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Abstract. Objective: We provide a systematic framework for quantifying the effect

of externally applied weak electric fields on realistic neuron compartment models

as captured by physiologically relevant quantities such as the membrane potential

or transmembrane current as a function of the orientation of the field. Approach:

We define a response function as the steady-state change of the membrane potential

induced by a canonical external field of 1 V/m as a function of its orientation. We

estimate the function values through simulations employing reconstructions of the rat

somatosensory cortex from the Blue Brain Project. The response of different cell types

is simulated using the NEURON simulation environment. We represent and analyze

the angular response as an expansion in spherical harmonics. Main results: We report

membrane perturbation values comparable to those in the literature, extend them to

different cell types, and provide their profiles as spherical harmonic coefficients. We

show that at rest, responses are dominated by their dipole terms (ℓ = 1), in agreement

with experimental findings and compartment theory. Indeed, we show analytically

that for a passive cell, only the dipole term is nonzero. However, while minor, other

terms are relevant for states different from resting. In particular, we show how ℓ = 0

and ℓ = 2 terms can modify the function to induce asymmetries in the response.

Significance: This work provides a practical framework for the representation of the

effects of weak electric fields on different neuron types and their main regions—an

important milestone for developing micro- and mesoscale models and optimizing brain

stimulation solutions.

Keywords : Trancranial Direct Current Stimulation (tDCS), spherical harmonics, Non-

Invasive Brain Stimulation (NIBS), compartment models, electric field effects
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1. Introduction

Transcranial electrical stimulation (tES) is a non-invasive neuromodulatory technique

based on accurate control of weak currents injected from multiple scalp electrodes and

the resulting electric fields induced in the brain. tES, pioneered by Nitsche and Paulus

[1], includes direct and alternating current variants known as tDCS and tACS. Low

intensity, controlled currents (typically ∼1 mA but ≤ 4 mA) are applied through scalp

electrodes in repeated 20–60 min sessions. The subtle but persistent modulation of

neuronal activity is believed to lead to plastic effects deriving from Hebbian mechanisms

[2].

The current evolution of this and related techniques such as transcranial magnetic

stimulation or deep brain stimulation is veering towards model-driven approaches and

optimization principles based on a mechanistic understanding of pathophysiology, the

interaction of the electric field with neuron populations and the resulting dynamical,

and then plastic, effects [3, 4]. In this work, we aim to quantify in a systematic way

the response of different cell types and cell parts to be used in future approaches to

model-driven stimulation.

The concurrent effects of tES currents on the brain are thought to be mediated by

the generated electric field’s action on cortical neurons [5, 6]. These electric fields are

weak (∼1 V/m) [7], relatively large-scale (with spatial correlation scales of the order of

a few cm), and induce small changes in the membrane potential of cells (sub-mV) [8, 9].

Polarization happens in a compartment-specific manner [10, 11, 12], hyperpolarizing

compartments close to the virtual anode and depolarizing those close to the virtual

cathode. Furthermore, it is expected from cable theory that changes in the electric

field along neuron fibers cause local polarizations as well. Then, the effect in a cell

under the same stimulation can have very different responses locally. The effects are

significantly larger where fibers bend and mostly at terminations [13]. Thus, the overall

morphology is key to explaining effects observed locally. To take all effects into account,

we use multi-compartment models that allow us to locally couple the field to realistic

morphology models and make predictions of the induced perturbations [14].

Pyramidal cells have been of particular interest in the field for two reasons. First,

they are elongated, which leads to the generation of a larger membrane perturbation

when the field and neuron are aligned [9]. Secondly, they are spatially organized.

Because of this and the spatial homogeneity of the electric fields, the effects on such

cells are spatially coherent and thought to lead to stronger, network-enhanced effects

[15, 16]. In contrast, effects on interneurons are usually disregarded due to their small

size and non-elongated branching profiles [9].

In this paper, we focus on characterizing the effects of the weak electric field on

the stable equilibrium of single neuron models using expansions in terms of spherical

harmonics. With this approach, we aim to provide (i) a systematized method for

describing the angular dependence of the response through simulations, (ii) a framework

that allows for the averaging of the angular response of many compartments to describe
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cell parts and types, and (iii) a representation in meaningful terms that represent

the dipolar behavior on its own but accounts for other angular dependence profiles

if necessary. We validate the common dipolar approach and that it is accurate for small

perturbations induced at neurons at rest (far from the threshold) and show that it is

exact for the passive membrane. Nevertheless, corrections to pure dipolar responses

may need to be applied closer to the threshold in realistic neurons. We expect this

new information to shed light on the mechanisms of interaction of the electric field with

neurons in tDCS and lead to more effective montage design paradigms in the future.

2. Methods

2.1. Formalism for steady-state changes induced by an electric field

We will be studying the response of a neuron to a constant, spatially uniform, weak

electric field as typically generated by non-invasive brain stimulation methods such

as tDCS — at least away from tissue boundaries, since these can introduce strong

local changes in the field distribution due to the change in electrical properties between

tissues. The field is characterized by a magnitude E ≡ ||E|| and an orientation that can

be expressed with two spherical angles, the polar angle θ and the azimuth φ. Thus, in

spherical coordinates, the electric field is given by

E = E (sin θ cosφ ex + sin θ sinφ ey + cos θ ez) ≡ E ê (1)

Let us consider a variable v that characterizes a physiologically relevant magnitude

affected by an external electric field. Our study, focuses on the membrane potential, but

the formalism can be extended to other variables, e.g., transmembrane currents. If the

variable v has a stable equilibrium, i.e., resting potential in our case, we expect that the

applied electric field will shift that equilibrium to a new value v′. We aim to quantify

that induced change δv of the steady-state solution for different realistic models of cell

types. In our case, this shift is commonly referred to as polarization.

Let us assume that two independent terms can express the effect of the magnitude

and orientation. On the one hand, the polarization δv scales linearly with E, which

has been observed experimentally for small fields [9]. Regarding the dependency of the

shift to the orientation of the field, we propose a function defined on a sphere Φ(θ, φ),

i.e., that has a value for any direction in space. We refer to Φ as the response function,

which is a function that outputs the shift δv under an electric field of 1 V/m in a given

direction. Under these assumptions §, δv can be expressed as shown in Equation 2.

δv = E Φ(ê) = E Φ(θ, ϕ) (2)

§ More generally, we can start from δv(E) = δv(E, ê) = Φ0(ê) + EΦ1(ê) +
1
2E

2Φ2(ê) + ... The first

term is zero here by definition.
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2.2. Expansion in spherical harmonics

Spherical harmonics form a complete and orthonormal set of functions Yℓm defined on

the surface of the sphere (parametrized by two spherical angles, θ and φ), where ℓ and

m refer to the degree and the order of the harmonic, respectively. Squared-integrable

functions defined on the sphere can be expressed as a sum of spherical harmonic terms

[17, 18], much as functions on the plane can be expressed as a Fourier series. In fact, both

spherical harmonics and complex exponential are eigenfunctions of equations associated

with the Laplace partial differential equation in different manifolds (the plane and the

sphere). As the response function Φ(θ, φ) is a function on the sphere, it can be expanded

in terms of spherical harmonics, meaning that it can be expressed as in Equation 3 and

fully characterized by a set of coefficients fℓm,

Φ(θ, φ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

fℓmYℓm(θ, φ) (3)

Spherical harmonics are characterized by a degree and order pair (ℓ, m); see

Appendix A for a definition. They are tightly linked to the multipole expansion, so

one can think of the ℓ = 0 term as a monopole behavior, a term that does not depend

on orientation. The ℓ = 1 terms represent a dipolar behavior, ℓ = 2 a quadrupole, and

so on. Finally, under a parity transformation, where a point with coordinates {θ, ϕ}
changes to {π − θ, π + ϕ} (corresponding to a reversal of the orientation of the electric

field in our case),

Yℓm(θ, φ) → Yℓm(π − θ, π + φ) = (−1)ℓYℓm(θ, φ) (4)

This means that if we expect the membrane response to change sign under electric field

reversal (e.g., if it is linear in E), only odd ℓ terms should contribute to the expansion.

The l-2 norm of the coefficients is an influenceability measure. The l-2 norm of

the coefficients quantifies the maximum of the response function regardless of the

orientation. The actual values are subject to the specific normalization used. We name

this measure the influenceability ξ of the response function,

ξ ≡ ∥fℓm∥ =

√√√√ ∞∑
ℓ=0

ℓ∑
m=−ℓ

f 2
ℓm, (5)

and serves as a metric to compare how affected in magnitude by an electric field each

model is. In other words, for a set of response functions fℓm, we can compare how

susceptible they are to being influenced given the same electric field.

The λE linear model is contained in the ℓ = 1 terms of the expansion. The f1m
terms correspond to the λ (dipole) in the λE model, where the induced polarization is

represented as the dot product of the electric field vector E and a vector λ of magnitude
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the length constant of the membrane and in the orthodromic direction of the cell [5].

We can rewrite the λE model as

δv = λ ·E = E λ · e = E (λx sin θ cosφ+ λy sin θ sinφ+ λz cos θ), (6)

which is seen to correspond to the ℓ = 1 terms in the expansion, with λz is represented by

f10, λx by f11 and λy by f1−1. Thus, the λE model predicts symmetric polarizations. In

particular, inverting the direction of E inverts the polarization pattern. This translates

to polarizations equal in magnitude but opposite in sign in anodal and cathodal

conditions, as shown in Figure 1.

2.3. Cell models

We use the multi-compartment conductance-based models from the cortical microcircuit

reconstruction by the Blue Brain Project [19]. There, model morphologies are based

on reconstructions from real acquisitions from juvenile rats. This work, considers all

the morphology types in the database except the layer I interneurons. That includes

nine types of interneurons: bipolar, bitufted, chandelier, double bouquet, Martinotti,

neurogliaform, and basket cells (including large, small, and nest). These nine types

make 36 morphology types, one of each for each layer (II/III, IV, V, and VI). Regarding

excitatory cells, there are 13 morphology types (12 types of pyramidal cells and spiny

stellate cells). All morphologies are made of connected cables, as required by the

NEURON simulation environment (v8.0.0). Each cable is discretized in evenly spaced

compartments. All cables were assigned a minimum of one compartment and, two

compartments were added every 40 µm of length — as in the original work. The

biophysical membrane models contain 13 different known Hodgkin-Huxley type ion

channel models distributed using different criteria along the morphology. The Blue

Brain Project team defined 11 ion channel profiles or electrical types exhibiting different

spiking features. The options unfold into ten inhibitory and one excitatory electric

profile, where the latter is the one representing all excitatory cell models of the dataset

(continuous adapting, cAD). Regarding inhibitory cells, they included bursting (b),

continuous (c), and delayed (d) models, later subdivided into accommodating (AC), non-

accommodating (NAC), stuttering (STUT), and irregular (IR). Irregular spiking models

contain stochastic potassium channels that introduce stochasticity into their behavior.

For this study, we suppressed these because of incompatibility with our framework.

Along the same lines, we discarded electric types generating spontaneous spiking at

rest: cNAC, cSTUT, dSTUT, and dNAC. Given that the same morphology types were

found to show different electrical types, they created models for each morphoelectrical

combination. Then, the model dataset has five statistical clones of each morphoelectrical

type.

2.3.1. Uniform electric field coupling The coupling of the external electric field to

the neuron models is implemented via the extracellular potential in NEURON 8.0.0.
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We use the extracellular mechanism to access the extracellular potential in each

compartment. To attach the value induced by the external electric field, we tweak the

xtra mechanism for extracellular recording and stimulation based on the approach by

McIntyre and Grill [20]. Recall that the extracellular potential is related to the external

uniform field by E = −∇Vext, with

Vext(x, y, z) = −E
(
x sin θ cosφ+ y sin θ sinφ+ z cos θ

)
(7)

Here (x, y, z) refers to the spatial coordinates in R3 of the center of a compartment of

the neuron model.

2.4. Response function estimation

Let Φ̂(θ, φ) be the discretized estimation of the response function. Φ̂(θ, φ) can be defined

as a collection of changes δv observed for different orientations, where the particular

orientation set is determined by the sampling method and the chosen resolution. We

obtain Φ̂(θ, φ) performing simulations applying electric fields of 1 V/m of magnitude

in different orientations to a resting neuron model using the NEURON simulation

environment (v8.0.0) [21]. All experiments are performed at temperatures of T = 36.9◦C

to mimic the average physiological temperatures of living human brains [22].

2.4.1. Temporal design of the simulation experiment The simulation pipeline to

estimate the steady-state response of any neuron model that has a stable equilibrium

under an electric field consists of two phases: (1) computing the resting state and (2)

applying an electric field to estimate the change in the induced change in the steady-

state condition. The resting state is defined as the steady-state solution of the system

when no external stimulation is present. It is assessed by letting the system converge

until it experiences no further change in its state variables. Computationally this

requirement is met when the membrane potential varies less than 1 nV anywhere in

the cell without further external inputs. The second phase assesses the steady-state

solution’s displacement under an external perturbation; see Figure 1.D. The system is

initialized in the pre-computed resting state. Then, the shift in the steady-state solution

is retrieved as the change experienced after 500 ms of 1 V/m uniform electric field

application in a given condition. We chose 500 ms as a relatively large fixed simulation

time at which we can assume the system has reached a stable solution. The induced

change, i.e., δv, is computed with respect to the control condition with no field applied.

All simulations are integrated using the fully implicit backward Euler method with an

integration time step of 25 µs.

2.4.2. Experimental conditions To characterize the response function, we assess the

induced changes for different orientations. We use the Type I Driscoll-Healy sampling

of the sphere (DH1), using N=12 to reconstruct harmonics until a maximum degree of

ℓmax = 5. The sampling theorem gives the relationship among both: ℓmax = N/2−1 = 5.
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Figure 1. Experimental design for estimation of the response function.

A. Temporal profile of the simulation of different experimental conditions. The

first part of the experiment computes the resting condition of the model and is

common for all experimental conditions. The latter consists in applying a constant

external electric field and is repeated of all the desired orientations of the electric field.

B. Experimental conditions. Anodal (red), cathodal (blue) and control (black)

conditions in the context of the DH1 Sampling of the sphere. The grid represents the

N×N sampling of the sphere with N = 12, with points separated by ∆θ=π/13 and ∆φ

= 2π/13 [23]. C. Coordinate system definition with respect to the cell. The vertical

direction represents the component normal to the cortical surface and corresponds to

the z Cartesian coordinate. The spherical coordinates represent with θ the inclination

and with φ the azimuth. The radius is the magnitude of the field E. For all cell

models, the origin of coordinates O is set at the center of the soma. D. Stimulation

as an attractor shift. A constant applied field changes the steady-state condition.

In the soma of a prototypical pyramidal cell, the state is shifted towards a depolarized

membrane potential.

The DH1 sampling consists of sampling both θ and φ inN points each, building anN×N

grid covering the sphere [23]. Because the full span of both angular dimensions is used,

the polar resolution (∆θ) is half the azimuthal one (∆φ). For N = 12, the angular

distance among consecutive sampled points is ∆φ = 2π/13 and ∆θ = π/13 rad. The

discretization is shown in Figure 1.B.

2.4.3. Spherical harmonics-based representation Following the expansion introduced

in Equation 2, once Φ̂(θ, φ) has been estimated for each compartment, it is represented

by a set of spherical harmonics coefficients. The calculation is performed with the
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pyshtools Python package, using a 4π-normalization and the Condon-Shortley phase

factor convention [24]. The coefficients fℓm fully represent the response function Φ(θ, φ),

which can be assessed by integrating the response function over the sphere. Using the

4π normalization, it reads as a double integral over the sphere for a continuous Φ(θ, φ).

In our case, it translates to a discrete sum, as in Equation 8.

fℓm ≈ 1

4π

∑
φj∈D

∑
θk∈D

sin θk ∆φ∆θ Φ̂(θk, φj)Yℓm(θk, φj) (8)

where D is the domain of sampled points. Modern implementations of these expansions

use fast Fourier transforms over latitude bands, among other methods, to improve

computational efficiency [25, 24].

2.5. Averaging response functions

A response function can be derived for each compartment of a cell model through the

methodology already described above, v. Figure 1. However, in the context of model-

driven stimulation, the interest lies in simplifications of the complex morphology. Due

to linearity, lumped response functions can be obtained by averaging the coefficients.

We exploit this to create two models: response functions of (i) cell parts and (ii) cell

types. The multi-compartment models here have hundreds of compartments for each

cell along their morphology. Each compartment can be tagged to belong to a specific

region or part of the cell. We use the model’s original classification of axon, soma,

and dendrites, with a further distinction of apical and basal dendrites in the case of

pyramidal cells. In the case of apical dendrites, we make a further distinction between

those found in LI with respect to the rest. To build models of cell types, we use the

different statistical clones available in the database belonging to the same cell type. We

averaged the models of the different cell parts of the clones of the same type and, this

way built a canonical model for that type.

2.6. State-dependence

Response functions are expected to vary depending on the morphology and biophysical

models of the cells. The ion channels models are functions of the membrane potential

and hence depend on the state of the cell. Thus, we expect that response functions are

also state-dependent, and we set out to investigate how it may vary for the soma of the

canonical LV thick-tufted pyramidal and the size of these effects. Given our steady-state

analysis framework, we reconstruct a response function for different membrane potential

values using a current clamp at the same study compartment, i.e., the soma. We apply

injected currents from -0.2 nA until the system loses its stable equilibrium and stops

converging — i.e., the neuron model starts firing. The membrane potential also affects

the time constants of ion channel models, and they are expected to increase when moving

closer to spiking regimes. For this reason, we provide the system for longer times in

experiment phase 2 (10 s) to assess the steady-state change. Currents are injected prior
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to the application of the electric field and kept during the whole simulation. In other

words, we change the location of the stable equilibrium through an external current and

explore the perturbations induced by a 1 V/m electric field in that new vicinity.

3. Results

3.1. The response function at rest is dipolar

Consistent with the analysis of the passive cell (see Appendix B), the response function

is dipolar under weak fields at rest. In other words, only ℓ = 1 terms are nonzero. The

example of the response function of the soma of a pyramidal cell model is illustrated in

Figure 2, where 2.C shows the different terms with only the term ℓ = 1,m = 0 being

nonzero. All coefficients of all cell models analyzed are shown in Figure S1. During

stimulation, each cell compartment reaches a new steady-state solution. The maximum

observed somatic polarization corresponds to fields parallel to the somatodendritic axis

at 0.14 mV per 1 V/m in layer V early-branching thick-tufted pyramidal cells. These

values are in line with the literature as with results reported in CA1 pyramidal cells [26]

and comparable to the typically assumed value of 0.2 mV per V/m of applied electric

field [9].

3.2. Somatic polarizations in excitatory cells

Consistent with previous findings, the most affected cells are pyramidals of subgranular

layers (V and VI), with an increased effect on those with an apical tuft. The most

considerable effect is observed in the early-branching thick tufted population due to the

asymmetry of the processes distribution with respect to the soma. Different responses

also accompany the variety of layer VI pyramidal cells. Somatic polarization in the LVI

tufted cell models is at 0.10 mV, i.e., 58% larger than in the untufted, at 0.07 mV.

Somata of inverted pyramidals show an effect of size comparable to that of tufted cells,

i.e., 0.10 mV but with reversed polarity. In supragranular layers, effects on pyramidal

cells were minimal and irrelevant on spiny stellate and star pyramidals. All somatic

polarizations for the different averaged pyramidal cell models are shown in Figure 3

and their maximums together with their respective ratios are compiled in Table 1. The

table also features the 95th percentile of the maximum polarizations observed within cell

before averaging as a more agnostic statistic of the polarizations reached throughout the

morphology.

3.3. Somatic polarizations in interneurons

Due to its central position with respect to other cell processes, effects in the soma of

interneurons are rather small compared to pyramidal cells. Restricting the electrical

type to cAC models, we observe a large variety of responses across morphologies and

layers—see Figure 4. In bipolar, bitufted, chandelier, and double bouquet cells, we
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Figure 2. Polarization dependence on the electric field orientation. A.

Polarization of the membrane under a uniform electric field of 1 V/m. The

direction of the external electric field has a direct impact on how the charges are

redistributed along the cell morphology. In this example, the effects on a layer V

pyramidal cell model are displayed for an applied external electric field of 1 V/m

in the direction of the background arrows displayed below each cell. B. Somatic

response function estimate. Estimated polarization of the soma under a 1 V/m

electric field for each orientation of the DH1 sampling as described in Figure 1.B. The

2D projection is used with the Lambert method, where the azimuthal angle matches

the horizontal axis. C. Spherical harmonics spectrum. Representation of each

spherical harmonic coefficient squared. Only the ℓ = 1 terms are present, i.e., the

response is dipolar. The description in spherical harmonics terms displays a strong

predominance of the (ℓ = 1,m = 0) indicating an alignment with the z-axis (see

Figure 1.C) slightly tilted towards the x-axis as determined by the presence of a small

(ℓ = 1,m = 1) term. D. Reconstructed response function. Continuous version of

the response function represented by the coefficients. It represents all the information

contained in the sampled estimate shown in B. E. Spherical harmonics. Polar

representation of all spherical harmonics up to ℓ = 3 in the same layout as in C for an

intuitive interpretation of each of the coefficients. The radius codes the magnitude of

the function for each orientation and the color codes the sign, warm and cold being

positive and negative respectively.

observe a reversal of the polarity of the effect at the soma between supragranular and

infragranular layers. Martinotti cell models show the lowest variability between layers.

Basket cells are the group that displays the smallest response at the level of the soma

consistently in their different types (large, nest, and small) and layers. On the other

hand, the cell type model displaying the largest somatic effect is bipolar cells. In this

particular cell morphology, the size of the effect strongly depends on its electrical type.

However, we do not observe such dependence in the other types of interneurons. The
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Figure 3. Polarization of soma of pyramidal cells under 1 V/m electric field.

Each row represents a neocortical layer and each column a pyramidal cell type. Each

plot displays the modeled change of the membrane potential (mV) in the soma due

to an external electric field of 1 V/m as a function of the relative orientation of the

electric field. Orientation dependence is represented using a Lambert projection. The

vertical axis codes the polar angle θ which ranges from θ = 0 in the top (indicating

a vertically aligned electric field pointing up) to θ = π (down) in the bottom. The

horizontal axis is the azimuthal angle φ, where the left end is φ = 0 and the right one

is φ = 2π. “Early” and “late” in layer V (LV) thick-tufted pyramidal cells refer to

when the apical dendrites branching of the tuft begins. In LVI tufted pyramidal cells,

the layer in parenthesis is the layer in which the dendritic tuft terminates.

responses across layers and for different electrical type models of bipolar cells are shown

in Figure 5, where it is observed how the effect induced in the soma is reversed in lower

layers compared to upper ones and how the electrical type models influence the effect

size.

3.4. Effects on different cell parts can be represented with different response functions

As expected from the pre-existing literature on the field, different parts of pyramidal

cells respond differently to the presence of the field. Analyzing the effect locally,

i.e., compartment-wise, bends and fiber terminations increase the effect of the field

on membrane polarizations. The overall size of the this effect is captured by the

influenceability metric as defined in Equation 5. In a pyramidal cell, we observe how

the most susceptible areas are the tuft of the apical dendrites and terminations at the

axon and the basal dendrites, see Figure 6.
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Figure 4. Polarization of soma of interneurons under 1 V/m electric field.

Simulations of the average membrane potential change (mV) in the soma in continuous

accomodating (cAC) models of interneurons. Rows and columns represent cortical

layers and morphology types respectively. The color range is set to match that of

Figure 3 to ease comparison with pyramidal cells. Bipolar cell models of layers II-III

appear saturated because their polarization values exceed the 0.15 mV. Large basket

cell models for LVI are not available in the original set of models.

On the other hand, we provide functions for the major regions of the cell. The

estimated response functions for the different cell parts, obtained through averaging the

responses of the individual compartments belonging to each region, display the classical

response of the apical dendrites with a reversed polarity compared to the one observed

in the soma and the basal dendrites, e.g., hyperpolarized under anodal stimulation,

see Figure 7. The largest response among the explored regions is found in the apical

dendrites contained in layer I. In the example of the figure, the polarization in the

direction where maximum effect reaches 0.24 mV per V/m in layer I apical dendrites,

whereas it is only 0.03 mV at the trunk, defined as the compartments from the apical

tree found from layer II down. When averaging the whole of the apical dendritic tree,

the response function is reduced to a maximum of 0.07 mV (per V/m). The soma and

the basal dendrites display a similar pattern, with a maximum polarization of 0.16 in

the soma and 0.18 mV in the basal dendrites. In the axon, including the descendant

and the collaterals, the average is smaller at 0.04 mV per V/m.

3.5. The direction and magnitude of the effect depend on the cell state

We observe that the response function changes by injecting hyperpolarizing and

depolarizing currents in the soma of the layer V pyramidal cell model. Recall that

the injection starts before applying the electric field, and the system is already in its

corresponding steady state, given the injected current. It keeps displaying a dipolar
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Figure 5. Effect differs across electrical types of bipolar cells. A. Morphology

examples of bipolar cells of different layers. B. Somatic responses of the different cell

models under anodal stimulation of 1 V/m. Each plot provides the polarization curves

as a function of time of the models of bipolar cells of a given layer. From left to right,

they correspond to LII/III, LIV, LV and LVI models following the outline of A. Each

line is the trace of the soma of a different cell model, where the color codes the electrical

type of the model. There are five models per electrical type. The stimulation onset is

set at time equals zero and is marked as a small arrow over the horizontal axis. The

total stimulation duration is of 500 ms. At the right of each plot, the distributions —

probability density estimations — of steady-state polarizations reached at the end of

the 500ms for the different electrical types are shown. Colors are set to match to those

of the lines, see legend at the bottom right part of the plot.

behavior for most values, purely captured by the ℓ = 1 coefficients. Moreover, the most

relevant term in all the states is the dipole in the direction parallel to the normal to the

cortical surface, i.e., aligned with the z-axis (ℓ = 1,m = 0) as in Figure 1.C. Under a

hyperpolarizing current, we observe a slight increase of the effect saturating at 0.17 mV

per V/m. Under depolarizing currents, we observe two different types of behavior.

For currents up to 0.25 nA (corresponding to a membrane potential of ∼-62.50 mV,

10 mV above resting), we observe a decrease in the magnitude of the effect reaching

a minimum of 0.12 mV per V/m in the direction of maximum effect. We observe a

different behavior for currents above 0.25 nA until the system enters a spiking regime

for currents above 0.34 nA, corresponding to potentials over -58.13 mV. In this window,

we observe a rapidly increasing effect and the emergence of a non-dipolar response. The

response becomes asymmetric, i.e., the magnitude of the effect of anodal and cathodal

stimulations of equal field magnitude is not the same. Still, fields perpendicular to the
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Figure 6. Influenceability values of a pyramidal cell. A. Variation of the

influenceability measure throughout the morphology of an early-branching LV thick-

tufted pyramidal cell. Scale: 250 µm. B. Distributions across compartments associated

with different cell parts. The distribution of the apical dendrites displays bimodality,

distinguishing the difference in values along the apical trunk from the values observed

in the apical tuft.

axis of the dipole have negligible effects. In spherical harmonics terms, we observe it as

a pair of ℓ = 0 and ℓ = 2 terms that increases with the size of the asymmetry, being

largest at the verge of the bifurcation. Right before the bifurcation, we report an effect

of anodal stimulation of 0.35 mV, whereas cathodal stimulation shifts the membrane

potential by -0.26 mV. The inducible changes thus span a range of 0.61 mV with an

asymmetry of 0.09 mV.

4. Discussion

One of this study’s primary goals is to develop a simple and intuitive framework that

quantifies the effects of weak fields that can be used to build large-scale models. The

values shown here for the juvenile rat reconstructions serve as a proof of concept that

can be extrapolated to cell models of other species or even the same ones adapted to

match dimensions and other physiological features to that of adult rats or humans [14].

The approach applies to any multi-compartment model with a precise enough spatial

resolution in its morphology.

Modeled effects from a dynamical systems perspective Equation 2 quantifies the

displacement of the stable equilibrium of a neuron model under a weak electric field. As

previously discussed, the model requires this type of solution in the analyzed regime.

However, neurons are excitable because they operate close to bifurcations that change
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Figure 7. Models of different sections of a cell. Average response functions

of different cell parts of a layer V (LV) early-branching thick-tufted pyramidal cell

model and their 2D spectra. In the morphology, the different cell parts considered are

shown in different shades of gray. Models of apical dendrites are split in compartments

belonging to L1, to the rest of layers and to the whole of the apical arborization.

Coefficients are reported in Table S1.

the dynamical landscape, generally to give rise to periodic solutions, e.g., sustained

firing. For instance, integrator models have a stable node (resting) and a saddle node.

Short excitatory inputs push the system closer to the saddle-node from the stable node,

and if the system is pushed over the stable manifold of the saddle (threshold), it elicits

an action potential on its excursion back to the stable point. A constant electric field

works by persistently displacing the stable solution, and that is what the framework

proposed quantifies: the shift of the stable node. In the example of an integrator model,

this shift can be towards (excitatory) or away from (inhibitory) the spiking threshold.

However, if the system is in an oscillatory regime, our formalism enters a problem of

definition and cannot be strictly used anymore. A formalism in similar lines should be

developed to describe changes in oscillatory solutions to model effects of rhythmic fields

of similar sizes — like those generated by tACS or endogenous ephaptic interactions,

which allow different modulations by entraining synchronizations [27].

The leading terms in the spherical harmonic expansion are the dipolar ones. The

expansion in spherical harmonics of the angular dependence of the effect provides

a general framework containing different elements of interest in its different terms.

Relevant to stimulation models based on head models, in which one cannot know the

azimuthal orientation of a cell with respect to the electric field induced, it becomes

convenient that the expansion already collects in the m = 0 terms the behavior that
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Figure 8. State dependence of somatic response to the electric field. A. Solid

lines display the membrane polarization induced by an electric field of 1 V/m in anodal

(red) and cathodal (blue) conditions. The control condition, i.e., zero-field, is displayed

in black. The asymmetry between anodal and cathodal responses is displayed as the

sum of both polarizations (dashed). The 2D spectrum of the response function is shown

for hyperpolarization (B), resting (C), a depolarized state (D) and at the edge of the

bifurcation (E). F. The response function at the edge of the bifurcation associated

with E and its decomposition into dipolar (G, ℓ = 1) and non-dipolar terms (H, ℓ ̸= 1).

Cortical

layer

Cell Morphology

type

δV (S)

(µV)
δV (P95)

(µV)
δIm (S)

(fA)

Ratio

δV (S)

Ratio

δIm (S)

LII/III Pyramidal 36 251 26 0.26 0.11

LIV Pyramidal 52 232 27 0.38 0.11

LIV Star pyramidal 19 200 5 0.14 0.02

LIV Spiny stellate 25 204 14 0.18 0.06

LV Untufted pyramidal 49 189 28 0.35 0.12

LV Thick-tufted pyramidal (late) 89 238 122 0.64 0.52

LV Thick-tufted pyramidal (early) 138 264 233 1.00 1.00

LV Slender-tufted pyramidal 56 211 65 0.41 0.28

LVI Untufted pyramidal 68 199 21 0.49 0.09

LVI Tufted pyramidal (LI) 96 188 36 0.70 0.16

LVI Tufted pyramidal (LIV) 119 199 30 0.87 0.13

LVI Inverted pyramidal 104 208 27 0.76 0.11

LVI Bipolar pyramidal 25 200 9 0.18 0.04

Table 1. Maximum observed somatic (S) polarizations δV and transmembrane

currents δIm rounded to the µV and fA, respectively, and their respective ratio

referenced to the largest. Additionally, the 95th percentile (P95) of the maximum

polarization observed compartments is reported too. The cell type with the largest

effect is the LV thick-tufted cell with an early branching of the apical tuft (bold).
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does not depend on the azimuth. In fact, by definition, the m = 0 terms alone describe

the average behavior across all azimuths. Another relevant feature is that the method

quantifies the dipolar part of the response in its ℓ = 1 terms, which we find to be the only

present for most cases, in agreement with theoretical arguments (Appendix B). This

suggests that after the quantification, the steady-state shift can be represented by a dot

product as proposed in the literature under the λE model framework [5]. Furthermore,

in realistic settings where azimuthal information of single neurons is unavailable and for

cells near rest, the only relevant term is thus the (1,0).

However, we have observed how dipoles are not the only type of response, and

we observe asymmetries among anodal and cathodal responses while keeping a neutral

response to perpendicular fields in cells closer to the threshold. This behavior needs

other terms that modify the dipolar ones accordingly. For dipoles aligned with the

z-axis (1,0), we observed the emergence of a pair of equal values of (0,0) and (2,0).

This pair shifts the values of the 1-degree terms at the poles of the dipole. Equivalent

expressions involving other terms can modify dipoles oriented in other directions.

State-dependence In the neighborhood of the resting condition, we observed an increase

in the effect size if currents were hyperpolarizing and a decrease if depolarizing, as seen in

Figure 8.A. This effect aligns with the fact that the size of the polarization induced by the

external electric field depends on the membrane resistance. If the resistance increases,

the effect’s magnitude should also increase [28]. Nevertheless, there are opposite views

in this regard since it has also been pointed out that active networks — with lower

membrane resistance on average, as supposedly ion channels are opening more to fire —

are preferentially modulated in tDCS [29]. The increased excitability we observe close

to the bifurcation seems to be more cohesive with the latter view, which reads as if

the system is placed very close to the critical point by receiving more input, the effect

appears larger. On the other hand, the window of increased excitability right before the

bifurcation is also consistent with the typical effect of tDCS affecting spike times [30].

A large effect in the vicinity of the emergence of spikes can underlie a modulation of the

moment at which a spike happens. This phenomena has been postulated as a possible

mechanism of action of tES via spike time-dependent plasticity [31, 32]. The emergence

of other terms, i.e., asymmetries and increased excitability towards the spiking threshold,

cannot be explained just by a passive-like membrane argument and requires a different

interpretation.

Reduced compartment models. The average response of a cell part composed of different

compartments can be obtained by averaging the coefficients of all the compartments.

In other words, averaging the coefficients provides a model of the average response of

selected segments or cell types. This strategy can build an averaged response model of

the axon, the apical dendrites, or other regions of interest depending on the experimental

question. Regional averaged response models can be translated into multi-compartment

models with just a few compartments representing the local membrane dynamics of a few
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parts of a cell, like the apical tuft, the soma, or the initial axon segment. Using averaged

coefficients for each provides a statistic about the steady-state response to an external

field in the specific region. Reducing the models here to just a few compartments allows

us to use this knowledge in models at higher scales, like models of cortical columns

made of multi-compartmental cells. Reducing cell models to just a few compartments

significantly reduces the computation cost. The approach can be narrowed down to

one-compartment models as long as they are assumed to be modeling a specific part of

the cell. Then, it poses a proxy for stimulating commonly used models such as leaky or

quadratic integrate and fire models [33].

Implications for tDCS-based therapies State-of-the-art montage optimization algo-

rithms rely on the hypothesis that tDCS effects are related to the normal component

of the electric field on the cortical surface since this component couples more strongly

with pyramidal cells. The present work cannot be used as a direct input for optimiz-

ing electrode montages, as many other factors need to be considered. Nevertheless, it

provides a direct translation between electric field and steady-state membrane poten-

tial change, see Appendix C. However, there is growing interest in using non-invasive

brain stimulation techniques as a potential treatment for drug-resistant patients and

using computational models to optimize these treatments [34]. An interesting role for

computational models is representing the pathophysiology underlying neurological dis-

orders such as epileptic activity. For instance, in [35] and more recently in [36], neural

mass models (NMM) have been used to represent epileptic seizure transitions: changes

from interictal to ictal state were achieved by increasing the excitatory synaptic gain at

the level of glutamatergic pyramidal cells and varying the inhibitory synaptic gains of

GABAergic interneurons. Still, there is an open debate in the field about the validity of

the predictions of such models [37]. Ideally, building pathophysiology models that can

predict the effects on the pathology of induced electric fields in different brain regions

will ultimately define neurophysiologically relevant target functions. These will require

models of the effects of electric fields that capture the behavior at the local population

level by representing the different types of neurons and the specific effects of external

fields on each. Our work represents a step in this direction.

Implications for other stimulation modalities The modeling framework we present in

this paper can also be used to predict the effects of electric fields on the membrane

potential of neurons in other stimulation modalities. It holds especially true if the

electric field is comparable to that of tDCS, such as in the case of cerebellar tDCS [38]

or spinal cord stimulation [39]. Even though these modalities target different neuronal

populations, some common points should still exist with the results obtained in this

study, namely that a dipolar expansion can approximate the response. This would only

be the case for TMS in regions where the electric field induces polarizations far away

from the spiking threshold. Nevertheless, other computational studies have focused on

studying the response of detailed neuron models to TMS pulses [40].
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Translation to mesoscale models. The methods described are a starting point to derive

the effects of weak, uniform electric fields at the population level (cortical column or

small cortical patch scale). However, the translation from single cells to the mesoscale

is not trivial, given that network effects are arising at the population level [15, 16].

A first approach can be to computationally obtain the response of a population by

building models of cortical columns or networks of cell models and then extracting the

effects at the population level. One could use a full cortical column model with multi-

compartment models such as the one developed by the Blue Brain Project [19] and

include the effect of the field at each compartment of each cell. A less computationally

expensive approach could be to build a similar cortical column model made of neuron

models with reduced numbers of compartments, as introduced in the previous paragraph

[41]. An alternative to computationally assessing the population-scale effects is to work

in a theoretical framework that connects the microscale to the mesoscale, starting from

simplifying assumptions. This kind of theoretical connection has recently grown in

interest in the field of NMMs since the work by [42], who derived an exact mean field

theory from the quadratic integrate and fire neuron model. In this framework, values for

the induced transmembrane currents by weak fields are especially relevant since there

is no ambiguity in translating the effects from the microscale to the population level.

5. Conclusions

In this work, we have provided a framework for analysis of the effects of weak,

uniform electric fields in neuron models in terms of changes in their steady-state

conditions. We quantify the induced perturbation dependence on the orientation using

spherical harmonic coefficients. Through this analysis, we have validated numerically the

commonly used dipole approximation for the studied models in their resting state (far

from the threshold) and weak electric field regime. We have also provided a theoretical

justification for this in a generic passive membrane model. We have shown, however,

that there are conditions under which this approximation is less accurate—particularly

close to the spiking threshold. We have also seen that although pyramidal cells generally

display the most substantial effects, some interneurons can also be strongly affected but

with a more diverse set of responses. Although the impact of these effects on neuron

networks is left for future research, our work provides the basis for further computational

studies studying the relation of electric field effects at microscale and mesoscales. This

can benefit the development of brain models and derived clinical applications relying on

model-driven brain stimulation with weak electric fields, such as tES.
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Shruti Muralidhar, Keerthan Muthurasa, Daniel Nachbaur, Taylor H. Newton, Max Nolte,

Aleksandr Ovcharenko, Juan Palacios, Luis Pastor, Rodrigo Perin, Rajnish Ranjan, Imad Riachi,
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Shi, Julian C. Shillcock, Gilad Silberberg, Ricardo Silva, Farhan Tauheed, Martin Telefont,

Maria Toledo-Rodriguez, Thomas Tränkler, Werner Van Geit, Jafet Villafranca Dı́az, Richard

Walker, Yun Wang, Stefano M. Zaninetta, Javier DeFelipe, Sean L. Hill, Idan Segev, and Felix

Schürmann. Reconstruction and simulation of neocortical microcircuitry. Cell, 163(2):456–492,

October 2015.

[20] Cameron C. McIntyre and Warren M. Grill. Extracellular stimulation of central neurons:

Influence of stimulus waveform and frequency on neuronal output. Journal of Neurophysiology,

88(4):1592–1604, October 2002.

[21] M. L. Hines and N. T. Carnevale. NEURON: a tool for neuroscientists. Neuroscientist, 7(2):123–

35, 2001.

[22] Huan Wang, Bonnie Wang, Kieran P. Normoyle, Kevin Jackson, Kevin Spitler, Matthew F.

Sharrock, Claire M. Miller, Catherine Best, Daniel Llano, and Rose Du. Brain temperature

and its fundamental properties: a review for clinical neuroscientists. Frontiers in Neuroscience,

8, October 2014.

[23] J.R. Driscoll and D.M. Healy. Computing fourier transforms and convolutions on the 2-sphere.

Advances in Applied Mathematics, 15(2):202–250, June 1994.

[24] Mark A. Wieczorek and Matthias Meschede. SHTools: Tools for working with spherical harmonics.

Geochemistry, Geophysics, Geosystems, 19(8):2574–2592, August 2018.

[25] J. A. Rod Blais. Discrete spherical harmonic transforms: Numerical preconditioning and

optimization. In Computational Science – ICCS 2008, pages 638–645. Springer Berlin

Heidelberg, 2008.

[26] M. Bikson, M. Inoue, H. Akiyama, J. K. Deans, J. E. Fox, H. Miyakawa, and J. G. Jefferys. Effects

of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J

Physiol, 557(Pt 1):175–90, 2004.

[27] Beatriz Rebollo, Bartosz Telenczuk, Alvaro Navarro-Guzman, Alain Destexhe, and Maria V.

Sanchez-Vives. Modulation of intercolumnar synchronization by endogenous electric fields in

cerebral cortex. Science Advances, 7(10), March 2021.

[28] Walter Paulus and John C. Rothwell. Membrane resistance and shunting inhibition: where

biophysics meets state-dependent human neurophysiology. The Journal of Physiology,

594(10):2719–2728, May 2016.

[29] Marom Bikson and Asif Rahman. Origins of specificity during tDCS: anatomical, activity-selective,

and input-bias mechanisms. Frontiers in Human Neuroscience, 7, 2013.

[30] T. Radman, Y. Su, J. H. An, L. C. Parra, and M. Bikson. Spike timing amplifies the effect of

electric fields on neurons: implications for endogenous field effects. J Neurosci, 27(11):3030–6,

2007.

[31] Daniel E. Feldman. The spike-timing dependence of plasticity. Neuron, 75(4):556–571, August

2012.

[32] Greg Kronberg, Asif Rahman, Mahima Sharma, Marom Bikson, and Lucas C. Parra. Direct

current stimulation boosts hebbian plasticity in vitro. Brain Stimulation, 13(2):287–301, March

2020.

[33] Peter Dayan and L F Abbott. Theoretical neuroscience. Computational neuroscience. MIT Press,

ACCEPTED MANUSCRIPT / CLEAN COPY



Spherical harmonics representation of steady-state shifts induced by weak fields 22

London, England, December 2001.

[34] Giulio Ruffini, Fabrice Wendling, Roser Sanchez-Todo, and Emiliano Santarnecchi. Targeting

brain networks with multichannel transcranial current stimulation (tCS). Current Opinion in

Biomedical Engineering, 2018.

[35] F. Wendling, F. Bartolomei, J. J. Bellanger, and P. Chauvel. Epileptic fast activity can be

explained by a model of impaired GABAergic dendritic inhibition. Eur J Neurosci, 15(9):1499–

508, 2002.

[36] Edmundo Lopez-Sola, Roser Sanchez-Todo, Èlia Lleal, Elif Köksal Ersöz, Maxime Yochum,
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Appendix A. Real spherical harmonics

A square-integrable function f : S2 → R can be expanded in terms of the real harmonics

Yℓm : S2 → R like:

f(θ, φ) =
∞∑
l=0

ℓ∑
m=−ℓ

fℓmYℓm(θ, φ) (A.1)

The general definition of each spherical harmonic function Yℓm can be cumbersome,

and its derivation is out of the scope of this text. We summarize how they can be

stated for completeness, but it does not serve as an introduction to the field. Here it is

worthwhile to recall the notation:

• θ stands for the polar angle or inclination.

• φ for the azimuth or longitude.
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• ℓ for the spherical harmonic degree.

• m for the order.

Under this convention, the real spherical harmonics are defined as [24]:

Yℓm(θ, φ) =

{
P̄ℓm(cos θ) cosmφ if m ≥ 0

P̄ℓ|m|(cos θ) sin |m|φ if m < 0

where P̄ℓm(µ) are the normalized associated Legendre functions. For 4π-normalized

spherical harmonic functions, they can be written as:

P̄ℓm(µ) =

√
(2− δm0) (2ℓ+ 1)

(ℓ−m)!

(ℓ+m)!
Pℓm(µ)

Note that δij refers to the Kronecker delta and Pℓm(µ) refers to the unnormalized

associated Legendre functions. They can be derived from the standard Legendre

polynomials using the relations shown below:

Pℓm(µ) =
(
1− µ2

)m/2 dm

dµm
Pℓ(µ)

Pℓ(µ) =
1

2lℓ!

dℓ

dµℓ

(
µ2 − 1

)ℓ
As a set of basis functions, they need to be orthogonal. Note that the associated

Legendre functions are indeed orthogonal for any given m, given that:∫ 1

−1

P̄ℓm(µ)Pℓm(µ) = 2 (2− δ0m) δℓℓ

Appendix B. Dipole nature of electric field effect in compartment model of

a neuron in the passive, linear membrane regime

Here we show that for a passive membrane, the effect of an electric field on a neuron

compartment, or its average over a set of compartments (uniform field), can be written

in the form δV = P · E, where P is a vector. Note that the behavior far from the

threshold and under weak electric fields is considered comparable to that of a passive

membrane since the active properties of membranes (nonlinear) require more significant

effects to come into play. This is the so-called “λE” model used in transcranial electrical

stimulation models [5, 43].

The effect of an external field can be represented in a neuron compartment model

by an axial current that results from the potential difference induced by the field along

the fiber associated with a compartment

I = ga
∫ x+∆x

x

Ex(s) ds (B.1)
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where ga is the axial conductivity and Ex is the field along the fiber. We can rewrite

this as I = ga
∫
f
E · dl with the line integral along the fiber f compartment. If the field

is constant along the fiber we can express this simply as I = ga E · u. The vector u

is a vector defined from one center of compartment to another center of a connected

compartment, and pointing into the compartment of interest (see Figure B1). If the E

field is aligned with this direction, we get a positive current into the compartment. If

the compartment of interest is k and the connected compartment is j, we refer to the

vector uk,j parallel to xk − xj (the coordinates of the compartments).

Figure B1. Compartments and vectors for cable equation in E field. Here we represent

a fiber by a node and a set of directed edges.

From conservation of charge (the sum over j is over connected compartments, and i

over membrane currents), and assuming that the field is uniform and thus independent

of the compartment k, we obtain

Ck
dVk

dt
+
∑
i

Ii,k =
∑
j↭k

gaj (Vj − Vk) +
∑
j↭k

gaj E · uk,j (B.2)

where the sum on the left hand side is over ionic membrane currents out of the

compartment. The notation j ↭ k indicates a sum over all compartments j connected

to the kth one. For an arbitrary compartment-dependent quantity Qj, sums over

j ↭ k can be rewritten via a compartment connectivity matrix ckj, with value of

1 if compartment j is connected to k, zero otherwise. That is,
∑

j↭k Qj ≡
∑

j ckjQj.

We can simplify this and also pull the constant electric field out the sum,

Ck
dVk

dt
+ Ik =

∑
j↭k

gaj (Vj − Vk) + pk · E (B.3)

where Ik =
∑

i Ii,k and where

pk =
∑
j↭k

gajuk,j =
∑
j

ckjg
a
juk,j (B.4)

The equation for a single compartment in steady state is thus of the form

Ck
dVk

dt
− pk · E+ grkVk + I0k +

∑
j↭k

gaj (Vk − Vj) = 0 (B.5)
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where pk is the dipole vector corresponding to the kth compartment, and Ik = Vkg
r
k+I0k ,

with I0k the sum of currents associated to the reversal potentials, and grk the radial

(transmembrane) conductivity in the linear regime.

Thus, we see that the behavior of each compartment is characterized by its own

dipole and the interaction with other compartments.

Equation B.5 is linear and can be expressed in matrix form, with the compartment

array notation V = (Vk) = (V1, V2, . . . , VN)
T , C = diag(Ck) = diag(C1, C2, . . . , CN),

and P = (p1, . . . ,pN)
T .

C
∂V

∂t
+ AV = I0 − P · E (B.6)

and with the matrix A given by

Akj = δkjg
r
j − gaj ck,j + δkj

∑
l

gal cl,j = δkj
(
grj +

∑
l

gal cl,j
)
− gaj ck,j (B.7)

where we split the diagonal and off diagonal elements in the second equality.

We recall here that a matrix is strictly diagonally dominant if, for every row of the

matrix, the magnitude of the diagonal entry in a row is larger than or equal to the sum

of the magnitudes of all the other (non-diagonal) entries in that row, i.e.,

|aii| >
∑
j ̸=i

|aii|

Now, the Gershgorin circle theorem implies that a strictly diagonally dominant matrix

(or an irreducibly diagonally dominant matrix) is non-singular [44] [Th 6.2.27]. We can

observe that this is the case for A, since (all g’s are taken to be positive, and recall the

c’s are 1s or 0s, with cii = 0)

|Aii| = gri +
∑
l

gal cl,i

and ∑
j ̸=i

|Aij| =
∑
j ̸=i

gaj ci,j < |Aii|

This means that the matrix A has an inverse.

In steady state (V̇ = 0), the solution to this equation is

V = A−1[I0 − P · E] (B.8)

or

Vk =
∑
j

A−1
kj [I

0
k − pk · E] =

∑
j

A−1
kj I

0
k − E ·

∑
j

A−1
kj pj (B.9)

where the second equality is a result of linearity of the A matrix, i.e., the fact that we

are dealing with a linear equation. Finally, we can write the solution as

Vk =
∑
j

A−1
kj I

0
k + p̃k · E (B.10)
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This equation shows that the response of the compartment to an electric field is of dipole

form, with the total dipole p̃k resulting from a superposition of dipoles,

p̃k = −
∑
j

A−1
kj pj = −

∑
j,l

A−1
kj cjlg

a
juj,l (B.11)

Furthermore, we observe that any linear function of compartment potentials will also

display, by further superposition, a dipole response. This includes, for example, the

average membrane perturbation for apical dendrite compartments, or soma.

What happens in the nonlinear case, when the neuron is not at baseline? We can

write (steady state)

−pk · E+ Irk(Vk) +
∑
j↭k

gaj (Vk − Vj) = 0 (B.12)

with Irk(Vk) a nonlinear function, or, in a fashion analogous to the discussion above, in

matrix form

−pk · E+BV+ I(V) = 0

or

Fk(V ) = −pk · E (B.13)

for a nonlinear operator F . This means we cannot pull out the E field out of the inverse.

However, if the electric field is very weak, we can carry out the analysis above with the

linearized version of Equation B.13 by expanding it around the potential with zero field,

with the same conclusion.

Appendix C. Realistic montage exploration

Context Based on the λE approach, one logical strategy is to optimize for the normal

component of the electric field with respect to the cortical surface. The quantification

of the performance of the montage is carried out by averaging the electric field on the

target area. Expressions like the λE model, which captures the main response of neurons

to the fields can be used to develop metrics that are more representative of the relevant

physiological effects of the stimulation. As an example of this, we performed a montage

optimization to stimulate the dorsolateral prefrontal cortex (dlPFC), which is a common

area for stimulation in tDCS, in a real head model - see Figure C1.A.

Montage creation We ran the Stimweaver algorithm [43] with a maximum of 8 channels,

and a total injected current of 4.0 mA, under the restriction of 2.0 mA maximum per

channel. The montage was optimized to achieve a normal component to the cortical

surface of the electric field of 0.25 V/m in the dlPFC, using weights of 10 and 2 to

on- and off-target nodes, respectively. We computed the predicted average membrane

polarization of LV pyramidal cells somata on- and off-target as a proof of concept

(Figure C1).
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Figure C1. Predicted effects in a realistic montage Representation of a pipeline

from a target definition to a predicted physiological effect. A: Target definition.

Overlay in red of the cortical area marked as the target of the stimulation. In gray,

the rest of the cortex. B: Optimized montage. Anodal (blue) and cathodal (red)

electrodes location over the cortical surface. The predicted electric field magnitude is

displayed color coded over the cortical surface, being the color code the one displayed

in the colorbar on the left (V/m). C: Predicted polarization. Prediction of the

somatic polarization of LV thick-tufted pyramidal cells. D: Quantification of effects

on and off target. Predicted values of steady-state somatic polarization induced in

a LV thick-tufted pyramidal cell using the optimized montage shown in B. The figure

shows how effects are induced in the cortex selectively to the original target.

Results The target map of the montage is shown in Figure C1.A. The optimized

montage is shown in Figure C1.B, together with the predicted electric fields on the

cortex—overlaid on the brain morphology. The normal component on-target predicted

with the optimized montage has a median value across nodes of 0.11 V/m and a mode

of 0.17 V/m computed as the maximum of the kernel density estimate. Through the

formalism in Equation 2 and the computationally derived response functions, that map

can be translated to a variable with actual physiological meaning, e.g., the somatic

membrane potential perturbation of LV early branching thick-tufted pyramidal cells,

Figure C1.C. We observe a significant effect on-target (Mann-Whitney U, p< 1× 10−3,

see Figure C1.D).
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