addition, the obtained results show that the computation time reduction is inversely proportional to the k parameter as shown in Table 6. Indeed, by reducing the number of significant sources, the combination complexity decreases which allows a more important gain. Although if the gain, which is expressed as a percentage, seems small between the different values of k ∈ [2, 7] , it remains important for real- time constrain.

Gain i CT = (CT i w -CT i k ) CT i w 100. (22) Gain i recall = (recall i k -recall i w ) recall i w 100. (23) ⎧ ⎪ ⎨ ⎪ ⎩ Gain avg CT = ∑ 20 i=0 w i Gain i CT Gain avg recall = ∑ 20 i=0 w i Gain i recall
The gain depends also on the number of perceived objects. In fact, contrary to our approach, combining all sources increases exponentially the computation time with perceived/detected objects (n, m). Therefore, the more objects in the scene, the greater the gain will be (Cf. Fig. 10). That is why for sequences 3, 6, 8, 10, and 12 where the number of detections is mostly less than 4, the gain is less than 40% while for other sequences is more than 80% . Therefore, the obtained results lead to conclude that the more complex is the sequence, the larger is the computation time reduction. Now, how about the decision quality? Combine just the significant sources, affects the decisions or not? Fig. 11 presents the weighted average of the recall gain versus k. it is clear that the gain is insignificant, -0.1% < Gain recall < 0.05% . This result proves that focusing only on significant information does not necessary affect the decision quality. Furthermore, the obtained results also show that ignoring the useless information can improve slightly the quality of decisions. For instance, on sequences 11, 17, and 18 the association decisions are improved by more than 4% (Cf. Fig. 12). Therefore, the solution proposed provides good performances by reducing significantly the computation time while preserving the association decisions.

The choice of parameter k depends on the application context and on the desired performances. For the object association in road environment and based on our tests, k = 3 appears to be a good setting threshold parameter.

Conclusion

This paper presented a new evidential data association based on significant sources combination and a simple decisionmaking algorithm. The main objective of the proposed approach is to reduce the complexity and time consumption of data fusion based on DSmT techniques (PCR6 and DSmP). This approach focuses only on information having belief in top k highest masses and removes useless information. Therefore, only k-significant sources are combined to deal with the association problem.

Applied to intelligent vehicles perception, the experimental results show the effectiveness of the proposed approach in the reduction of the complexity by more than 99% in dense scenes. Besides, experimental results show that the proposed solution preserves well the decision-quality. It Future work should combine heterogeneous sensor data to enhance the object association. Also, we plan to evaluate if an improvement of PCR6 rule of combination would be helpful for the data association problems.
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Table 1

 1 DSmP probabilities of detected-to-known object associations DSmP 1,. (.) DSmP 1,. (Y (1,1) ) … DSmP 1,. (Y (1,m) ) DSmP 1,. (Y (1, * ) ) DSmP 2,. (.) DSmP 2,. (Y (2,1) ) … DSmP 2,. (Y (2,m) ) DSmP 2,. (Y (2, * ) )

	Θ i,.	Y (i,1)	…	Y (i,m)	Y (i, * )
	⋮	⋮		⋮	⋮
	DSmP n,. (.) DSmP n,. (Y (n,1) ) …	DSmP n,. (Y (n,m) ) DSmP n,. (Y (n, * ) )
					Fig. 3 Scenario showing 5 detected objects (triangle) and 4 known
					objects (circle)

Table 4

 4 BetP i,. based on all mass functions

	DSmP 1,.	0.40	0.45	-	-	0.15
	DSmP 2,.	-	-	0.27	0.66	0.07
	DSmP 3,.	0.94	-	-	-	0.06
	DSmP 4,.	-	-	0.56	-	0.44
	Θ i,.	Y (i,1)	Y (i,2)	Y (i,3)	Y (i,4)	Y (i, * )
	DSmP 1,.	0.39	0.43	0.00	0.00	0.18
	DSmP 2,.	0.00	0.11	0.22	0.61	0.06
	DSmP 3,.	0.95	0.00	0.00	0.00	0.05
	DSmP 4,.	0.00	0.00	0.56	0.00	0.44
	DSmP 5,.					

Table 5

 5 KITTI image sequence characteristics

		Seq. 2	Seq. 4	Seq. 6	Seq. 7	Seq. 8	Seq. 13	Seq. 14	Seq. 16	Seq. 18	Seq. 19	Seq. 20
	Number of frames	233	314	270	800	390	340	106	209	339	1059	837
	Number of associations	668	545	474	2083	492	617	744	1872	1130	4968	4673
	Max vehicle speed (km/h)	43	56	33	34	62	26	35	0	55	21	54
	Min vehicle speed (km/h)	0	20	0	1	38	8	1	0	0	0	0
	Speed < 30 km/h ( %)	66	15	93	75	0	100	87	100	66	100	51
	Speed > 30 km/h ( %)	34	85	7	25	100	0	13	0	34	0	49

Table 6

 6 Computation time (ms) of the combination step for 24 frames containing (n, m) objects

	(n, m)	All sources	4-Sig. Src.	3-Sig. Src.	2-Sig. Src.
	(4, 4)	1.33	1.49	0.60	0.39
	(7, 7)	> 0.1s	2.27	0.92	0.59
	(10, 10)	> 5s	3.54	1.35	0.89
	(13, 13)	≃ 4 min	5.28	2.20	1.33
	Table 7 Computation time (ms) of the decision-making step for 24
	frames containing (n, m) objects		
	(n, m)	JPP	Our method	Comp.
					time gain
					(%)
	(2, 2)	0.21	0.16		23.91
	(3, 3)	1.2	0.16		86.66
	(4, 4)	9	0.21		97.66
	(5, 5)	104	0.27		99.74
	(6, 6)	> 9s	0.33		99.99
	(7, 7)	> 46min	0.90		99.99