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Urban Transportation Mode Detection From
Inertial and Barometric Data in

Pedestrian Mobility
F. Taia Alaoui , H. Fourati , A. Kibangou , B. Robu , and N. Vuillerme

Abstract—This paper presents a novel urban transporta-
tion mode detection (TMD) method based on inertial and
barometric data. To the best of the authors knowledge, this is
the first time that a 3-axis accelerometer, a 3-axis gyroscope,
and a barometer are combined for TMD purposes. One con-
tribution was to build and share an optimized TMD dataset in
terms of duration (44 hours), number of participants (34), sen-
sor placements (on-foot, waist-attached and in the trouser’s
pocket) and considered transportation modes (7). To infer
transportation mode information, we tackle two classification
scenarios: still, walk, bike, tramway, and bus, on the one hand,
and still, walk, bike, elevator, stairs and public transport on
the other hand. One major finding was that TMD classification
accuracy has been widely overestimated by adopting the familiar randomized cross validation approach. According to the
latter, the accuracy of our non-optimized classifiers ranged from 90% to 99%. However, few of them were accurate when
the test samples were drawn from data of five unknown subjects. By selecting features in a personalized manner and by
studying the importance of the placement of sensors, we realized that the latter significantly impact the performance of
TMD models. Thus, we present here two robust TMD classifiers that show respectively an average accuracy of 75.63% for
the first scenario and 79.41% for the second scenario using a foot-mounted sensor

Index Terms— Transportation mode detection, inertial sensors, barometer, indoor-outdoor scenarios, activities recog-
nition and classification, data collection.

I. INTRODUCTION

TRANSPORTATION mode information is valuable to
several sectors such as transport and traffic planning,

location-based services, and healthcare applications. In the
last decade, many studies have considered solutions that
identify transportation modes using Global Positioning System
(GPS) [1] or mobile networks [2]. These networks have
been sometimes fused with Geographical Information Systems
(GIS) [3] or inertial sensors [4] to achieve higher accuracies.
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For example, GPS and GIS were fused in [5] to recognize
user’s travel mode. Others have used Bluetooth or Wireless
Fidelity (WIFI) [6]. Yet, these solutions require GPS avail-
ability, or infrastructure deployment and maintenance in the
case of other terrestrial wireless networks. On the other hand,
it is established that the most energy consuming technology is
GPS, followed by Global System for Mobile communications
(GSM) which in turn is followed by WIFI [7]. Therefore,
energy efficient sensors have been suggested instead. They
include accelerometers [8], gyroscopes [9], barometers [10],
magnetometers [11] and microphones [12], [13]. To enhance
TMD systems, different combination sets of these sensors
were proposed. For example, accelerometer and GPS [14]
and accelerometer and mobile network data [15] were fused
to infer transportation mode information. More exhaustive
combination sets were suggested such as the combination
of an accelerometer, a gyroscope and a microphone in [12],
GPS, an accelerometer, a gyroscope, a magnetometer, and
GIS in [16], or a light sensor, a barometer, an accelerometer,
a gyroscope and a magnetometer in [10].

Beside the huge amount of the technologies used to
infer transportation modes, there is an equivalent diversity
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in the state-of-the-art regarding considered classifications.
In the beginnings of TMD research, studies distinguished
only between vehicle (i.e. motorized) and on-foot modes [17].
Today, almost all motorized modes have been at least once
considered independently. Indeed, car [18], bus [14], motor-
cycle [19], truck [16], plane [20] and boat [16] have all
been individually classified. Some studies have even fine-tuned
some of these modes, like [21] who separated national buses
from urban buses, and others [7], [22], [23] who classified
separately High Speed Rail (HSR), train and metro (also
called subway in other studies [24]). Similarly, tramway,
train and subway/metro were separated in [19], while human-
powered and electric bikes (E-bike) were distinguished in [1].
In [20], a classification from the perspective of infrastruc-
ture was adopted by introducing a class called ‘Rail’ and
a class called ‘Road’ in addition to plane and other on-
foot motion modes. As a result, a cross-study comparison
seems inadequate due to the large discrepancies between these
scenarios. In order to alleviate this problem, the TMD research
community could share their datasets to enable benchmarking
and reproducibility [25]. Besides, the evaluation criteria of
TMD models should be standardized as important biases might
be introduced whether new separate subjects are involved in
model testing or not.

In this work, the main contributions can be summarized as
follows: First, we provide a new TMD dataset made public and
shared online1 for benchmarking and reproducibility. We limit
the spatial scale of our experiments to urban spaces and public
transport (tramway and bus). Thus, car, train, national bus, and
HSR are excluded. Second, we consider 3 sensor placements,
on-foot, in the trouser’s pocket, and waist-worn, to study
the impact of each sensor placement on the classification
results. Third, we demonstrate that a major part of previous
TMD works overestimated the classification accuracy by not
considering cross-subject variability [26], [27], whereas few
others used data of new subjects to test the TMD models and
obtained lower accuracy rates [24], or had to constrain the use
of the sensors to some specific position and orientation [9].
We follow in this paper both methods and demonstrate that
overestimated accuracy rates result from the first evaluation
method, which we call randomized cross validation. Finally,
we provide two optimal classification models for two classifi-
cation scenarios. These models are validated on 5 test subjects
that are isolated, one by one, from the train subjects. The
classification performance is given as a 2D vector comprising
an average accuracy and a standard deviation, which represents
the ability of the model to deal with cross-subject variability,
and could be seen as a robustness index.

The paper is organized as follows: Section II presents the
main past TMD studies, since 2017. Section III describes the
data collection. Section IV details the followed methodology to
construct the training database. Section V describes the classi-
fication approach. Section VI presents the results. Section VII
provides a discussion of these results, while section VIII is a
brief conclusion of this work.

1https://perscido.univ-grenoble-alpes.fr/datasets/DS310

II. LITERATURE REVIEW

A. Study Selection
Table. I provides the main recent (≥ 2017) TMD studies

and datasets. Indeed, studies earlier than 2017 have produced
many of the datasets used after 2017 with more sophisticated
models. Besides, an important part of past studies were
reliant either on GPS or WIFI. In this paper, the attention is
directed towards solutions that fit into the range of GPS and
infrastructure free systems. Therefore, considered studies in
this literature review utilize mainly inertial sensors, which are
eventually fused with non-inertial sensors such as microphones
and magnetometers in order to improve the classification accu-
racy. The datasets of interest here are either public or private.
Some datasets may also include GPS data [24], but the models
developed in the chosen references can also be functional
without GPS. Otherwise, a study is not cited because the focus
here is mainly directed towards inertial sensors-based solutions
for more energy efficiency. In the same way, studies in which
GIS layers are necessary such as [16], or WIFI, are discarded.

B. Literature Table Construction
In Table I, the abbreviation NM corresponds to ‘Not Men-

tioned’, meaning that the information is lacking in the study.
The table is organized in eight columns. The seventh column
indicates the evaluation method used to test the classifier.
The last column gives the classification overall accuracy. This
couple of data, in addition to the used sensors, should be
considered together while comparing performances of different
solutions. In fact, in most cases, all data from all participants
are merged and a K-fold cross-validation process is followed
to estimate the overall accuracy. According to this method,
the model ability to generalize to new subjects is not evaluated
and the classification accuracy is overestimated. In few studies,
one or more test subjects were left for evaluation (column
7 = Yes). In this case, performance rates are lower, which
is more realistic as the trained models cannot handle the
specific patterns relative to the new test subjects. Hence,
the classification accuracy is higher or lower depending on
the chosen test subject, which in average results in lower
accuracy.

III. DATA COLLECTION

A. Experimental Protocol
Prior to any experiment, a data use and participation agree-

ment was provided by every participant. In total, 34 healthy
adults voluntarily participated to the study, 14 women and
20 men aged from 18 to 50 years. The experiments were
conducted during workdays at different hours of the day
(8AM-6PM), including rush hours (8-9AM, 12-2AM, 4-6PM),
under rainy, sunny, and cloudy weather conditions. In total,
the data collection lasted around 3 months. Nearly 44 hours
of data were recorded. For logistical reasons, routes taken
during experiments were fixed for the following 4 transporta-
tion/locomotion modes: tramway, bus, elevators, and stairs.
Each participant was accompanied during the experiment by
the person in charge of labeling the data. Then, for the
remaining modes: still, walking, and biking, participants had
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TABLE I
MAIN GPS AND GIS-FREE TMD WORKS SINCE 2017

no special requirements. In fact, some of them used their
own bike and felt comfortable enough to make longer trips,
while others who seldom used bikes made shorter trips.
However, all participants were asked to make a ride lasting
more than a minimum duration that was fixed for each mode.
For example, each participant had to ride a bike for at least

5min. Overall, at least 20 participants have collected data for
each mode. More details about the number of participants
and the accumulated time-duration for each transportation and
locomotion mode are described in Fig.1 and 2.

As compared with other TMD databases presented in
Table I, the current one is the second most important with
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Fig. 1. Number of participants per transportation mode.

Fig. 2. Total time duration corresponding to each class.

regard to the number of participants (34). It also has more
balance between the amount of data in terms of duration
and the number of considered classes (except for static and
walking, which is representative of the actual time distribution
of daily activities). It provides data of 3 sensor placements,
which allows to study the sensors placements impact on the
classification. As compared with the studies of Table I, there
are only 3 studies that specify the placement of the sensors
(row 1, 5 and 6 of Table I). Additionally, it covers indoor
activities, which are totally absent from the studies listed
in Table I and are more generally rare in TMD studies that
depend on additional information and sensors.

B. Hardware
Data were collected using 3 inertial measurement units

(IMUs) that are designed for human motion analysis purposes.
The IMUs belong to the Gaitup Physilog5 series.2 They embed
a 3-axis accelerometer, a 3-axis gyroscope and a barometer
each. The sensors manufacturer is STMicroelectronics. The
accelerometer sensitivity is up to 16g where g is the gravity
constant, while the gyroscope’s sensitivity is up to 2000◦/s.
Finally, the barometer has a sensitivity range between 260 and
1260 hPa. The raw sampling frequency of accelerometers
and gyroscopes signals is 128 Hz, while barometers deliver
measurements at a frequency of 64 Hz. The inertial sensors
were synchronized inside each IMU, meaning that acceleration
and angular rate are natively synchronized, while pressure had
to be interpolated at the accelerometer/gyroscope frequency.
Data used in this study were sub-sampled at 32 Hz to lower
the computational cost.

2https://research.gaitup.com/physilog/

Fig. 3. Placement of the sensors.

The 3 used IMUs were respectively attached to the foot,
to the waist, and placed in the trousers pocket. A fourth IMU
was held in hand by the participants and a fifth IMU was
worn in the wrist. The data from these two last IMUs are
not exploited in this work but are available in the released
dataset. The placement of the IMUs is illustrated in Fig. 3.
A camera was used for visual checking and a smartwatch was
used to measure heart rate. In this paper, heart rate is left for
future work, but the collected measurements are provided in
the released dataset.

IV. PREPROCESSING AND TRAINING DATASET

PREPARATION

A. Preprocessing of the Collected Signals
Signals have been preprocessed before feature computation

as follows:
• Acceleration: Boxplots were computed for signal data

frames that are 1 s long without overlapping. Inside each
data frame, the upper and lower outliers were respectively
replaced by the maximum and minimum value of the
boxplot. This preprocessing strategy aims at deleting
isolated peaks that occur due to undesirable motion that
is independent from the transportation mode. The peak
detection has been first applied to each axis, and then the
norm of the signal was computed.

• Angular rate: The same process such as for acceleration
has been applied to angular rate.

• Atmospheric pressure: Due to high frequency noise in
measured pressure, we have smoothed the signal by
computing its average envelope.

B. Signal Segmentation
After we analyzed collected signals, the periods correspond-

ing to each transportation mode/class have been segmented
according to a sliding window of 3 s. The average length of the
segmenting window in the state-of-the-art is around 5 s [24].
However, because we introduced some indoor activities such
as elevators and stairs, a 5 s window seemed to be too long
as we observed that moving from one floor to another took
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TABLE II
SET OF INPUT FEATURES BEFORE SELECTION/EXTRACTION

less than 3 s using the stairs or the elevators. On the other
hand, choosing 1 s segmenting window, as suggested in some
studies [29], [10], did not lead to the best performance.

C. Feature Computation
Table II provides the details of computed features in both

frequency and time-domains for each signal channel. They
have been chosen based on a physical interpretation of the
signals as well as from state-of-the-art studies based on
the spectral energy in some specific sub-bands [24] or the
variance/standard deviation [12]. In summary, the same fea-
tures were computed for the channels based on acceleration
and angular rate as they behave quite similarly. However,
maximum and minimum were not computed for these signals
in order to dismiss isolated peaks that are not related to the
transportation modes. For pressure-based signals, the mean,
maximum and minimum of smoothed pressure were not
computed because they are location-specific, however, this
limitation does not exist for the integral and gradient channels.
Therefore, more time-domain features were computed for
these two last channels.

V. CLASSIFICATION APPROACH

From the review of the literature, the comparison of different
machine learning models, such as Naive Bayes, Support Vector
Machines (SVM), or Decision trees, has shown that Random

Forest (RF) outperforms the other models [20], [12], [25].
Besides, deep neural networks have also been used in TMD
studies, including feed-forward neural networks (ANN) [22],
[12], convolutional neural networks (CNN) [8], and long-short
term memory (LSTM) neural networks [27], [32]. However,
unlike RF where the hyper-parameters (the number of trees,
subset of features in each decision tree and the split criterion)
do not require a fine tuning, neural networks are more sensitive
to the tuning of both the hyper-parameters related to the
network structure and those related to the training process.
Therefore, up to the present, neural networks have been more
subject to overfitting and have proven less efficient than
machine learning algorithms when tested on unknown TMD
datasets [25]. Given these considerations, multiple models
were tested on test subjects who were not involved in training.
These models include RF, ANN, CNN, and LSTM. By testing
these models on new data, we were able to verify whether the
results of this study are compliant with the results expected
from the state-of-the-art regarding the supremacy of RF.

In order to optimize the feature space, different feature
selection and extraction methods were realized. We used Prin-
cipal Component Analysis (PCA) feature extraction, Kendall’s
Tau (KT)-based feature selection, and mutual information
(MI)-based feature selection. With these 3 strategies, 3 differ-
ent datasets were constructed and added to the global dataset
that includes all computed features (section IV.C). In total, this
produced 4 different datasets. The 4 were used for training
with RF and ANN. As for CNN and LSTM, the training
was made with the pre-processed signals so that the data
time-structure was preserved inside training samples. Finally,
we developed a customized method to select the most relevant
signal channels through a process of several classifications
with each signal channel taken alone, and then validated
on 5 different test subjects. This allowed us selecting the
most relevant channels, which are obviously the channels that
produce the most accurate classification results in average.
The selected channels were then combined in one new subset
and multiple classification tests were realized by varying the
number of used channels. By removing a channel, we could
see if the results were improved. In that case, the channel was
removed, otherwise it was kept.

VI. RESULTS

In the following sections, accuracy rates are expressed
either in terms of overall accuracies (OA) or Macro-averaged
F1-Scores, which is noted F1-Score for simplicity. In fact,
the OA is a popular accuracy metric that is biased towards
the most represented class in case of highly imbalanced
datasets. As this is the case in this study, the macro-averaged
F1-Score has been adopted together with the OA in order
to provide a more complete and unbiased evaluation of the
classification results. In fact, with the F1-Score, each class has
an equal weight and the global macro-averaged F1-Score is not
impacted by the class distribution. These evaluation metrics
can be found in detail in [34]. The classification results are
presented for the two following scenarios:

• Still, walk, bike, tramway, bus
• Still, walk, bike, elevators, stairs, public transport (PT)
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Fig. 4. Channel by channel classification for the first scenario.

A. Summary of the Model Selection Results
According to the sub-mentioned classification approach, low

performances were achieved using the first generic feature
selection and extraction methods (PCA, KT, and MI) used with
ANN and RF. Besides, using all computed features, even with
RF, did not lead to satisfying results. Because the tests are
numerous and time-consuming, the results of the previously
mentioned methods were not performed for all test subjects
and their results are not provided in this paper. Yet, note that
testing all of them provided us with an important first selection
result. In fact, after discarding the least efficient algorithms
relative to this classification problem, we could focus only
on the relevant models which are presented in details in
this paper. Unlike the generic feature optimization methods,
the customized channel selection strategy (see section V) was
more fruitful. Indeed, it has shown a higher classification
performance together with less signal channels needed to
perform the classification, which improves the computational
efficiency. Yet, the supremacy of RF was not confirmed in this
work because the highest classification accuracy was obtained
using a CNN. As the model selection is also dependent on the
chosen training features and signal channels, we found that
the best results were obtained with one signal-channel used
for the first scenario, which is the gradient of acceleration,
and two channels for the second scenario, which are the
gradients of pressure and of acceleration. More importantly,
these results show that with an accelerometer and a barom-
eter, transportation modes can be recognized without using
a gyroscope, which is known to be more energy consuming
than an accelerometer or a barometer [7]. In order to visualize
the importance of each signal, next sections will provide the
detailed results of the channel by channel classification results
using RF and CNN.

B. First Scenario Classification Results
1) Channel by Channel Classification Results With RF and

CNN: Fig. 4 shows the pairs of OA and F1-Score relative to
each signal channel for RF and CNN and for the 3 sensor
placements. The variables in these figures are explained in the
first column of Table II. From these results, it is observed that

the most important channels, sorted decreasingly based on the
F1-Score value, are first the gradient of acceleration, second,
the norm of acceleration, third, the gradient of angular rate,
and fourth, the angular rate norm. It is interesting to notice that
this order is the same for all sensor placements, and for all
algorithms. Additionally, the classification accuracy obtained
with the two first channels (acceleration norm and gradient of
acceleration) is systematically higher for the CNN. This means
that the classification accuracy using a CNN and only the
gradient of acceleration for the foot-mounted sensor is as high
as an OA of 75% and an F1-Score of 75%. In fact, the CNN
outperforms RF in this case. More globally in this scenario,
pressure signal channels (6 last variables of Fig. 4 and 5) were
not important, neither were the integrals of acceleration and of
angular rate. The order of importance of these channels also
has shown variable tendencies depending on the placement of
the sensors and the used algorithm.

2) Best Model Selection: According to the customized chan-
nel selection approach and to the channel by channel classifica-
tion results, a first subset of features was selected. It was used
with both RF and the CNN. As a result, all combination sets
led to a decrease in the classification accuracy as compared
with the gradient-acceleration CNN model. Therefore, the best
model in the first scenario is the CNN based only on the gradi-
ent of acceleration, which requires only a 3-axis accelerometer
and reduces the computational load. The detailed classification
results using this model are provided in Table III that shows
the mean and standard deviation (std) of the OA and F1-Score
based on 5 test subjects. The model architecture and hyper-
parameters are described below:

• 3 convolutional layers, with 30 filters each, and a respec-
tive kernel size of 3/8 s for the first layer, 3/4 s for the
second, and then 3/2 s for the last convolutional layer.
This progressive increase in the kernel size was chosen to
capture different patterns in the training samples. A max-
imum pooling of 2 was applied to each convolutional
layer. The activation function relative to the convolutional
layers was LeakyRelu with an Alpha (or slope) value
tuned at 0.1.

• The 3 convolutional layers are followed by two dense
layers of 200 and 50 neurons. Their activation function
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Fig. 5. Channel by channel classification for the second scenario.

was Relu. The output layer has as many neurons as the
number of classes, depending on the considered scenario,
and operates according to a softmax activation function.

• The cost function was the categorical cross-entropy. The
optimizer was Adam, with an initial learning rate of 0.01.

C. Second Scenario Classification Results
1) Channel by Channel Classification Results With RF and

CNN: For the second scenario, the channel by channel classi-
fication results are presented in Fig. 5. The first observation is
that the F1-Score is systematically much lower than the OA
as compared with the first scenario. This emphasizes the weak
representation of the added classes in the second classification
scenario, which are stairs and elevators. However, this lack
of balance is quite relevant as it reflects the actual time
distribution of the classes in daily activity. Indeed, time spent
in public transport and while walking or biking is much longer
than the time spent in stairs or elevators. For this reason, model
selection is based on the F1-Score rather than OA values. This
way, the time distribution of the classes is representative of a
real scenario while model selection is not biased towards the
major class.

The second observation is that, similar to the first scenario,
the norm and gradient of acceleration, and the norm and
gradient of angular rate are the most important channels.
Yet, the difference between RF and CNN with respect to the
pressure channels is considerable. In fact, RF ranks equally
the F1-Score relative to the smoothed pressure and gradient
of pressure, while CNN ranks the gradient of pressure above
the smoothed pressure. The CNN also shows higher F1-Score
values as compared to RF. In fact, most of the channels provide
better results when they are used with the CNN. Therefore,
the outcome is that the CNN performs better than RF on the
same data, and second, the gradient of pressure seems to be
more important as compared to the first scenario. According
to Fig. 5, for all sensor placements, the F1-Score relative to
the gradient of pressure is above 30%, while it was only about
10% in the first scenario for the foot and waist-attached sensors
with the CNN model.

From this analysis, we decided to include the gradient of
pressure with the previously selected signal channels, namely
the norms and gradients of acceleration and angular rate.

TABLE III
RESULTS OF THE FIRST CLASSIFICATION SCENARIO: CNN WITH THE

GRADIENT OF ACCELERATION

2) Best Model Selection: According to the channel by chan-
nel selection scheme, and from a first selection that includes
the gradient of pressure to the norms and gradients of accelera-
tion and of angular rate, the best results were obtained with the
gradients of acceleration and of pressure. This result could be
expected because of the importance of the gradient of pressure
in detecting stairs and elevators as the signal directly relates
to height change. In fact, the higher the slope, the faster the
elevation changes. The selected model classification results are
presented in Table IV. The best classification result is again
obtained for the foot-mounted sensor with an OA of 79.41%
and an F1-Score of 69.61%. The foot is additionally the
placement that provides the F1-Score with the lowest standard
deviation (std), meaning that the classification accuracy is
close to the mean value for all test subjects, which means
that the model is stable and robust.

D. Randomized Cross-Validation With CNN and RF
Results obtained with all subjects using the randomized

cross validation method, with all sensor placements and in
both classification scenarios, have shown high classification
accuracy rates. As a reminder, the randomized cross-validation
approach consists in merging data from all subjects and
splitting it into two groups. 70% of these data are used for
training, and 30% are used for testing. For the RF model,
the latter were comprised between 89% and 99%, which is
also the case for their corresponding F1-Scores (see Table V).
For the CNN, the classification results are globally lower than
those of RF. The highest accuracy was obtained with the
sensor attached to the foot with an F1-Score of 90.98% in
the first scenario and 90.42% in the second scenario. At this
stage, it is important to notice the supremacy of RF over
CNN, which is compliant with the state-of-the-art results with
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TABLE IV
RESULTS OF THE SECOND CLASSIFICATION SCENARIO: CNN WITH

THE GRADIENTS OF ACCELERATION AND OF PRESSURE

TABLE V
RESULTS OBTAINED USING THE RANDOMIZED CROSS-VALIDATION

APPROACH WITH RF AND CNN

respect to both the evaluation method and classification per-
formance. However, as shown earlier, these results are biased
as the test subjects are not isolated from the train subjects.
Therefore, these results should be put into the perspective of
the randomized-cross validation method, which systematically
overestimates the accuracy with respect to a real-life evaluation
scenario.

VII. DISCUSSION

The above sections provided the results of 2 classifiers,
RF and CNN, 2 classification scenarios, 3 sensor placements,
5 test subjects, 2 different feature sets, and 2 evaluation meth-
ods. Scenario 1 corresponds to: Still - Walk - Bike - Tramway -
Bus. Scenario 2 corresponds to: Still - Walk - Bike - Elevator
Up - Elevator down - Up Stairs - Downstairs - Tramway -
Bus. According to the randomized cross-validation method,
for the RF model, the OA was above 98% in all scenarios and
for sensor placements. The F1-Score was comprised between
93.98% and 99.21%. For the CNN model, the OA ranged from
84.62% and 98.48%, all scenarios and all sensor placements
included. In terms of F1-Score, they ranged from 70.02% to
90.98%. Given this evaluation method, the results are at least
as high as those that can be found in the state-of-the-art for RF.
The CNN model shows lower accuracy rates as compared with
RF, which is compliant with the literature review. However,
these results are biased as demonstrated in this study.

When test subjects are separated from train subjects, the best
model, selected on the basis of the customized channel
by channel selection method, was the CNN. In the first
classification scenario, the highest average classification OA
was 75.63% and the average F1-Score was 75.57%. These
scores were obtained for the sensor being foot-mounted. For
the second scenario, the highest average OA was 79.41%
and the average F1-Score was 69.61% and they were also
obtained for the sensor placed on the foot. According to
the F1-Score values, the second optimal sensor placement is
the waist, which shows an OA of 69.14% and an F1-Score
of 67.05% in the first scenario and an OA of 76.63% and

an F1-Score of 64.41% in the second scenario. From these
results, we conclude that in both scenarios, the best results are
obtained with the IMU being either foot-mounted or attached
to the waist. In fact, the foot-mounted sensor reflects the
movement of the foot and is more suitable to distinguish body-
induced activities such as walking, biking, or using stairs.
Meanwhile, the waist is closer to the body center of mass
and reflects the movement of the whole body instead of
specific body limbs. More globally, the foot-mounted sensor
has shown better results than the waist-attached sensor in
both scenarios, which makes it the best placement for TMD
purposes. Besides, we observe that the difference between
randomized cross-validation and separate test-subject-based
validation is huge with particularly overestimated accuracies
in the first case, especially using RF. The results additionally
demonstrate that feature selection significantly improves the
classification results, and this is valid for all sensor placements
and all scenarios. The selection through several channel by
channel cross validation operations proved to be more efficient
than PCA, MI, and KT.

Overall, the highest errors were obviously due to one
specific confusion. In fact, being still was often confused with
being inside a vehicle, which is rather likely to occur because
people generally stay still inside vehicles. Yet, pressure could
be relevant to distinguish between vehicle and static modes due
to the speed of motion inside vehicles that can be observed
in faster height changes and therefore in faster variations of
pressure [35]. However, since the segmenting window size is
quite short, especially if the terrain is flat, pressure variation is
not always high enough to remove these confusions. In some
studies, being still was first discarded before performing the
classification of transportation modes such as in [20] where
a threshold-based detection of static periods was performed.
However, thresholding has its own limitations and being inside
vehicles may also verify the threshold condition applied to
acceleration. Besides, these results demonstrate that higher
classifications accuracy is obtained if static phases are not
considered together with other transportation modes [29], [33].

VIII. CONCLUSION

In this work, we have realized the classification of 7
transportation modes using a new set of sensors: a 3-axis
accelerometer, a 3-axis gyroscope and a barometer. An impor-
tant contribution was to construct and share an improved
dataset so that the work can be reproduced and benchmarked.
Second, we demonstrated that testing TMD models on ran-
domly chosen samples without separating the test subjects
from train subjects inevitably leads to overestimated accuracy.
And finally, we have proposed two robust Adam-gradient-
based CNN models that can predict accurately transportation
modes with the second scenario including indoor activities.
Future work will consist in introducing new emerging trans-
portation modes in urban spaces and study their global impact
on the classification accuracy.
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