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We review the idea, put forward in 1982, by Parisi and Sourlas, that the bath of fluctuations, with
which a physical system is in equilibrium, can be resolved by the superpartners of the degrees of
freedom, defined by the classical action. This implies, in particular, that fermions can be described
in terms of their superpartners, using the Nicolai map. We focus on the question, whether the
fluctuations of scalar fields can, in fact, produce the absolute value of the stochastic determinant
itself, whose contribution to the action can be identified with the fermionic degrees of freedom and
present evidence supporting this idea in two spacetime dimensions. The same idea leads to a new
formulation of supersymmetric QED. We also review the obstacles for extending this approach to
Yang-Mills theories and report on progress for evading the obstructions for obtaining interacting
theories in three and four spacetime dimensions. This implies, in particular, that it is possible to
describe the effects of fermions in numerical simulations, through their superpartners.
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Noisy SUSY Stam Nicolis

1. Introduction

2022 is a jubilee year: For the Corfu Workshops, that started in 1982; and for the paper “Su-
persymmetric Field Theories and Stochastic Differential Equations” by G. Parisi and N. Sourlas [1]
that appeared and was published that year.

In that paper the authors proposed that supersymmetry isn’t an optional feature of Nature but
that it expresses a fundamental property of any physical system, in equilibrium with a bath of
fluctuations in the sense that the superpartners of the degrees of freedom, that define the physical
system, resolve the bath of fluctuations.

There are several issues that were left unresolved in their presentation:

• Can the fluctuations of physical systems be, indeed, “repackaged” in the absolute value of the
determinant, that defines the change of variables in the path integral, from the “dynamical”
fields, that describe the physical system, in the absence of fluctuations, to the “noise” fields,
that describe the bath? Or must the dynamical fields that resolve the fluctuations, be introduced
by hand? This is, in fact, what has been used by the studies on the lattice of supersymmetric
theories, that do use the Nicolai map. We would like to present evidence that it’s possible to
simplify the calculations considerably. This is what, indeed, Parisi and Sourlas stressed in
their paper.

• The approach by Parisi and Sourlas seemed to hit an obstruction beyond two spacetime
dimensions; however it hasn’t been fully clarified since, whether this is an obstacle of
principle for the approach itself, or a technical issue.

• The approach was for Wess–Zumino models and left open the question of how to describe
gauge theories.

• For the case of target space supersymmetry, the Nicolai map–or the Langevin equation–(they
are the same relation) takes the following form (we work throughout in Euclidian signature,
in 𝑑 spacetime dimensions)

𝜂𝐼 = 𝜎
𝜇

𝐼 𝐽
𝜕𝜇𝜙𝐽 +

𝜕𝑊

𝜕𝜙𝐼
(1)

where the 𝜎𝜇 are assumed to generate a Clifford algebra,

{𝜎𝜇, 𝜎𝜈}𝐼 𝐽 = 2𝛿𝜇𝜈𝛿𝐼 𝐽 . (2)

Now the generators of a Clifford algebra carry spinor indices, which would mean that 𝜂𝐼 (𝑥)
and 𝜙𝐼 (𝑥) are components of spinors; however we would really like to identify the 𝐼, 𝐽 indices
as flavor indices. On the other hand, we can do so, but then the transformation properties
of the noise fields under spacetime rotations (in Euclidian signature) do not have an obvious
interpretation. So there is a conceptual issue here that requires clarification. It is possible
to take a “pragmatic” approach, whereby we take the 𝜎

𝜇

𝐼 𝐽
to be numerical coefficients and

try to check the consistency of this map by the identities that the 𝜂𝐼 (𝑥), as functions of the
𝜙𝐼 (𝑥), are expected to satisfy; if these don’t show any anomalies, this is an indication that
the approach is, in fact, consistent. This is what we shall do here. We shall provide evidence
that the “pragmatic” approach does seem to work.
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Let us, also, note that, in Euclidian signature, the 𝜎
𝜇

𝐼 𝐽
, that satisfy eq. (2), have real entries

iff 𝑑 ≡ 2 mod 8; so, for other spacetime dimensions, the Nicolai map is incomplete, since
the RHS can take complex values, whereas the LHS can take real values. One solution is to
double the degrees of freedom, i.e. to consider complex scalars, 𝜙𝐼 (𝑥), 𝜙†𝐼 (𝑥) and complex
noise fields, 𝜂𝐼 (𝑥) and 𝜂

†
𝐼
(𝑥), with the latter defined by

𝜂
†
𝐼
(𝑥) = 𝜎

𝜇

𝐽 𝐼
𝜕𝜇𝜙

†
𝐽
(𝑥) +

(
𝜕𝑊

𝜕𝜙𝐼

)†
(3)

since [𝜎𝜇
𝐼 𝐽
]† = 𝜎

𝜇

𝐽 𝐼
, as they’re Hermitian matrices.

Indeed, the idea that we would like to propose here is that, while it may seem that the
𝜂𝐼 (𝑥) don’t have well-defined properties, under spacetime rotations, the combinations,
𝜂𝐼 (𝑥)𝜂𝐽 (𝑥)𝛿𝐼 𝐽 , (when 𝑑 ≡ 2 mod 8; the 𝜂𝐼 (𝑥)𝜂†𝐽 (𝑥)𝛿

𝐼 𝐽 otherwise) are certainly expected
to have: They are supposed to be target space scalars, also upon expressing them in terms
of the fields 𝜙𝐼 (𝑥) (respectively 𝜙

†
𝐼
(𝑥)). It is this requirement that will impose upon the

superpotential, 𝑊, that it be a holomorphic function of its arguments: This is due to the
requirement that the action be invariant under spacetime rotations (in Euclidian signature).

In this presentation we would like to report on progress on the understanding of these issues,
namely we shall provide the calculational framework and some of its applications that will allow us
to understand better what these issues entail.

2. Repackaging the fluctuations in two dimensions

Let us recall that the starting point is the partition function for the “noise” fields, 𝜂(𝑥) :

𝑍 =

∫
[𝒟𝜂(𝑥)] 𝑒−

∫
𝑑𝑑𝑥

𝜂𝐼 (𝑥)𝜂𝐽 (𝑥)
2𝜎2 𝛿𝐼 𝐽

= 1 (4)

which we can take equal to 1 by a definition of the measure. Here 𝜎2 defines the scale of the
fluctuations: It can be identified with 𝑘B𝑇 for thermal fluctuations, with ℏ for quantum fluctuations
and with the strength of the disorder for the fluctuations described by disorder. Since the bath is
fixed, we can choose our units so that 𝜎2 = 1, which we shall do in the following.

Let us now perform the change of variables defined by eq. (1). A change of variables doesn’t
change the value of the integral (in the absence of anomalies, that, in the present context, would be
from boundaries), therefore we obtain the expression for the partition function of the fields 𝜙𝐼 (𝑥) :

𝑍 =

∫
[𝒟𝜙𝐼 ]

����det
𝛿𝜂𝐽

𝛿𝜙𝐼

���� 𝑒− 1
2
∫
𝑑𝑑𝑥

(
𝜎
𝜇

𝐼𝐾
𝜕𝜇𝜙𝐾+ 𝜕𝑊

𝜕𝜙𝐼

) (
𝜎
𝜇

𝐽𝐿
𝜕𝜇𝜙𝐿+ 𝜕𝑊𝜕𝜙𝐽

)
𝛿𝐼 𝐽

= 1 (5)

Indeed we will be able to test, whether anomalies can occur, or not.
What this expression implies is that the fluctuations to the classical action are repackaged into

the absolute value of the determinant of the operator 𝛿𝜂𝐽/𝛿𝜙𝐼 : It is the presence of this term that
ensures that 𝑍 = 1.

Now the question arises, whether we must include this Jacobian by hand, or whether it can be
produced by the fluctuations of the classical action of the scalars, in equilibrium with them.

3
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What hasn’t been appreciated, even though it’s the whole point of the Nicolai map and of the
proposal of Parisi and Sourlas, is that the answer to this question can be obtained by checking the
identities that are expected to be satisfied by the noise fields, 𝜂𝐼 (𝑥), defined in terms of the scalars,
𝜙𝐼 (𝑥) and, therefore, sampled using the action of the scalars alone, that appears in the exponent of
eq. (5).

The Jacobian (along with its absolute value) will be produced by the fluctuations of the classical
action of the scalars, iff the noise fields, as functions of the scalars, satisfy the identities

〈(𝜂𝐼 (𝑥) − 〈𝜂𝐼 (𝑥)〉)(𝜂𝐽 (𝑥 ′) − 〈𝜂𝐽 (𝑥 ′)〉)〉 = 𝛿𝐼 𝐽 𝛿(𝑥 − 𝑥 ′)
〈(𝜂𝐼1 (𝑥1) − 〈𝜂𝐼1 (𝑥1)〉) · · · (𝜂𝐼2𝑛 (𝑥2𝑛) − 〈𝜂𝐼2𝑛 (𝑥2𝑛)〉)〉 =∑
𝑃 〈(𝜂𝐼𝑃 (1) (𝑥𝑃 (1) ) − 〈𝜂𝐼𝑃 (1) (𝑥𝑃 (1) ))〉 · · · 〈(𝜂𝐼𝑃 (2𝑛) (𝑥𝑃 (2𝑛) ) − 〈𝜂𝐼𝑃 (2𝑛) (𝑥𝑃 (2𝑛) ))〉

(6)

Notice that, in these expressions the 1-point function(s) of the noise fields, 〈𝜂𝐼 (𝑥𝐼 )〉–expressed as
a function(s) of the scalars–need not vanish. If they do, supersymmetry is realized in the Wigner
mode; if they don’t it’s realized in the Nambu-Goldstone mode; if the 𝜂𝐼 (𝑥) don’t satisfy these
identities, supersymmetry is anomalously broken.

What is important is that the expectation values are to be taken with respect to the measure,

𝜌(𝜙) ≡ 𝑒
− 1

2
∫
𝑑𝑑𝑥

(
𝜎
𝜇

𝐼𝐾
𝜕𝜇𝜙𝐾+ 𝜕𝑊

𝜕𝜙𝐼

) (
𝜎
𝜇

𝐽𝐿
𝜕𝜇𝜙𝐿+ 𝜕𝑊𝜕𝜙𝐽

)
𝛿𝐼 𝐽∫

[𝒟𝜙𝐼 ] 𝑒
− 1

2
∫
𝑑𝑑𝑥

(
𝜎
𝜇

𝐼𝐾
𝜕𝜇𝜙𝐾+ 𝜕𝑊

𝜕𝜙𝐼

) (
𝜎
𝜇

𝐽𝐿
𝜕𝜇𝜙𝐿+ 𝜕𝑊𝜕𝜙𝐽

)
𝛿𝐼 𝐽

(7)

that is perfectly well-defined, in 𝐷 ≡ 2 mod 8 and, correspondingly, upon doubling the degrees of
freedom, for other values of 𝐷, therefore is well-suited for numerical simulations.

This statement, however, relies on the transformation properties of the 𝜂𝐼 (𝑥), as functions of
the 𝜙𝐼 (𝑥). If the 𝜂𝐼 (𝑥) are flavor vectors, they certainly don’t look like them, when expressed in
terms of the 𝜙𝐼 (𝑥). To understand what the Nicolai map entails, let’s expand the action of the
scalars:

𝑆[𝜙] =
∫

𝑑𝑑𝑥
1
2

{
𝜎
𝜇

𝐼𝐾
𝜎𝜈𝐽𝐿𝜕𝜇𝜙𝐾 𝜕𝜈𝜙𝐿 +

𝜕𝑊

𝜕𝜙𝐼

𝜕𝑊

𝜕𝜙𝐽
+ 𝜎

𝜇

𝐼𝐾
𝜕𝜇𝜙𝐾

𝜕𝑊

𝜕𝜙𝐽
+ 𝜕𝑊

𝜕𝜙𝐼
𝜎
𝜇

𝐽𝐿
𝜕𝜇𝜙𝐿

}
𝛿𝐼 𝐽

(8)
The first term is, in fact, invariant under SO(2) rotations of the coordinates and SO(2) flavor
transformations. The second term is invariant under SO(2) rotations of the coordinates, since it
doesn’t involve any derivatives; what is not obvious is, whether it is invariant under SO(2) flavor
transformations. For 𝑑 = 2 it will be, provided that 𝑊 (𝜙𝐼 ) is given by the following expression:

𝑊 (𝜙1, 𝜙2) =
𝑚

2
(𝜙2

1 + 𝜙2
2) + 𝑤(𝜙1 + i𝜙2) + 𝑤(𝜙1 − i𝜙2) (9)

The reason is that this expression is a solution to the equation(
𝜙1

𝜕

𝜕𝜙2
− 𝜙2

𝜕

𝜕𝜙1

) {
𝜕𝑊

𝜕𝜙𝐼

𝜕𝑊

𝜕𝜙𝐽
𝛿𝐼 𝐽

}
= 0 + total derivatives (10)

What is interesting is that the expression (9) for the superpotential ensures that the third term, also,
is a total derivative, thereby ensuring that the classical action is, indeed, invariant under SO(2)
rotations of the coordinates and SO(2) flavor transformations. However, only the first or the second
and third terms can appear, not all three.
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Therefore the non–trivial statement is that, iff the superpotential is a holomorphic function
of the scalars, the action is invariant under SO(2) coordinate rotations and SO(2) flavor rotations.
Furthermore, these symmetries can be expressed as the property that the noise fields, 𝜂𝐼 (𝑥), upon
being expressed as function of the scalars, satify the identities (6), computed using the functions of
the scalars alone, which, in this case, is bounded from below and confines at infinity.

If these identities hold, then the Jacobian–along with its sign–is reproduced by the fluctuations.
If they don’t, then it isn’t. This calculation was done and a sample is shown in fig. 1 [2] The

Figure 1: Checking the identities, satisfied by the noise fields, as functions of the scalars, for the N = 2 two-
dimensional Wess-Zumino model, on a 17× 17 lattice. Left panel: The diagonal components of 〈𝜂𝐼 (𝑥)𝜂𝐽 (𝑥 ′)〉
are 𝛿−functions, up to lattice artifacts; right panel: The off-diagonal components of 〈𝜂𝐼 (𝑥)𝜂𝐽 (𝑥 ′)〉 are
consistent with 0 across the lattice.

fermions are “hidden” in the Jacobian, therefore all the correlation functions that involve them can
be computed in terms of–very complicated expressions–of the scalar fields. The point being that
the “hard” part of the calculation is the sampling of the action, which, only, involves the scalars,
when done numerically–which is the opposite of what happens when trying to do the corresponding
calculations in perturbation theory.

3. Beyond two dimensions: doubling the degrees of freedom

What Parisi and Sourlas remarked was that trying to generalize the approach to spacetime
dimensions greater than 2 hit an obstacle: It seemed impossible to write down a superpotential, that
had non-quadratic terms and was invariant under SO(𝑑) rotations, when 𝑑 > 2, in particular when
𝑑 = 4, if one started from the Langevin equation. Stated differently, the Nicolai map didn’t seem to
exist, for 𝑑 > 2, for Wess-Zumino models.

What wasn’t appreciated was that the real problem, that made, in fact, the obstruction inevitable,
is that, in Euclidian signature, the matrices, 𝜎𝜇, that generate the Clifford algebra, have real entries
only when 𝑑 ≡ 2 mod 8. Therefore the Nicolai map–equivalently the Langevin equation (1)–is
incomplete, unless 𝑑 ≡ 2 mod 8 because the LHS is assumed to be real, while the RHS can’t be in
𝑑 = 4.

5
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The solution is to double the degrees of freedom: The noise fields are 𝜂𝐼 (𝑥) and their complex
conjugate, 𝜂†

𝐼
(𝑥) and they are expressed in terms of the 𝜙𝐼 (𝑥) and their complex conjugate, 𝜙†

𝐼
(𝑥),

according to eqs. (1) and (3).
Now what is interesting is that this doubling of the degrees of freedom doesn’t automati-

cally ensure the invariance of the kinetic term and of the potential term under SO(𝑑) coordinate
transformations and SO(𝑑) flavor transformations: The non-trivial requirement is that the scalar
potential,

𝑉 =
1
2
𝜕𝑊

𝜕𝜙𝐼

𝜕𝑊

𝜙
†
𝐽

𝛿𝐼 𝐽 (11)

is a function of 𝜙𝐼 𝜙†𝐼 (summation over the repeated indices implied); indeed this is how the action
for N = 2 Wess–Zumino models is constructed. This does hold for 𝐷 = 2.

Another non–trivial statement is that the expression

C ≡ 𝜎
𝜇

𝐼𝐾
𝜕𝜇𝜙𝐾

(
𝜕𝑊

𝜕𝜙𝐼

)†
+ 𝜎𝜈𝐿𝐼 𝜕𝜈𝜙

†
𝐿

𝜕𝑊

𝜕𝜙𝐼
(12)

that does appear upon expanding the action and isn’t, manifestly, invariant under SO(𝑑) coordinate
transformations or under SO(𝑑) flavor transformations, is, indeed, a total derivative. It is, obviously,
a total derivative if𝑊 is a quadratic function of the fields; what remains to check is that non-quadratic
terms in the superpotential contribute total derivatives to C, also.

What the doubling of the degrees of freedom achieves is providing the additional terms that
are necessary for completing the construction of the total derivatives. What isn’t, yet, proved is,
whether this is, also, sufficient.

It, also, implies that the number of “flavors” can’t be less than two (four real scalars) in three
dimensions and four (eight real scalars) in four dimensions–and these numbers are, simply, the
expression of the consistent closure of the system, in equilibrium with its fluctuations, that are
resolved by the superpartners.

4. Gauge theories

Gauge theories probe the group manifold of the corresponding Lie group. For compact gauge
groups–that are of relevance to particle physics, in the absence of gravity–the “natural” measure is
the uniform distribution on the group manifold, that’s normalizable. This would be the analog of
the Gaussian distribution, with ultra–local 2-point function, on a non-compact manifold, that was
used for the Wess–Zumino model. This approach has, in fact, been implemented in recent years, in
the framework of lattice gauge theories, more specifically for lattice QCD, using the notion of the
“trivializing map”. For non-Abelian gauge groups the construction of this map is quite involved
and, still, work in progress.

For Abelian gauge groups, in particular the U(1) group, it is possible to realize the construction
of the “trivializing map” in the following way, that renders the relation with the Nicolai map more
direct. The starting point is the remark that the action of 𝐷 massless scalar fields, in 𝐷 dimensions,
in Euclidian signature,

𝑆[𝜙𝐼 ] =
∫

𝑑𝐷𝑥

{
−1

2
𝜙𝐼�𝜙𝐽 𝛿

𝐼 𝐽

}
(13)

6
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is identical to that of a U(1) gauge field, in 𝐷 dimensions (in Euclidian signature), in Lorenz-
Feynman gauge; just the names have changed: 𝜙𝐼 ≡ 𝐴𝜇 with 𝐼 = 1, 2, . . . , 𝐷 and 𝜇 = 1, 2, . . . , 𝐷.

This, immediately, implies that the Nicolai map is given by the expression

𝜂𝐼 = 𝜎
𝜇

𝐼 𝐽
𝜕𝜇𝜙𝐽 (14)

What is interesting to note is that, if 𝐷 ≡/ 2 mod 8, we are “forced” to double the degrees of freedom,
by introducing

𝜂
†
𝐼
= 𝜎

𝜇

𝐽 𝐼
𝜕𝜇𝜙

†
𝐽

(15)

which leads to a natural way of introducing the dual gauge potential.
The upshot of this analysis is the construction of the Nicolai map for a U(1) gauge theory

in 8𝑘 + 2 Euclidian dimensions, where the generators of the Clifford algebra admit a Majorana
representation and the identification of the photino, upon introducing 𝜎𝜇𝜕𝜇 in the action:

𝑍 =

∫
[𝒟𝜂𝐼 ] 𝑒−

∫
𝑑𝐷 𝑥 1

2 𝜂𝐼 𝜂𝐽 𝛿
𝐼 𝐽

= 1 =

∫
[𝒟𝜙𝐽 ]

����det
𝛿𝜂𝐼

𝛿𝜙𝐽

���� 𝑒− ∫
𝑑𝐷 𝑥 {− 1

2 𝜙𝐼�𝜙𝐽 𝛿
𝐼 𝐽 } =∫

[𝒟𝜙𝐽 ] [𝒟𝜓𝐼 ] [𝒟𝜒𝐽 ] 𝑒−i𝜃det 𝑒−
∫
𝑑𝐷 𝑥 {− 1

2 𝜙𝐼�𝜙𝐽 𝛿
𝐼 𝐽−𝜓𝐼 𝜎𝜇𝐼 𝐽𝜕𝜇𝜒𝐽 }

(16)

We note that the phase of the Jacobian, 𝑒−i𝜃det , is independent of the fields (for abelian gauge fields,
in the absence of matter and of boundaries) and can, thus, be taken out of the integral. It’s a global
phase in this case.

We remark the doubling of anticommuting degrees of freedom, in order to represent the
determinant of 𝜎𝜇𝜕𝜇 as a “local” term in the Euclidian action.

It is interesting to remark now that we can interpret the 𝐼, 𝐽 indices as, either, “flavor” indices,
or as “spacetime” indices.

In the first case, we have a theory of 𝐷 scalar multiplets, that describe 𝐷 scalar fields, while
their superpartners describe the fluctuations.

In the second case, we have a theory of an abelian gauge field in 𝐷 dimensions and its
superpartners, the gaugini, that describe the fluctuations.

Which case is relevant depends, of course, on additional constraints, that are introduced (indeed
this is one way to describe fields of any spin).

At this point it’s useful to remark that the term 𝜎
𝜇

𝐼 𝐽
𝜕𝜇𝜙𝐽 , displays one way of coupling 𝐷 scalar

multiplets in a way consistent with invariance under SO(𝐷) transformations and supersymmetry.
Therefore we have a consistent description of the photon and the photino, in 𝐷 = 8𝑘 + 2

dimensions. However these are free fields, so the question is, how could they interact. The answer
is, precisely, by making explicit the property that they are superpartners: By measuring properties
of the photon, it is possible to deduce, first of all, the inevitable existence of the photino and, second,
its properties.

However, precisely because these are free fields, their properties can only be probed upon
coupling them to other fields. Such fields are matter fields, charged under the gauge field. The
obvious Ansatz for the matter fields is in terms of the Langevin equations,

𝜉𝐼 = 𝜎
𝜇

𝐼 𝐽
∇𝜇𝜑𝐽 +

𝜕𝑊

𝜕𝜑𝐼

𝜉
†
𝐼
= 𝜎

𝜇

𝐽 𝐼
[∇𝜇𝜑𝐽 ]† +

(
𝜕𝑊

𝜕𝜑𝐼

)† (17)
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where
∇𝜇 ≡ 𝜕𝜇 − i𝑞𝐴𝜇 ≡ 𝜕𝜇 − i𝑞𝜙𝜇 (18)

where 𝜙𝜇 ≡ 𝜙𝐼 ≡ 𝐴𝜇 and 𝑞 is the charge of the matter fields under the gauge field.
The partition function is, therefore, defined by

𝑍 =

∫
[𝒟𝜂𝐼 ] [𝒟𝜉𝐼 ] [𝒟𝜉

†
𝐼
]︸                   ︷︷                   ︸

[𝒟ℎ𝐼 ]

𝑒
−
∫
𝑑𝐷 𝑥

{
1
2 𝜂𝐼 𝜂𝐽 𝛿

𝐼 𝐽+𝜉𝐼 𝜉 †𝐽 𝛿
𝐼 𝐽

}
= 1 =

∫
[𝒟𝜙𝐼 ] [𝒟𝜑𝐼 ] [𝒟𝜑

†
𝐼
]︸                    ︷︷                    ︸

[𝒟Φ𝐼 ]

����det
𝛿ℎ𝐼

𝛿Φ𝐽

���� 𝑒−𝑆 [𝜙𝐼 ,𝜑𝐼 ,𝜑†
𝐼
]

(19)

If we expand out the action, replace 𝜙𝐼 → 𝐴𝜇 in order to conform to standard notation and
introduce the determinant in the action using anticommuting fields it is clear that we will obtain the
partition function of supersymmetric QED–with extended supersymmetry–in 𝑑 = 8𝑘 + 2 spacetime
dimensions. In fact the presence of the phase of the determinant implies that this expression can be
identified with the Witten index. This provides a new way of coupling U(1) gauge theory to matter
within the framework of extended supersymmetry, beyond what was studied in refs. [3–6].

Including more “flavors” is, of course, obvious. What is quite interesting, once more, is that
this approach implies the least number of flavors, that are required for the system to be consistently
closed and that this number, for worldvolumes of more than one dimensions and, in order to describe
target space fermions, is greater than 1 and, indeed, prescribed by the requirement that the Langevin
equation define an action that’s bounded from below and confines at infinity.

It must be stressed that this expression for the partition function is exact and describes all the
fluctuations of the fields that appear in the classical action, by virtue of the fact that it is equal to 1.
What this implies, in particular, is that, if the classical action is taken to be the action of the scalars,
coupled to the gauge field, then the fluctuations are described by the fermions–along with the phase
of the determinant. Conversely, if the classical action is taken to be the action of the fermions,
coupled to the gauge field, then the fluctuations are described by the scalars–along with the phase
of the determinant. In both cases, the fluctuations of the gauge field are described by the part of the
determinant, det (𝛿ℎ𝐼 /𝛿Φ𝐽 ), that won’t, however, factorize, in general, in a “local” way.

However it’s not necessary to deal with the absolute value of the determinant directly–that’s
where the Nicolai maps enter the picture, as well as the knowledge that this is, in fact, a super-
symmetric theory–it is supersymmetry that relates the correlation functions of the scalar fields, that
are easy to compute, to the correlation functions of the fermions, that are much harder to, directly,
compute.

The Nicolai maps (14),(15) and (17) highlight the interesting observables of the theory; they
indicate that the corresponding fields, when sampled using the measure of the “canonically” defined
gauge theory, in Lorenz–Feynman gauge, should be Gaussian, with ultra–local 2–point function; if
the 1–point functions vanish, supersymmetry is intact, otherwise it’s spontaneously broken. If the
2–point function isn’t ultra–local, or the 𝜂𝐼 , 𝜉𝐼 , 𝜉†𝐼 aren’t Gaussian, supersymmetry is “anomalously”
broken–and the deviation of the identities satisfied by these “noise fields” from what’s expected from
Wick’s theorem, allows a quantitative description of this breaking. In four spacetime dimensions
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we note that perturbative renormalizability imposes that the superpotential should be at most cubic,
which leads, inevitably, to supersymmetry being, at least, spontaneously, broken.

It should be noted that, in spacetime dimensions other than 8𝑘+2 (in particular in the physically
interesting cases of 𝐷 = 3 and 𝐷 = 4), it’s necessary to double the degrees of freedom–so the dual
fields, that can realize electric/magnetic duality [7, 8] appear naturally.

Furthermore, we remark that this formulation shows how to describe the quantum effects of
theories of non-chiral fermions, charged under an abelian U(1) gauge field, namely byN = 2 SQED:
the additional scalars and the photino provide the consistent closure, since including them leads
to the identification of the partition function with the Witten index. This provides the framework
for experiments that can probe the effects of the superpartners of the electron–the selectron–and
the photon–the photino–in traps and in current magnetic materials, where fluctuations play an
increasingly important role.

So it remains to provide the numerical evidence that the correlation functions for the noise
fields, 𝜂𝐼 and 𝜉𝐼 , 𝜉

†
𝐼
, when expressed in terms of the scalars 𝜙𝐼 ≡ 𝐴𝜇, 𝜑𝐼 , 𝜑

†
𝐼
, do indeed satisfy

the identities expected of Gaussian fields, with ultra–local 2–point function. The most surprising
identity is that which shows factorization, namely, 〈𝜂𝐼 𝜉𝐽 〉 = 0 = 〈𝜂𝐼 𝜉†𝐽 〉. Of course neither the 𝜂𝐼 or
the 𝜉𝐼 , 𝜉

†
𝐼

are gauge invariant quantities; nevetheless the factorization property is a gauge invariant
statement, since it expresses charge conservation.

Let us, therefore, close by addressing the topic of investigations using numerical simulations
and a lattice regularization. The Nicolai maps imply that it suffices to work with the lattice action
for the scalars and the gauge fields; the effects of supersymmetry are described by the identities of
the correlation functions of the noise fields. So, for the case at hand, it suffices to work with the
action of the compact Abelian–Higgs model (with the requisite number of scalars). This has the
advantage of eliminating any conceptual issues and reducing the problem to a case where known
and tested numerical techniques can be brought to bear. However we realize that the gauge fields
themselves can be described in terms of scalars and it is the correlation functions that reveal which
scalars are, in fact, gauge fields.

The action for the fields 𝜙𝐼 and 𝜑𝐼 , 𝜑
†
𝐼

is readily obtained, by replacing the expressions for the
noise fields in the action. We thus obtain the expression

𝑆[𝜙𝐼 , 𝜑𝐼 , 𝜑†
𝐼
] =

∫
𝑑𝐷𝑥

{
−1

2
𝜙𝐼�𝜙𝐽 𝛿

𝐼 𝐽 +
[
𝜎
𝜇

𝐼𝐾
∇𝜇𝜑𝐾 + 𝜕𝑊

𝜕𝜑𝐼

] [
𝜎
𝜇

𝐽𝐿
[∇𝜇𝜑𝐿]† +

(
𝜕𝑊

𝜕𝜑𝐽

)†]
𝛿𝐼 𝐽

}
(20)

it is bounded from below and confines at infinity and its lattice discretization is straightforward. It
seems to define the dynamics of scalar fields only; the non-trivial properties are encoded by the
correlation functions of the noise fields.

The simplest case is that of 𝐷 = 2 Euclidian spacetime dimensions. The Langevin equations
presented above realize the coupling of the N = 2 Wess-Zumino model to photon and photino. That
we’re studying electrodynamics is “hidden” in the fact that we’re calculating correlation functions
of “gauge-invariant” quantities, namely functions of 𝐹𝐼 𝐽 = 𝜕𝐼 𝜙𝐽 − 𝜕𝐽𝜙𝐼 and of “Wilson lines” that
end on 𝜑𝐼 fields.

(The noise fields are not invariant under gauge transformations–it’s their bilinears that are.)
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Of course the outstanding question is the generalization to non-abelian gauge fields. The
Nicolai map for the matter fields (that generalize eqs. (17) ) can be immediately written, whether in
the continuum or on the lattice, since the expression for the covariant derivative (in the continuum)
or the “covariant link” (on the lattice) is known; what isn’t, for the moment, clear is what the Nicolai
map for the gauge fields should be, in Lorenz–Feynman gauge (or any gauge, in fact). If we attempt
to generalize the approach used for abelian gauge fields, we realize that where it will fail is in
the definition of the potential term, since the term that describes the self–coupling of non-abelian
gauge fields, the commutator, [𝐴𝑎𝜇, 𝐴𝑏𝜈], can’t be written as a gradient. There are, still, conceptual
issues that need to be clarified for the construction of non-abelian gauge theories in this way to be
effectively realized.

Let us, indeed, point out that we worked with fields taking values in the Lie algebra of the
gauge group. The gauge fields, that describe the non-gravitational interactions of matter, whether
within the framework of the Standard Model or in its generalizations, take values in the Lie algebra
of a compact group. While the algebra, describing the vicinity of the identity, is probed within
perturbation theory about free fields, the full group is, of course, of physical interest and is accessible
by working on the lattice, where the gauge fields naturally take values in the group. It is well known
that current algorithms that attempt to sample the group manifold have limitations (in particular
critical slowing down) upon attempting to sample different topological sectors. This has led to
the idea of “trivializing maps”, that transform any measure 𝑒−𝑆 [𝑈 ] [𝑑𝑈] on the group manifold to
the uniform measure, [𝑑𝑉], on the same. There is, of course, a corresponding Jacobian, defined
by 𝑒−𝑆 [𝑈 ]𝑑𝑈 |𝑑𝑉/𝑑𝑈 | = 𝑑𝑉. The construction of this Jacobian was presented in ref. [9] and a
non-trivial difference with the scalar case is that its construction is considerably more involved than
that of the Nicolai map. The exponentiation of the Jacobian, however, leads to the appearance
of the gaugini in the action where they are expected to do so. The uniform measure on compact
manifolds plays the same role as that of the Gaussian measure with 𝛿−function variance on non-
compact manifolds. What is remarkable is that, for abelian gauge fields, it is possible to avoid
the complications and realize that these reflect the particular properties of the self-interactions of
non-abelian gauge fields, when they take values in the algebra. It will be interesting to understand
the relation with the recent work on the Nicolai map presented in [10–13].

5. Conclusions

For many years, since the invention of supersymmetry, it has been considered an option for
describing physical systems. While it does lead to many simplifications for technical calculations,
there hadn’t seemed to be any particular physical reason for its presence to be considered inevitable.
The simplifications didn’t seem to imply that, in their absence, the mathematical formulation of
physical phenomena was inconsistent–it was more cumbersome and, at best, incomplete; but it
did seem possible to describe “non-supersymmetric” systems consistently. The presence of the
superpartners of the known particles didn’t appear to be mandatory. If they were indeed present,
they could play a very useful role; but there didn’t seem to be any compelling reason for them to be
present. The discovery of the Higgs boson does imply that new particles must exist-but it doesn’t
imply, for the moment, anything about how they may appear in supermultiplets.
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It was only in 1982 that Parisi and Sourlas [1] proposed that supersymmetry describes a
fundamental physical property of any physical system, namely that it was consistently closed, when
in equilibrium with a bath and, more precisely, they provided strong arguments that the superpartners
of the one-particle excitations of scalar fields could describe the one-particle excitations that could
resolve the fluctuations of the bath, with which the fields, that appeared in the classical action, are
in equilibrium. They thus provided a compelling reason for taking into account supersymmetry
as an inevitable property, rather than an option, when describing a system in equilibrium with a
bath. More strikingly, the essence of the proposal was that it was supersymmetry that expressed
the property that how the system was separated into “dynamical” degrees of freedom and degrees
of freedom of the “bath of fluctuations”, didn’t matter and shouldn’t matter. If it did matter,
supersymmetry was broken–but that implied that the description of the system was incomplete.

However, while they provided the framework for understanding that the superpartners can
describe the fluctuations, one question, that was left unanswered in their paper, was, whether
the fluctuations of the dynamical degrees of freedom could, indeed, produce the effects of their
superpartners, or whether the superpartners had to be introduced separately. In other words, are all
theories, actually, supersymmetric, they just don’t seem to be, due to the approximation of focusing
on certain degrees of freedom and ignoring the others, or are only supersymmetric theories closed
in this sense?

Addressing these issues requires going beyond perturbation theory, therefore performing nu-
merical simulations. However a prerequisite is identifying what would be the quantities, whose
calculation would be relevant for addressing–and answering–these questions.

In fact these had been identified by Nicolai [14, 15], who proposed what became known
subsequently as the “Nicolai map”. The idea was that, in a supersymmetric theory, it is possible to
describe the anticommuting superpartners of the commuting fields of a supermultiplet as functions
of the commuting fields. The correspondence isn’t direct: The anticommuting partners “emerge”
upon introducing into the action for the commuting fields, a certain determinant, that is a function
of the commuting fields. This map was found for the case of Wess–Zumino models. What wasn’t
realized is that this map is nothing more or less than the Langevin equation, that was the starting
point of the proposal of Parisi and Sourlas. However, while there’s been a lot of work on the two-
dimensional Wess-Zumino model, the three– and four–dimensional models have received much
less attention and the Nicolai map hasn’t been studied as fully. One reason may have to do with
the obstruction found by Parisi and Sourlas. The way around it (presented in ref. [16]) provides
a necessary, but not sufficient, condition for the definition of the Nicolai map and more work is
needed to spell out the details.

The determinant indeed, represents a change of variables in the path integral, from the dynam-
ical fields to “noise fields”, whose correlation functions define the bath–so its sign (more generally
its phase) must be taken into account as well. With hindsight it is possible to identify the quantity,
that contains the phase of the determinant with the so–called Witten index [17–20] and realize that
the whole point of the proposal was that, when the fluctuations are fully taken into account, the
canonical partition function becomes, in fact, the Witten index.

In this contribution we have provided numerical evidence that, for the N = 2, 𝐷 = 2 Wess-
Zumino model, the proposal by Parisi and Sourlas does work: The fluctuations of the scalars can be
repackaged as the absolute value of the determinant, that realizes the change of variables to the noise

11



Noisy SUSY Stam Nicolis

fields. Further simulations that support this picture have been carried out in refs. [21–23] that, also,
probe the relation with Landau-Ginzburg models. Furthermore, we have spelled out the framework
for realizing the proposal for abelian gauge theories coupled to matter fields, thereby leading to
the description of N = 2 SQED. In what way supersymmetry can be realized or broken can thus
be addressed by numerical simulations of the corresponding scalar theory, with the Nicolai maps
providing the appropriate observables. While the simulations are challenging, they are well-defined
and will be reported in future work.

Another challenge pertains to describing chiral fermions in this approach, since N = 2 theories
describe non-chiral fermions. One way might be using partial breaking of N = 2 → N = 1 [24]. It
would be interesting to see whether N = 1 models that were studied in ref. [25] could be obtained
this way.

Acknowledgements: It’s a pleasure to thank the organizers of the Workshops held at the
Corfu Summer Institute for organizing a wonderful conference. Discussions with M. Axenides, E.
Floratos and J. Iliopoulos are gratefully acknowledged.
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