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For the Frenkel-Kontorowa model and its extensions in several dimensions, with several neighbor interactions, etc., it is 
proven that the hull function of an incommensurate ground state is purely discrete when the phonon spectrum exhibits a 
non-zero gap. The same result also holds when the Lyapunov coefficient of the corresponding set of trajectories in the 
associated twist map (when it is definable) is strictly positive. 

When this theorem applies, the Fourier coefficients of the incommensurate modulation can be described by an analytic 
hull function. This is in some sense a dual result to the Kolmogorov-Arnol'd-Moser theorem, which proves under different 
hypotheses that incommensurate modulation in real space (instead of reciprocal space) can be described by an analytic hull 
function. 

The physical implication of this theorem i s that the incommensurate ground states can be decomposed into a linear 
superposition of localized effective discommensurations. The shape of these discommensurations depends on the model 
parameters and on their density. Approaching the transition by breaking of analyticity (TBA) from above, the size of these 
discommensurations diverges. Below the TBA, these discommensurations cannot be described anymore as localized objects 
in the analytic phase. These results confirm that TBA in non-linear models extends the concept of localization of 
eigenstates, which up to now was only meaningful for linear operators. 

I. Introduction 

It has been  proven  some years ago that  the ground states of  the F r e n k e l - K o n t o r o w a  (FK) mode l  [1-3]  

were  e i ther  c o m m e n s u r a t e  or  incommensura te .  The  com m ensu ra t e  ground states of  the F K  mode l  are 

r ep re sen t ed  in the associated s tandard  map  by per iodic  cycles. The  i ncommensu ra t e  ground states may 

be  r e p r e s e n t e d  e i t he r  by K o l m o g o r o v - A r n o l ' d - M o s e r  ( K A M )  o n e - d i m e n s i o n a l  tor i  or  by 

A u b r y - M a t h e r - C a n t o r  ( C A M )  sets also cal led Cantor i .  In an early prepr in t  [4] (see also ref. [2]), we 

p roposed  a t h e o r e m  ( theo rem 8) extending the results o f  t h e o r e m  5 in ref. [5], which we did not  publish 

1Laboratoire Commun CEA-CNRS. 
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later because the proof  was lacking in mathematical  rigor on some points although the result was exact as 
we will see here. This theorem asserts that the length of the Cantori representing an incommensurate  
ground state is zero when the phonon gap of this ground state is non-vanishing. This theorem was quoted 
and discussed by MacKay et al. in ref. [6]. Modifying our initial proof, they have provided a correct proof 
for a similar result under a slightly different hypothesis. Instead of requiring a non-zero gap for the 
phonon spectrum, it is assumed that the Lyapunov coefficient of the trajectory associated with the 

incommensurate  ground state is strictly positive. 
Our  interest presently returns to this theorem because it appears  that it is not only interesting from the 

mathematical  point of view and for the dynamical application to the standard map but also to obtain 
some rigorous tests of new physical ideas which we are currently developing for coupled e lec t ron-pho-  
non systems. For these systems, we also obtained less (but some!) exact results [7] and found that the 
concept of effective bipolaron should play a role similar to those of effective discommensuration here. 
Understanding bet ter  the electronic behavior in these systems should help both the understanding of 
charge density waves and of superconductivity. However, these potential physical applications will not be 
discussed here. They have already been mentioned in ref. [8] (p. 295) and should be discussed with more 

details elsewhere. 
In phenomenological  theories [9], it is widely admitted that an incommensurate  structure can be 

described as an array of discommensurations. However, a discommensuration is only well defined when it 
is unique. When there are many overlapping discommensurations in the same structure, these discom- 
mensurations change their shape, energy, etc., but their precise determination becomes ambiguous. We 
will see here that this theorem on the zero length of the invariant Cantori can give precise informations 

on this many-body problem. It implies 
(1) When the incommensurate  ground state is represented by a Cantorus, there is (generally) a unique 

and unambiguous determination of these discommensurations. It is then obtained as a linear superposi- 

tion of well-defined and localized discommensurations. 
(2) The size of the discommensuration diverges at the transition by breaking of analyticity (TBA), that 

is when the Cantorus becomes a Ko lmogorov -Arno l ' d -Mose r  (KAM) torus. When the ground state is 
represented by a KAM torus, the ground state cannot be described by a linear superposition of localized 

discommensurations. 
In this paper,  our purpose is to give first a correct proof  for this theorem. We do not present  flow the 

revised version of the initial proof  of ref. [4] but a new proof, which does not use anymore the theory of 
orthogonal polynomials [2, 4]. Although some of its basic ideas are the same, we have designed this new 
proof  in order that it is not restricted to the one-dimensional nearest-neighbor FK model but apply also 
to d-dimensional extended FK models. This work has some connection with a recent paper  [10] on 
chaotic trajectories in dynamical systems. Next, we shall describe the physical consequences of this 
theorem, which allows the exact decomposition of the incommensurate  ground states into discommensu- 

rations, and give some explicit numerical illustrations. 

2. Extended FK models.  Summary of early results, the twist map 

Let us first describe our notation for the extended FK model [11]. #l We consider a d-dimensional 
square lattice 7/d where to each site i is associated a scalar atomic displacement u i. The energy 

#lThe referee pointed to our attention that this extension of the FK model (with a single atom per unit cell) was recently 
proposed in this reference [11]. The obtained results are essentially the same as those obtained in ref. [12], although the 

mathematical language has been reformulated. 
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functional of this model is 

• ( {u ,} )  = Y'. L~(u,+.,ui), ( l a )  

where 9 is a finite subset of 7/d which corresponds to the bond directions along which the atoms i and 
i + u interact. Each bond is considered once only, that is if u ~ IB, then - u ~ ~. For example in models 
with only nearest-neighbor interaction, B essentially contains the d basis vectors of Z d (1,0 . . . . .  0), 
(0, 1, 0 . . . . .  0 ) , . . . ,  (0, 0 , . . . ,  0, 1). But the theory developed here works identically for models with interac- 
tions between atoms farther than nearest neighbors providing that this set of bonds B be finite. For the 
bond direction u, the "atoms" i and i + u are coupled by potentials L,(x ,  y). These potentials are 
chosen with the following properties: 

(1) Functions L~(x, y) are twice differentiable with continuous second-order derivatives. 
(2) Functions L~(x, y) have a lower bound: there exists a constant B, such that for all x, y and u 

B ~ L , ( x , y ) .  ( l b )  

(3) Functions L.(x ,  y) are "diagonally 2rr-periodic" that is for all x, y and u 

L~(x + 2 ~ , y  + 2~r) = L , ( x , y ) .  ( l c )  

(4) There exists a constant C such that for all x, y and u 

a2L . (x , y )  
OxOy > C >  0. ( l d )  

Extensions of these models where the set of bond directions B could even be infinite could also be 
considered. But then we have to modify condition ( ld)  and to require some extra assumptions in order to 
get absolute bounds for the interatomic forces. We could also consider models with p-body potentials 
instead of pair potentials only. We do not consider these possible extensions here. The extrema {u i} of 
the variational form (la)  satisfy 

OLu(ui+u,ui )  OLu(ui, u i -u )  
Y'~ Ou i + E Ou i = 0. (2a) 

u e B  v ~ B  

For this model in one dimension (d = 1) with nearest-neighbor interactions, the set B consists of a 
single bond so that the index u can be dropped. It is associated with a twist map [1-3]. Then, this 
equation becomes 

OL(un+l ,Un)  OL(Un,Un-1)  + = 0, (2b) 
Ou n OU n 

which by setting 

OL(u,,,u,,_,) (3a) 
Pn = OU n 
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defines the associated twist map T 

( u , , + , , p . + , )  = T ( u . , p . ) ,  (3b) 

which maps a certain domain of the cylinder C × R = {u rood 2-rr, p} onto itself (see refs. [1-3] for details) 
by the implicit equations 

O L ( u . + I , u . )  
Ou,, = - p , ,  (3c) 

and 

OL(U~+l ,U . )  
= (3d) 

Pn + I OUn + 1 

The special case 

L ( x ,  y )  = ½ C ( x - y ) Z  + A(1 - cos y)  (4a) 

yields the standard FK model which is associated with the particular twist map called standard map: 

Pi+ l =Pi  + k sin ui, (4b) 

Ui+l = ui +Pi  + k sin u i ( m o d 2 w ) ,  (4c) 

k = A / C .  (4d) 

For any value of k, it has been proven [1-3] that the incommensurate ground states of models ( la)  in 
one dimension (d = 1) can be written as 

u i = il + e~ + g ( i l  + a )  = f ( i l  + c¢) (5a) 

where a is an arbitrary phase, ~" = I/2"rr is an irrational number  which is the rotation number  of the 

corresponding trajectory {u i, pi} in the associated twist map. f ( x )  is a strictly increasing function which is 
either continuous or can be chosen arbitrarily either left continuous or right continuous when it is 

discontinuous. (This function f ~ ( x )  also depends on the irrational number  (.) The modulation hull 
function g ( x ) = f ( x ) - x  is 2Tr-periodic. When ( = l / 2 " r r = r / s  is a rational number  (with r / s  irre- 
ducible), the corresponding ground state configuration is commensurate  and fulfills for all i: u~+, = u i + 
2r-rr. 

The same results can be readily extended to the d-dimensional model (1) in the extended form (1) (see 
refs. [1-3, 12, 13]). Then, for any vector ! = {/~} ~ R e (/x = 1,2, 3 . . . . .  d) the components  l .  of which are 
not rationally related, that is for any non-vanishing set of integers {p.} c U ~ and p E ~, we have the 
inequality 

d 

~_. p . l .  e= 2p~r. (5b) 
, a= l  

There  exists an incommensurate  ground state described by a hull function (5a) where il = ~2~=liul ~ 
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denotes a scalar product and a is an arbitrary phase. The hull function f ( x )  has the same properties as 
mentioned above for d = 1. In particular, f ( x )  depends on the vector ~" = l/2~r. 

Numerical calculations [12, 13] confirmed that there exists a transition by breaking of analyticity (TBA) 
in d-dimensional systems as well as in 1D systems. Close enough to the integrable limit f ( x )  is found to 
be a smooth function while in the opposite regime close to the anti-integrable [10] limit f ( x )  is clearly 
discontinuous. 

Results similar to (5a) as well as the results presented in the following can be extended to an even 
wider class of models with several atomic variables per unit cell. Then, the single variable u i becomes 
ui,,, where ~ denotes the atomic variable in the unit cell i ~ 2 d. (The number of atoms ~ in the unit cell is 
of course finite.) We also require that all the interaction potentials ' '' L; (x, y) between atom ~ in unit cell 
i and atom ~' in unit cell i + v keep the same properties (lb), (lc), ( ld)  as in the initial model. The result 
which generalizes (5a) is that for any given ( =  l/2~r, there exists a set of hull functions f , (x)  with the 
same properties as f ( x )  in (5a) (now there is a different hull function for each kind of atom ~ in the unit 
cell) such that the whole configuration is described by ui,, =f,(il + a). Functions f , ( x ) - x  are 2rr-peri- 
odic, which implies that the rotation numbers l = {l u} are the same for each set of variables labelled by ~. 

These extended results were already applied some years ago for performing the exact calculation of 
the phase diagrams of models with piecewise parabolic potentials in two-dimensional models [12, 13] and 
in one-dimensional models with two atoms per unit [14] cell describing incommensurate structures in an 
electric field. The results exhibited extended complete Devil's staircase l(/z): ~2 ~ Re. 

We briefly recall the outline of the proof of this theorem. The reader should refer for details to refs. 
[1-3] and especially ref. [3], where these proofs were simplified. They are practically the same as for the 
nearest-neighbor one-dimensional case and thus it should not require an extra publication. (These proofs 
were described in great details in the Ph.D. dissertation of ref. [12] with applications. They also have 
been published later and independently in ref. [11]. 

(1) For srr = l/2~v = {r~,/su} with irreducible rational components ru/s , ,  commensurate ground states 
can be constructed. They fulfill for all i, ~ and tz, the periodic conditions ui+,,lu>, ~ = u~, L + 2r~,ar, where 
I/z) are the d unit vectors (1,0 . . . .  ,0), (0,1,0 . . . . .  0) . . . . .  (0,0 . . . .  ,0,1) in the d directions # of It~ d. 
Because of condition (ld), a proof similar to those of the fundamental lemma in 1D allows one to prove 
that for a given rational ~ = l /2rr = {ru/s~,}, these ground states are also ground states for the infinite 
system and that the corresponding set of commensurate ground states is a totally ordered set ~ .  

(2) Using (lc), this set ~ r  is globally invariant under the action of an Abelian group G with the d + 1 
generators go and gu for/3. = 1 . . . . .  d defined as 

gO({Ui ,~})  = {Ui, , + 2 r r } ,  and gu({ui,~}) = {/'/i+Ip.),L}" 

Then similarly to the 1D case, for s r = l/2~r with arbitrary irrational components, we can construct a 
totally ordered continuous family of incommensurate ground states . ~  as limits of sets of totally ordered 
commensurate ground states ~ r  with ~'r ~ s r- Because this set ~ r  is also globally invariant under the 
action of the Abelian group G, the same proof as in refs. [1-3] shows that it is described by a set of hull 
functions f , (x )  with the above mentioned properties. 

However, it is not possible to prove the reciprocal results, that is all the ground states of model (1) can 
be obtained by this construction. The simple reason is that this result is generally wrong (except for the 
nearest-neighbor interaction one-dimensional models considered in refs. [1-3]!). Indeed, it is clear that a 
much wider variety of boundary conditions can be applied in modets with two dimensions and more. 
Particularly, by forcing non-periodic boundary conditions for finite systems (although they are generally 
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unphysical), one can obtain in the limit of an infinite system, many kinds of non-periodic and 

non-quasi-periodic ground states (or minimum energy configurations), where for example the "gener- 
alized rotation vector" ~" = l/2~r may be undefined. We now close this remark and from now on, we 

return for sake of simplicity to the model (1) with one atom per unit cell. 

According to ref. [10], the quadratic expanded action matrix (QEAM) of a configuration {u,,} is the 

matrix M = {M~. i} of the second variation of the action defined as 

Mg,j - OuiOuj (6) 

For an incommensurate ground state {u~(a)} given by (5a), it is clearly a function M(x) of its phase 
x = a. In the case of the twist map (la) (d = 1), this matrix is tridiagonal and we have 

M~.j=O for l i - j [ > l ,  

OaL(ui + 1,ui) 
M i , i +  1 = OlgiObli+ I ' 

O2C(u,+,,ui) O:C(ui,u~_l) 
Mi'i= Ou~ + Ou~ 

(7a) 

(7b) 

(7c) 

Since the ground state configurations are stable configurations, they have the property that their 
QEAM is positive or zero. In other words, we have for the quadratic form 

~X~*M+,/Xj = (XIMIX> >__ 0 (8a) 
I , J  

for any vector X = {Xi}. 

Then, it is easy to prove that we have the equivalent definition for [IMl[ 

IIMII = sup </LMiX> (80) 
x . o < XlX > 

is the supremum of the spectrum of M and 

1 - inf <XiMIX> (8c) 
IIM-~[I x~o <XiX> 

is the infimum of the spectrum of M. The gap parameter is defined as in ref. [10]: 

1 
a (9a) 

IIMII I IM- ' I I"  

When M is not invertible, a is set to be zero. Since by definition, a value z belongs to the spectrum of 
M if and only if the inverse operator (zl - M) -1 is defined (with a finite norm), a non-vanishing gap 
parameter is equivalent to say that zero does not belong to the spectrum of M. It is clear from the 
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spectral norm definitions of II II, that we have 

0 < A < I .  

467 

(9b) 

3. The discreteness theorem (extended form) 

We have proven in the early reference [3] 

Theorem 1. For k > 2V/-~w 2 + 1, the hull function f (x)  of any incommensurate ground state of the 
standard FK model (4) is purely discrete. 

As we already pointed out in section 1, we extended this result to ground states with strictly positive 
gap parameter  [4]. With a similar proof, MacKay et al. extended this result [6] with a condition of 
positivity on the Lyapunov coefficient and Goroff [15] related this result to the uniform hyperbolicity of 
the set of all ground states. In addition, the Hausdorff dimension of the invariant Cantori was pointed 
out to be zero under some conditions [16, 17]. 

A more general version of these theorems can be given for the extended model (1) in any dimension d. 
The incommensurate ground state {u,} with u~ =f(nl + a) has a monotone increasing hull function f (x)  
which is either left continuous or right continuous or both with f ( x ) - x  2av-periodic. The stationary 
equation (2a) readily yields the functional equation for f (x ) :  

Y'~ 0 2 L ~ ( f ( x + l , ) , f ( x ) ) +  ~_, O , L , ( f ( x ) , f ( x - l ~ ) ) = O ,  
v ~  vEB 

(10a) 

where we denote by 01 and 02, the derivation operators with respect to the first and second variable 
respectively: 

OLv(x,y ) OL~(x,y) 
02Lv(x'Y) Oy ' OlL~(x'Y) Ox (10b) 

In addition, since {u n} is a ground state, the QEAM M(a) of {u n} is always positive or zero. According 
to a theorem of Lebesgue [18], any monotone increasing function f (x)  can be uniquely decomposed (up 
to a constant) into the sum of three monotone increasing functions: 

f (  x) =Lc(x) +Lc(x) + fd( x), (11) 

where the component fac(X) is absolutely continuous. This property means that f~c(x) is differentiable 
almost everywhere with derivative f 'c(X) (i.e. on a set with full Lebesgue measure) and moreover that the 
variation f a c ( b ) - f , c ( a )  of fac(X) on any interval [a, b] is just equal to fbf~c(x)dx. 

The component fsc(X) is singular continuous. This property means that fsc(x) is continuous but the 
derivative fs'~(x) is zero for almost all x (that is for a set of x which has full Lebesgue measure). Clearly, 
the variation of f~c(x) cannot be obtained from its derivative. 

The component fd(x) is discrete, which means that it can be written as a convergent series of jump 
functions Y(x), i.e. the positive measure dfd(x)  is a countable series of Dirac measures Eifi~5(x- x i) 
with positive amplitudes fi and locations x i. This function only varies by discontinuities. 
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We can associate to any monotone increasing function f (x ) ,  a measure d r ( x )  called the Stieltjes 
measure [19] associated with f(x) which by definition fulfills f~ d f ( x ) = f ( b ) - f ( a )  for any couple of 

points (a, b) where f(x) is not discontinuous. 
When the gap paramete r  A of the incommensurate  ground state is strictly positive, we obtain theorem 

2 which extends theorem 1: 

Theorem 2. The hull function f(x) of any incommensurate  ground state of model (1) is purely discrete 

when its gap paramete r  A is strictly non-zero. 

The physical consequences of this theorem will be discussed in the next section. We propose now the 

following conjecture. 

Conjecture. When the gap parameter  of an incommensurate  ground state is zero, the Stieltjes measure 
d r ( x )  associated with its hull function f(x) is either purely absolutely continuous or purely singular 

continuous. 

Of  course, we know that when the associated trajectory in the twist map is a KAM torus, f(x) is an 
analytic function and thus is purely absolutely continuous. At the TBA, numerical observations of scaling 

propert ies suggest [20] that f(x) could be singular continuous. In the non-analytic phase, beyond the 
TBA, the phonon gap is finite and thus theorem 2 proves that f(x) is purely discrete. 

We describe in the main text only the outlines of the proof  of theorem 2 while the technical details are 

left for the appendices: (1) First, we prove (see appendix A) 

Proposition 1. The spectrum of the Q E A M  of {u,(a)} = {f(nl + a)} does not depend on the phase c~. 

Consequently, the gap paramete r  does not depend on the phase of the incommensurate  ground state. 
Let us note that the proof  of this proposition only depends on the property of "weak  periodicity" of the 
ground states (defined in ref. [21]), which is a weaker  property than the property of quasi-periodicity. Up 
to any given accuracy, any local configuration of the ground state with phase o~ is found again in the same 
configuration at a bounded distance and also in any other ground state with the same incommensurability 

ratio ( and with phase a ' .  
(2) Next, we prove that the existence of a continuous part  in the hull function f(x) of the 

incommensurate  ground state allows one to construct for many phases a,  a positive solution hn(a) to the 
eigen-equation at zero eigenvalue of the Q E A M  M = {Mi, i} of {un(~)}. More precisely we prove in 

appendix B the following result: 

Proposition 2. Let us assume that the Stieltjes measure dfc(x)  (associated with the continuous part  fc(X) 
of the hull function f(x) of the incommensurate  ground states, is not vanishing. Then for any i ~ E J 

(a) the 2v-per iodic  function 

dL(x + U) 
h , ( x )  - d L ( x )  

is defined and strictly positive for x ~ ~ / ,  where ~ is a measurable subset of N which has full measure 
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with respect to the measure dfc(x).  Defining d =  f) i~ # d / ,  we have 

fx ~ ~e'n [0,2rr] d f~(x )  = fo 2rr d f c ( x )  ; (12a) 

(b) for x ~ ~¢', hi(x) is a strictly positive solution of the eigen-equation of the QEAM for a zero 
eigenvalue: 

~Mi,j(x ) hj(x) = 0 for all i; (12b) 
J 

(c) for any i ~ #d, the integral 

fo2Whi(x) df~(x) = f o 2 C r d f c ( X )  (12c) 

does not depend on i. 

This solution h , ( a )  is not necessarily bounded for In l--+ ~ and thus is not necessarily either an 
eigenvector or a pseudo eigenvector of the QEAM. However, this proposition asserts that the solution 
hn(a) integrated over the phase with respect to the measure dfc(x)  determined by the continuous part of 
f(x) does not depend on n. This property is essential for proving that this positive solution cannot grow 
at infinity "faster than any given exponential" (if it grows). Before proving this result, we prove in 
appendix C that the existence of a finite gap parameter implies an exponential growth of any positive 
solution: 

Proposition 3. Let us assume that zero does not belong to the spectrum of the QEAM M and that ~ is 
an (unbounded) solution with qt 0 = 1 which fulfills the eigen-equation of an Hermitian matrix M with 
zero eigenvalue 

E Mi,j , = 0. 
J 

Then there exist two positive numbers K and 3' where 3' only depends on the gap parameter  of M such 
that for all n > 0 

An= ~ Iq~il2>Kexp(yn) 

where 13 n is defined by the set of sites i E 7/d with sup~ I/v[ = n. (This set contains (2n + 1)  d - (2n - 1)  d 

sites.) 

We now define the function 

1 H.(x) E hi(x) (13a) 
( 2n  + 1) - ( e n  - 1) 
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for each n > 0. Thus, using (12c), it follows that 

£2"~H.(x) dfc(X)  = £2Wdfc(x  ) (13b) 

is non-zero and does not depend on n. Using proposition 3, and the inequality 

• ~ ]~i] 2 < ~ Iqtil (14a) 
i ~ i ~ D,, 

the function 

K(x)  = inf  [ ( 2 n  + 1) d -  ( 2 n  - 1)d]H. (x)exp[ - iy (A)n]  
n>O 

(14b) 

never vanishes, since because of proposition 1, 3' only depends on A and is independent of x. Since K(x) 
is defined as the lower bound of a countable family of measurable functions, it is measurable and we 

have the strict inequality 

f0Z~K(x) dfc(X)  > 0. (15a) 

Therefore,  we find that 

fo2~H~(x) dfc(X)  _> exP(½yn) 1 f02VK ( x )  d f c ( X )  
(2n + 1) ~ -  (2n - 1) a 

(15b) 

should diverge exponentially for n ~ ~ and thus cannot be a constant. The existence of a non-constant 
continuous part  in f(x) is incompatible with a non-zero gap paramete r  A. Thus, theorem 2 is proven. 

In the particular case of the twist map (model with nearest-neighbor interaction in one dimension), the 
assumption that the Lyapunov coefficient of the trajectory in the twist map associated with the 
incommensurate  ground state {un(a)} is strictly positive, can be used instead of proposition 3. As we 
pointed in ref. [10], the Lyapunov coefficient of a trajectory may be non-zero while the gap parameter  
vanishes. However,  we believe that for the ground state trajectories, there is an equivalence between a 
vanishing gap paramete r  and a vanishing Lyapunov coefficient. Since we did not prove this result, let us 

show that we can recover nevertheless the result proposed by MacKay et al. [6]. 

Theorem 2'. For the nearest-neighbor one-dimensional FK model associated with a twist map by eqs. (3), 
the hull function of the incommensurate  ground state is purely discrete when the Lyapunov coefficients 
of the associated trajectories in the twist map are strictly positive and larger than some number  • > 0. 

To prove this result, we note that we have from the definition of h,(x) 

h ~ ( x ) -  d f~(x+nl)  _ 1 ( 1 6 a )  

d L ( x )  h A x - n l )  " 
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Then, it follows that 

fo2~hn(x)dfc(x)= fo2~r 1 h n (x )  df~( x ) = constant. (16b) 

Let us now consider K > 0, a strict lower bound for the Lyapunov coefficient of {un(a)} for all phases a 
(although it probably does not depend on the phase a). When the gap parameter is non-vanishing, this 
assertion can be proven by using the Thouless formula and by noting that the momenta of the density of 
states are phase independent. These arguments are closely similar to those developed for a different 
problem in ref. [5], section 4.4). We define two 2"rr-periodic positive measurable functions Hi(x) and 
H2(x) by 

Hi(x) = inf hn(x ) e x p ( - r l n l )  (17a) 
n 

and 

1 nz(x ) = infn ~ e x p ( - K l n l ) ,  (17b) 

which yields 

I n = fo2~hn(x) d f c ( x )  >_ exp(Klnl) fo2rrH,(x) dfc(X)  > 0 ( 18a) 

and 

f0 2"~ 1 hn( x ) £ In=  d f c ( x ) > e x p ( K l n l )  2~H2.x. dj~,x ) f_( ~>0. ( lSb)  

Since I n must be independent of n, it follows that 

£2~/-/](x) d f c ( x )  = 0 (19a) 

and 

f0E~HE(X) d ry (x )  = 0. (19b) 

Then, we must have Hi(x) = 0 and HE(X) = 0, for almost all x with respect to the measure dfc(x).  This 
result means 

liminf hn(x ) e x p ( - K l n ] )  = 0 (20a) 
n --* -t- ao 

and 

1 
liminf,__, +~ ~ e x p ( - x l n l )  = 0. (20b) 
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Since we assume that the Lyapunov coefficient of the incommensurate ground states is defined for all 
phases and is strictly positive, h~(x) either diverges exponentially or converges exponentially to zero with 
a coefficient strictly larger than K. Conditions (20) cannot be both fulfilled, which proves that theorem 2 
is also valid when the Lyapunov coefficient is supposed to be strictly positive instead of the gap 
parameter .  

4. Discont inui ty  c lasses  

When the gap paramete r  A of an incommensurate  ground state of the FK model [1-3] or of its 
extension ( la)  is strictly positive, it is now proven that f(x) is a discrete function and thus is 
discontinuous. The purpose of this section is to analyze in more detail the distribution of the 
discontinuity points and the amplitudes of discontinuities of f(x). 

Since f(x) is monotone increasing, the amplitudes of its discontinuities are strictly positive. Let us 
consider a value x 0 of x where f(x) is discontinuous. The amplitude of the corresponding discontinuity 

is 6o=f+(Xo)-f-(x o) (where f+(x) and f - (x )  denote the right continuous and left continuous 
determination of f(x) respectively). Since g ( x ) = f ( x ) - x  is 2vr-periodic, for arbitrary integer m, f(x) 
also has a discontinuity with the same amplitude 60 at 

x0, m = x  0 + 2m'rr. (21a) 

Thus in order to fix the ideas, we choose 0 < x  0 < 2v .  For any n ~ Z d, it is proven [1-3] that f(x) also 
has discontinuities at 

X = X n ,  m = Y  0 Jr- n l  + 2mrr (21b) 

with a strictly positive amplitude 6n. We set 

Definition. The set of discontinuity points {x,, m } is called a class of discontinuities 2 of the corresponding 
hull function. 

Two classes are either identical or disjoint. Since f(x) is monotone increasing, its set of discontinuities 
is countable so that there is at most a countable set of disjoint classes 2 / .  Using the identity 
f (x  + 2 a r ) = f ( x ) +  2w, the total variation V(x o) of f(x) over a period [0,2"rr[ is 2rr and thus the 
variation of f(x) due to the class _~ is positive and bounded: 

V ( 2 )  = Y'~ a ,  < 2rr = V a r ( f ( x ) ;  [0 ,2r r [ ) .  (22a) 
n ~ Z  d 

Since f (x)  is a discrete function, the sum of the variation over all classes of discontinuities makes the 
total variation of f (x)  and we have 

V ( . ~ / )  = 2-rr. (22b) 
i 
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For each class, we prove the following theorem: 

Theorem 3. Let f ( x )  be the hull function of an incommensurate ground state of model ( la)  with 
non-zero gap parameter,  and {xn, m} = .~ a class of discontinuities of f ( x )  as defined by (21b) with 
amplitudes ~n. Then the amplitudes of the discontinuities decay exponentially at infinity. More precisely, 
there exist two positive constants K and ~/, such that 

0 < 6, < K e x p ( - y l n l )  (23) 

(with In l = ~ ) .  

Although this result could reasonably be expected, it is not a straightforward consequence of a positive 
Lyapunov coefficient (it is not a differential property!) and requires some care for a rigorous proof which 
is given in appendix E. This proof is based on the following proposition, proven in appendix D, which 
applies to positive self-adjoint operators on lattices. 

Proposition 4. Let us consider a self-adjoint operator  M = {Mi, j} where the indices i = {i T} ~ Z a are the 
sites of a d-dimensional square lattice. We assume that 

( i )  Mi, j = 0  f o r l i - j ] > p ,  (24a) 

(ii) Mi, j < 0 for i ~ j .  (24b) 

(iii) M is strictly positive (that is (XIMIX) > 0 for any X ~  0). 

(iv) Zero does not belong to the spectrum of the operator M, i.e. the gap parameter  of M is not zero. 
Let N = {N~,j} = M -1 be the inverse operator, then there exist two positive constants K and 3' such that 
for a l l i ~ d a n d j ~ Z  d 

0 <N/. j  < K e x p (  -71 i  - j ] ) .  (24c) 

The same result holds for matrices a (r), which are defined for i ~ U an arbitrary subset of 7/d and which 
fulfill the same conditions. 

(Note that if condition (ii) is not fulfilled, N,.i is not necessarily positive but the result (24c) still holds 
but for IN~,jl.) For the FK model (4), numerical calculations have shown that there exists one class of 
discontinuities. However, we can find an upper bound to the number of classes of discontinuities for a 
model close to an anti-integrable limit. (See ref. [10], where this concept is described and discussed in 
detail.) Close to an anti-integrable limit, L~(x, y) can be written as 

L ~ ( x , y )  = V ( x )  + Q A ~ ( x , y ) ,  (25) 

where V(x )  is a 2w-periodic twice differentiable function with continuous second-order derivatives and 
C~A~(x, y)  is the perturbation with amplitude C~ >__ 0. Function A~(x, y) has the same properties as 
those of L~(x, y) given in (1). At the anti-integrable limit, obtained for C v = 0, we have for any stationary 
configuration {ui} , u i = a~, + 2mi,rr, where m i is an integer and a ,  is one of the solutions of the equation 
V'(x)  = 0 with 0 < x  < 2rr. The number of absolute minima of V(x )  is generically one. 
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As suggested by MacKay,  we can prove #2. 

Theorem 4. When  the gap pa ramete r  of  an incommensura te  ground state is not  vanishing, the number  of  

discontinuity classes of  its hull function is finite. 

The  p roof  of  this result is based on an idea of  MacKay [16]. Assuming that there exists an infinite 

number  of  discontinuity classes ~n,  we can find a phase for the incommensura te  ground state such that 

its Q E A M  exhibits a bounded  eigenvector  at zero eigenvalue. This fact would imply that the gap 

pa ramete r  of  the incommensura te  ground state is zero, which contradicts  the initial hypothesis and thus 

proves the theorem.  
Thus  let us assume that  there exists an infinite number  of  discontinuity classes. Because of  inequality 

(22a) we can choose  in each class, a discontinuity point  xl~ ) e 2 n n [0, 2at[ cor responding  to the largest 

ampli tude of  discontinuity of  the hull function f ( x ) :  f + ( x l f ) ) - f  ( x ~ o n ) ) = s u p x E 2 , [ f + ( x ) - f - ( x ) ] .  
Considering the set of  ampli tudes of  discontinuity {~}n)=f+(xl f f )+  i l ) - f - ( x ~ ; ' ) +  il)} for i ~  YJ, we 

define the vector  {~In) = ~'i~")/x~")~/~0 , which fulfills for all n and all i ~ Zd: 0 < ~ n )  ~/ 1 and e<0 ") = 1. We now 
t,.<~) ~(,,)~ which is limit of  consider  an accumulat ion point  {x 0, {e,}} of  the bounded  sequence of  vectors ,~0 ,,~, , ,  

the subsequence n~. Since the incommensura te  ground states u~ ~)+ = f+(xl l  ~) + il) and ~i"<~) --Jr- t  ,.<,),~0 + il) 
both fulfill eq. (2a) and since l im,  ~ 3~n) = lira, ~o~(u~ ~ )+-  u~ " ) - )  = 0 and lim~_o~ u~ n')+ = u~ =f (x , ,  + il), 
where  {u~} is an incommensura te  ground state, it readily follows that {eg} = E, which fulfills for all i: 

0 < e~ _< 1 with e 0 = 1, is a non-vanishing bounde d  solution of  the e igen-equat ion M({ui})E = 0. Zero  thus 

should belong to the spect rum of the Q E A M  of  the incommensura te  ground state {ui}, which contradicts  

the initial assumption and proves theorem 4. 

Close enough to the anti- integrable limit, we also have the more  precise theorem:  

Theorem 4'. Let us assume that the periodic potential  V ( x )  of  the functional  (1) at the anti- integrable 
limit (25) has a single absolute minimum per  period, then for any given incommensura te  ground state, 

there  exits C 2 > 0 such that  for sup~ ~ B C~ < C 2 (that is close enough  to the anti- integrable limit), there is 

only one class of  discontinuities 2 for the hull function of  this incommensura te  ground state. 

Proof. Let us assume first that  V(x )  has a single absolute minimum per  period at x = a m o d 2 r r  
(0 < a < 2-rr) and that  V"(a) > 0. Since V"(x)  is continuous,  there are two positive constants  c and ~ such 

that  V " ( x ) > c  > 0 for x e [ a -  6, a + 6]. Then,  it can be easily proven that  for any ground state 

configurat ion {ui}, there  exists a non-zero  constant  CI such that  

sup C v < C 1 (26a)  
vEB 

implies that  for all i, there  exist mg such that  

u i ~ ]a - ~ + 2miw,  a + 6 + 2mi'rr [ . (26b) 

To be more  precise, since {u i} is a g round  state, the minimum of  energy of  the potential  V/(x) = W/(x) + 

'¢2This theorem was suggested from R. MacKay's comments. 
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V(x) where W,.(x) is the potential created by the neighbors of an atom i, 

w,(x)  = E E 

475 

(27a) 

is necessarily obtained for x = ui. A trivial consequence of the existence of the monotone increasing hull 
function f ( x )  with f ( x )  - x  2~-periodic is that ]ui+ ~ - u i - v l l<  27.  Function IL~(x, y)l,  which is 
"diagonally 2~--periodic" (property (lc)), is bounded by B. in the domain mod 2~  defined by Ix - y  - vii 
(which is compact mod 2rr). Thus, in a domain which contains the absolute minimum of V,.(x), we have 

IW,(x)[<2sup lEvi x ~ B~=w. 
v ~ B  v ~ B  

(27b) 

We set 

v = inf V ( x ) ,  
xE]a+6, a-6+2rr[ 

which is the minimum of V(x) in the union I of intervals mod 2at, which does not contain the values 
a + 2row, where the absolute minima V(a) is reached; we have v > V(a). Thus by choosing w < 
[c - V(a)]/2 or 

C, v - V(a)  (27c) 
= 4 E ~ a B  ~ 

when (26a) is fulfilled, for x ~ I, we have V~(x) > v - w > V(a) + w. This result proves that the absolute 
minimum of V/(x) is reached for x = u i, which fulfills condition (26b). Then, the "coding sequence" of 
integers {m i} is determined by the condition that {u i} belongs to the domain d~({mi}; tS) of configurations 
{vi}, defined by 

a - 3  < v i -  2miav <a + 3. (28a) 

This sequence of integers {mi} is necessarily given by 

m , = I n t (  u ' - a '  ) ~ ) = Int( f ( i l 2 - ~  - a '  , (28b) 

where a '  is an arbitrary number in the interval [a + 3 - 2"rr, a - 6]. Because f ( x )  is monotonous strictly 
increasing and because f ( x  + 2rr)/2~" = f ( x ) / 2 w  + 1, the integer function In t ( [ f (x)  - a ' ] / 2 ~ )  has a 
unique discontinuity per period with amplitude I for x = a "m o d  1. Then a" can be chosen in order that 
we have 

[ X --Off' "~ 
Int( f (x2 )w  a '  ) = Int t ~ ) .  (28c) 
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Thus,  we have 

m ~ =  I n t ( i l + a - a " )  2w " (28d)  

Since V"(x) > c > 0 for  x ~ [a - 6, a + 6], the  Banach  fixed po in t  t h e o r e m  used  as exp la ined  in ref. [10] 

al lows one  to prove  tha t  t he re  exists a cons tan t  C 2 <_ C~ such tha t  for 

sup [C~I < C 2 (29)  

the  s ta t ionary  equa t ion  (2a) has a unique  solut ion in the  doma in  E({m~};6) which has  to be  the  

cons ide red  g round  s ta te  {ui}. 
W h e n  cond i t ion  (29) is fulfilled, suppose  tha t  f ( x )  exhibi ts  a d i scont inu i ty  for  x = x 0, then  the g round  

s ta te  conf igura t ions  { u + } = f + ( i l - x o )  and  { u F } = f - ( i l - x  o) have to be d i f ferent  and  thus  the  

c o r r e spond ing  coding  sequence  of  in tegers  {m r} 

+ l im I n t ( i l - x - a " )  mi = 2"rr ' (30a)  
x ----~xt~, x ~ > x  o 

m:: Int( i tx°)  
x-~x , .x<x , ,  2~ (30b) 

must  be also different .  This  cond i t ion  requ i res  tha t  t he re  exists n ~ 2~ a such that  

x o = nl + ce" mod 2rr ,  (30c)  

which proves  tha t  x 0 be longs  to the  un ique  class of  d iscont inui t ies  for f ( x )  g e n e r a t e d  by a".  In  some 

cases,  V(x)  may have severa l  abso lu te  min ima  pe r  per iod .  T h e n  we only find an u p p e r  b o u n d  to the  

n u m b e r  of  classes:  

When V(x) has r absolute minima per period and close enough to the anti-integrable limit, the hull function 
has at most r classes of  discontinuities. 

Let  us assume tha t  at  the  an t i - in t eg rab le  l imit  V(x)  has r abso lu te  min ima  V(a 1) = V(a 2) = . . .  = V(ar) ,  

whe re  V"(x) > 0 (we assume 0 < a I < a 2 < . . .  < a r < 2~r). It can be  p roven  on the  same foot ing that  

close to the  an t i - in t eg rab le  l imit ,  the  hull  funct ions  of  the  i n c o m m e n s u r a t e  g round  s ta te  have at most  r 

classes of  d iscont inui t ies .  Firs t ,  we d e t e r m i n e  r + 1 posi t ive cons tan t s  c and  {3 t} with j = 1, 2 . . . . .  r ,  such 

tha t  V"(x)  > c > 0 for  x ~ [a t - 6 t, a t + 6t]. Then ,  for a given g round  s ta te  conf igura t ion  {ur}, we prove  

the  exis tence of  a cons tan t  C I such tha t  for s u p ~ C ~  < C 1, and  for all i, u r be longs  to some interval  

[a t - 6~ + 2mrar, a t + 6 t + 2mi~r] with m r an integer .  Next,  we d e t e r m i n e  a set of  r in tegers  

ml j ) =  [u  i - a ~  ( f ( i l + a ) - a ) )  
Int~ ~ )  = Int  2 v  ' 

whe re  a~ be longs  to the  in terval  ]aj  + 6 i, a j+  1 + 6t+1[ for j < r and  to  ]a r + 6r ,  a 1 - 61 + 2"rr[ for j = r. 

W e  have for  all i, m~t )<  m~ t+ 1) for  j < r and  m~r)< m~ 1) + 1 for j = r. Wi th  the  same  a r g u m e n t  as for  
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(28d), there exist r phases a}', with a~' < a}'+ 1 and a / <  a{' + 2"rr such that 

+ a - a T )  
m~ j) = Int ~-~z • 

The knowledge of the r sequences {m~ i)} determines unambiguously the location of all the atoms in the 
intervals [aj - 6j + 2mi'rr, aj + 6j + 2mi'rr]. For s u p ~  B C~ < C z _< C~, the Banach fixed point theorem 
applied as in ref. [10] proves that the ground state for which the atoms are located in these intervals is 
unique. The same argument as above allows one to prove that the hull function of this incommensurate 
ground state has discontinuities only for x = nl - a~i' mod 2rr. However, the discontinuity classes generated 
by two different a}' may be identical. Thus, this result proves only that there are at most r discontinuity 

classes. 
Although the case where the hull function has a unique discontinuity class seems to occur the most 

frequently, the hull function may have two and perhaps more discontinuity classes. Particular FK models 
with the form 

@({ui})= • ½(ui-uj)2+~_.V(ui), (31a) 
( i , j }  i 

where V(x) is a piecewise parabolic 2w-periodic potential with p minima per period with the general 
form 

V(x) =½k min [x2-2(a.+2m~r)x+b.], 
n = l , 2  . . . . .  p , m ~  

(31b) 

where 0 < a n < 2~ are p arbitrary numbers which determine the location of the p minima of V(x)  in the 
first period and b n are numbers which determine their depth, should provide instructive exactly soluble 
models where the number of discontinuity classes can be studied easily. (This work has not been done.) 

For models which evolve on manifolds in the parameter  space such that there are several discontinuity 
classes for the hull function, the critical behavior at the "breaking of the KAM tori" (for the usual 
quadratic rotation number) should be changed. This result has to be expected because in a renormalization 
picture, the fixed point of the renormalization operator  corresponding to the large coupling limit 
("anti-integrable fixed point") now depends on the number o f  discontinuity classes and on their relative 
weight! Non-universal critical behaviors were indeed observed numerically in models which correspond 
to this situation [22]. In the next section, we prove that indeed this situation does occur in the examples 
studied in this reference. 

Thus, for a given discontinuity class 5~ denoted by (21b), we can define the function 

f~(x)= ~ 6 n l n t ( x - x ° - n l )  ~ -  , (32a) 
nE~_ d 

where Int(x) denotes the largest integer smaller than or equal to x. This series is absolutely convergent 
since 6~ decays exponentially at infinity (theorem 3). If there is one or a finite number of discontinuity 
classes, the sum over all discontinuity classes fulfills 

Y'~ f ~  ( x ) = f (  x ) + constant, (32b) 
2 
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since it is a function which has the same amplitude of discontinuity at the same points Xn, m a s  f ( x )  and 
since f ( x )  is a discrete function. The derivative of function f j ( x )  considered as a generalized function is 

d f~ j (x )  1 
dx 2w 3~a( X - Xo - nl - 2m'rr ), 

n ~ a , m ~ d  

where ~(x) is the Dirac generalized function. Using the identity 

1 
2---~ ~-" 6 ( x - 2n'rr) = 

n E •  

we have 

d f ~ ( x )  
dx  

with 

(33) 

exp( imx) ,  (34a) 
m ~ Z  

E hm exp[ im(x  - Xo) ] (34b) 
m ~  

h,,,= ~ 6meXp(- imnl ) .  (34c) 
n E.~ d 

Surprisingly, the harmonics of this Fourier series can be described as 

h m = h ( m ) ,  (35a) 

where h(x) is an 2w-periodic analytic function with Fourier series 

h(x )  = ~ 6 n e x p ( - i n b c ) .  (35b) 
?7 

The analyticity which has been lost for the hull function f ( x )  at the TBA is restored for the Fourier 
coefficient of its generalized derivative! 

5. Decomposition of an incommensurate ground state into effective discommensurations 

Let us assume that an incommensurate ground state of model (1) is described by a discontinuous hull 
function with a unique class of discontinuities. Since the series {~n} is positive and convergent, it is 
convenient to choose the discontinuity point x 0 (the "origin") in this class in order that 

60 = sup 3 n. (36a) 
n ~  d 

Using (32a), (Ui} is described by 

u i = f ( i l  +or)= E ( ~ n  Int( (i  - n ) !  +o~-Xo t n ~ 2 ~r / + const. (36b) 
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To drop the unknown constant in (36b), it is more convenient to consider the bond lengths 

Xi,tx = U i --  U i_  I/x) 

479 

(37a) 

in the direction /z (/x = 1, 2 , . . . ,  d). In order to fix ideas and without any loss of generality, we assume 
that for all components Iz of l = {lu} , we have 

O < l  u <2"rr (1={l~,}).  (3719) 

It follows that 

x i . "  = f (  il + or) - f (  il - l~, + or) = E Si_m~rm,. 
m 

(38a) 

where the configuration 

erm, u = xu (  m l  + a - xo )  (38b) 

has the 2w-periodic hull function 

(38c) 

which can be chosen to be either left or right continuous. We have for its left continuous determination 

X . ( x ) = l  f o r 0 < x < l .  (39a) 

and 

X . ( x )  = 0 for l~ < x  < 2~r. (39b) 

Thus when (34b) is fulfilled, {O'm, ~} can take only two values, which are 0 or 1, and can be considered as a 

pseudo-spin configuration. 

The bond modulation of the incommensurate ground state, can be described as the linear superposition 

(38a) of localized effective bond  modula t ions  {6n}. These local modulations are called "effective discom- 
mensurations". Their  distribution is described by d pseudo-spin configuration {cri,.}. 

In this case, we assumed (37b) and thus these effective discommensurations refer to the commensurate 
ground state obtained for l = 0. It is essential to note that the shape of a single effective discommensura- 
tion depends on the incommensurate ground state (that is on ~') and thus that it takes into account  the 

presence o f  other  d iscommensurat ions .  According to theorem 3, these effective discommensurations {gn} 
are exponentially localized. For the corresponding ground state, they are located at the bonds where 

o'i, ~ = xu (  il + a - xo )  = 1. (40a) 
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The size of a discommensuration is defined as the characteristic length s c associated with the 
exponential behavior e x p ( -  In I / s  c) of 6,, at infinity. 

Up to now, the concept of discommensuration was clearly defined [9] only for a single discommensura- 
tion and approximately, when these discommensurations are far apart. A single discommensuration is the 
boundary which separates two regions of a commensurate  structure with different phase, for example 0 

and 2w for the simplest commensurabili ty / = 0 .  It is usually described within the continuous 
approximation leading to a sine-Gordon model. Within our approach, we obtain a precise definition 
which applies for many discommensuration structures (many-body problem). 

Of  course, we also recover the well-known single discommensuration of the ground state obtained for 
l = 0, but in addition we take into account the discrete character of the system. The bond modulation 
associated with a single discommensuration {a n} is obtained by taking the limit l ~ 0 (and choosing the 
phase in an appropriate  manner  [1-3]). At this limit, ~ri. ~ is zero except on a line of bonds where ~.~, is 
only equal to one. These bonds connect two infinite connected regions such that in the first one, the 
atoms i lie in the interval [0,2rr[ and in the second one, the atoms lie in [2rr,4rr[. The direction of l 
when it goes to zero determines the direction of the normal vector to the discommensuration. {a n} is the 
bond modulation which allows to know the exact configuration {u i} up to a constant using (36) and the 
corresponding pseudo-spin configuration. 

However, note that in the extended FK models considered in this paper,  the pseudo-spin configura- 
tions necessarily fulfill the condition 

sacri, A = 0. (40b) 
( i .  a ) ~  g." 

The sum of the pseudo-spins is done on any oriented closed loop ~ in ya  formed by oriented bonds 
(i, A = +_/x) with a weight denoted s a = +_ 1. We have sa = 1, for bonds (i, A) oriented in the positive 
direction /,, and s, = - 1 for bonds (i, A) oriented in the negative direction Iz. This condition is a severe 
constraint and implies that the extended FK models in more than one dimension cannot be described by 
" f ree"  pseudo-spin models. For example, a configuration with a single pseudo-spin equal to one is 
impossible except for one-dimensional models. This condition originates from the fact that we consider 
models where atomic vacancies cannot exist. But, let us note that this condition will disappear in coupled 
e lec t ron-phonon  models, which otherwise are strongly similar models. They will be studied in ref. [7]. 

We show in figs. 1 and 2 examples of effective discommensurations which were numerically calculated. 
For fig. 1, which deals with the standard FK model, there is only one class of discontinuity. It clearly 
shows that the size of the effective discommensurations diverges when approaching the TBA from above. 
The example of fig. 2 has been chosen in order that there are two classes of discontinuities. The 
functional energy (1) of this one-dimensional model is 

q~({ui} ) = E [ ½ ( u i - u , _ l )  z + V ( u , ) ]  (41a) 
i 

with 

V ( x )  = k 1 cos x + k z cos2x .  (41b) 

Close to the anti-integrable limit of this model (obtained for large k I and k 2 with k ~ / k  2 fixed) and 
when V ( x )  has two minima per period, according to the result of the previous section, the hull function 
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Fig. 1. Three  effective d iscommensura t ions  {6,} in the s tandard FK model (4) (with a unique class of discontinuity) for ~" = l / 2 ~  
= ½(v~- - 1) and k = 1.1, 1.25, 1.5. The size of  this d iscommensura t ion  diverges critically at k = kc ( ( )  -= 0.96. 

of  the  i n c o m m e n s u r a t e  g round  s ta te  exhibits  (at  most)  two classes of  d iscont inui t ies .  Since we have the 

symmetry  V(x)= V(-x), we can choose  the  hull  funct ion f(x) odd  (i.e. fulfilling f(x)= -f(-x)). In 

that  case, using t h e o r e m  2 in ref. [1], we have I n t ( u , / r r ) =  In t ( (n l  + a)/w), which proves  tha t  close 

enough  to the  an t i - in tegrab le  limit,  f(x) has necessar i ly  a d iscont inui ty  at x = x 0 = 0 and a no the r  one  at 

x = x 0 = rr. These  two d iscont inui t ies  must  gene ra t e  two dis t inct  d i scont inu i ty  classes. 

W e  ca lcu la ted  the  i n c o m m e n s u r a t e  g round  s ta te  for  l/2~r = ( =  ½(73- - 1) ( the inverse  go lden  mean)  

and k t = 0.12 and  k 2 = 0.6. Then ,  po ten t i a l  V(x) has two min ima  pe r  pe r iod  o b t a i n e d  for x ~ 1.671 and 

x - 4.612. W e  observe  that  f(x) is i ndeed  d iscont inuous  for x = 0 and for x = w. The  two sequences  6,  

which descr ibe  the  bond  modu la t i on  assoc ia ted  with each  d i s commensu ra t i on  are  shown in fig. 1. No te  
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Fig. 2. E x a m p l e  o f  m o d e l  (41) wi th  two c lasses  o f  d i scon t inu i ty .  T h e  two effective d i s c o m m e n s u r a t i o n s  a re  s h o w n  for  ~ = I/2Tr 
= ½ ( ~ -  - 1), k I = 0.12 a n d  k 2 = 0.6. T h e  g r a p h  over  a p e r i o d  o f  po t en t i a l  V(x) is shown  in the  inser t .  

that we found for the total amplitude of the first discommensuration a~ = ~,,(5,, -= 5.498, and for those of 
the second one A x = E,,a,, -= 0.785 (with A 1 + / I  2 ~ 2"rr). These amplitudes are not apparently related to 
the distances between the minima of V(x).  This very short numerical calculation is just a test for 
illustrating the present  theory. It should be very interesting to explore numerically and to understand 
better  the detailed properties of these effective discommensurations and their possible relation with the 
critical anomalies at the breaking of the KAM tori observed in ref. [22]. 

When leaving the anti-integrable limit and approaching the integrable limit at fixed incommensurability 
ratio ~', for example by just varying the amplitude of the periodic potential V(x),  the incommensurate 
ground state undergoes a TBA. At this TBA, early studies have shown that the gap parameter  ~ and the 
so-called coherence length ~: are critical [23]. According to theorem 3, the size of the effective 
discommensuration is identical to the coherence length s c and thus diuerges at the TBA. Below the TBA, 

in the analytic regime (the incommensurate  ground state is represented by a KAM torus in the case of 
the standard FK model), no effectic, e discomrnensuration can be defined. More precisely, since the hull 
function of the ground state is now analytic, it is impossible to describe the incommensurate  ground state 
as linear superposition of localized lattice distortions since form (38a) would imply a discrete hull 
function. 

We expect that the effective discommensuration of an incommensurate ground state is generally 
unique unless some specific conditions are required for the model. This effective discommensuration {6,} 
should depend continuously on the incommensurability ratio ~" = 1 / 2 ~  (except when the components  of 

~" are rationally related!). We expect this result on the basis of results for the 1D nearest-neighbor case 
[1-3] where the hull function f ( x ;  ~) is uniquely defined for ~" irrational (apart  from an arbitrary phase 
shift). Then, we can choose a determination of the phase such that (for most x) we have 

lim f (  x; ~" ) = f (  x ; ~',,). (42a) 

This property implies that for any n, we have 

lim a.(~ ')  = a . (~ ' . ) .  (42b) 
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When the components of ~" are rational numbers, the hull function f ( x )  becomes a staircase with a finite 

number of discontinuities per period. In that case, the effective discommensuration is not uniquely 
defined by the definition (38). Then, the effective discommensuration {3n(~')} might be discontinuous at 
the points ~0 with rational components. We expect that the limit of {6n(~')} for ( -~ ~'0 depends on the 
direction of (~"- (0). However, when the order of commensurability of the rational components of 
becomes large, these discontinuities become small and negligible. By contrast, we expect that the inverse 
size y = 1 /~  of these effective discommensurations should vary in rather complex way. It is zero at the 
values of ~" for which the ground state is analytic but finite non-zero at the rational values. This fact 
should have potential physical implications for understanding metal- insulator transition in coupled 
e lec t ron-phonon systems as a function of the band filling (or doping). 

6. Physical discussion and concluding remarks 

This extended definition of a discommensuration is not artificial but should appear to be physically 
essential for understanding the transport properties and the thermodynamical properties at low tempera- 
ture of the incommensurate structures with finite gap parameter  (which we also called "non-analytic"). 
Indeed, when the phase (x 0 - a -  n/)mod2~r of an incommensurate configuration is changed infinites- 
imally, this change is associated with the flip of the pseudo-spin n, ~ from 0 to 1, and of the pseudo-spin 
n - [ ~ ) , #  from 1 to 0. This phenomenon can be simply viewed as the hopping of an effective 
discommensuration from the bond n - I ~ ) , ~  to the next bond n , ~  and only requires a finite 
displacement of the atoms in a small region of the system. Although this hopping does not cost globally 
any energy, it requires to overcome the Peierls-Nabarro energy barrier [23]. If the atoms can overcome 
this energy barrier, the whole system can then be transported. 

At 0 K, the "electric field" on the atoms, allowing the global transportation of the system, was 
calculated in ref. [23] in the standard 1D FK model. With physically reasonable parameter  values in the 
model, the obtained values were found to be physically unrealistic at the macroscopic scale (except very 
close to the TBA). This result is not very surprising because in real systems, the transport phenomena for 
a pinned system occur essentially by nucleation and defect transportation ("plastic flow"). At large 
enough temperature,  this motion also becomes possible because it is thermally activated. Then the 
transport of the whole system under the action of a small electric field is driven by this diffusion process, 
which occurs at the microscopic scale and is very much temperature dependent.  In addition, this diffusive 
process helps the motions of extra-defects of the structure (e.g. phase domain wall) which should 
produce non-linear transport phenomena. Such phenomena are indeed commonly observed in CDW 
systems (e.g. see ref. [8]) which we propose to describe with models with properties similar to those 
studied here (e.g. see p. 295 in ref. [8]). This problem should also be analyzed in further works with more 
details on simplified models. 

At finite temperature,  the thermal fluctuations introduce some disorder in the distribution of the 
pseudo-spins which describes the location of the effective discommensurations. While the temperature is 
low enough, the disorder involves defects in the pseudo-spin configuration with a small energy. For 
example, for the bonds i, ~ where the phase il + o ~ - x  o mod2av is slightly larger than zero, the energy 
cost for flipping an effective discommensuration from bond i - ]/.~),/~ to bond i,/~ is not zero but small 
(e.g. see ref. [24, 25], where this effect is studied on a model in one dimension). The configuration will 
still be described with a good approximation by a "slightly random" distribution of identical effective 
discommensurations. 
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In one-dimensional models, the meaning of "slightly random" can be made more precise by using the 
concept of word. 2ndeed, it has been shown in ref. [25] that the pseudo-spin configurations associated 
with an incommensurate ground state can be constructed following an infinite sequence of two words 
inflation rules determined explicitly by the continued fraction expansion of the incommensurability ratio 

= l / 2 r r .  For example, the special case of the golden mean yields the well-known Fibonacci sequence of 
words 

w.={wo_,,w._2} 

with the initial conditions 

(43a) 

W 0 = {0}, (43b) 

W, = {2}. (43c) 

Then, one gets W z = {10}, W 3 = {201}, W 4 = {20 110}, etc. For n going to infinity, W,, goes to an infinite 
pseudo-spin sequence which apart from a phase shift is identical to the sequence (40a) with l = 2w(. An 
arbitrary configuration of pseudo-spin {o- n} referred to the ordered ground state with incommensurability 
ratio the inverse golden mean ~" = ½(~/5 - 1) is said to be weakly random at order n, when it can be 
constructed as a random sequence of words W n+l and Wn, the ground state being constructed as an 
ordered sequences of these two words. This definition can be extended to arbitrary irrational ~" by 
considering different sequences of words Wn. It has been shown [24, 25] that at low temperature,  
"non-analytic" 1D incommensurate structures can be well described by weakly random sequences of 
pseudo-spins at order  n. This order n diverges as the temperature goes to zero. Then, the bond 
modulation of the metastable configurations associated with these weakly random pseudo-spin sequences 
can be well approximated by (38a) where {6 i} is the effective discommensuration of the ordered 
incommensurate ground state. The approximate configuration does not strictly fulfill the stationarity 
equations (2a). However, in the anti-integrable regime of the Frenkel-Kontorowa model, it can be 
proven that its uniform distance r/, from the corresponding metastable configuration goes to zero as an 
exponential of the world length s, of W,. (The proof of this result, which is a corollary of the lemma of 
theorem 8 in ref. [26], should be published later in an extended form.) 

Then, pseudo-spin (or integer) models describing weakly random distributions of effective discommen- 
surations naturally appear for modeling the physical behavior of these systems in the "non-analytic 
incommensurate phases". 

2n summary, this paper establishes on a rigorous basis, the existence of effective discommensurations 
in extended FK models in any dimension at O K. It should appear that the existence and the properties of 
the effective discommensurations are essential features for understanding and predicting the behavior of 
a "non-analytic" incommensurate structure as a function of temperature and of its transport properties 
and also for bipolaronic structures as we will see in further works. 
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Appendix A. Proof of proposition 1 

We prove in fact a more general result valid for any quasi-periodic Hamiltonian and not only for a 
QEAM. 

Let M(a)  be a self-adjoint operator  which acts on the vector X =  {X i} ~ ~ z~, where the indices 
i = {i,} ~ 7/a are the sites of a d-dimensional square lattice Z d. The matrix elements Mi,j(a) = (il M(a) l j )  
are assumed to be non-zero only for i = j  and for close enough sites ( i , j )  on 7/d with i - j  or j - i ~ B. 
They are 2w-periodic functions of a phase a and for any n ~ Z d for a given vector l in ~d, we have 

M,,j(n = ( A . l a )  

In addition, these functions of a are left continuous (or right continuous). 1 is a vector in Ed with 
components  {lu} of this vector which are not rationally related, that is 

d 

pulu 4= 2p~r ( A . l b )  
~z=l 

for any non-vanishing set of integers {pu, p}: {pu} ~ 2~ d and p ~ Z. Then, the spectrum of M(a)  does not 
depend on the phase a 

Proof Since Mid(a) might be a discontinuous function of the phase a, we cannot even say a priori that 
the spectrum is a continuous function of a. However, it is obvious that the spectrum of M(a)  is identical 
to that of M(a + n l -  2mw)  for arbitrary n ~ 7/d and m ~ 7/ because of condition (A.la)  and because 
M(a)  is 2"rr-periodic. 

By definition, x belongs to the spectrum of M(a)  when (xl - M(a)) is not invertible in the space of 
bounded operators  (I is the operator  identity). Equivalently, x belongs to the spectrum of M(a)  if and 
only if there exists a sequence of vectors X<~>(a) such that 

lim = 0. (A.2a)  
. + =  IIx<°,(a)lf 

(Let us recall that the norm used in this definition is the standard Hermit ian norm Ilxll = ~ 2  .) 
Instead of requiring that vectors X<">(a) are square summable, it is equivalent to require in (A.2a) that 

vectors X<n)(a) have a compact support  (i.e. the components of X<n)(a) are zero except for the finite set 
of indices i which belongs to the support). 

Let us call ~N the set of vectors X such that for any i with Iil = sup~ i~ > N, the vector component  X i 
is zero. Then, x belongs to the spectrum of M(a)  if and only if there exists a sequence of non-vanishing 
vectors x<n)(a) which belong to 5N,, for some finite N, and which fulfill (A.2a). (Note that N, is not 
necessarily bounded as a function of n.) 

Let us consider a phase a '  different from the phase a. We prove that if x belongs to the spectrum of 
M(a), it also belongs to the spectrum of M(a'). For that purpose, we construct another  sequence of 
vectors Y<")(od) such that (A.2a) is also fulfilled for the phase a ' .  
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Let us consider an arbitrary positive number  e. We choose a vector X<")(a) in the sequence (A.2a) 
such that 

I1[~ - u ( . ) l  x<',(,~)11 
Itx~.,<~)ll 

1 (A.2b)  < 2 e .  

Because of (A.lb),  there exist sequences np ~ ~d and m p  E /7 such that 

ap = a '  + np l  - 2rnpaV > a (A.3a)  

and 

l i m a  m = a ' .  (A.3b)  
p ~  

Since f ( x )  is left continuous, l imp++ Mi, j (o t  p) = M+,j(a)  for any i and j. We cannot conclude directly 
that limp +J lM(av )  - M(a)ll = 0 since the convergence to zero of I M i , / ( a  p) - M+.j(a)l for each matrix 
element does not imply the uniform convergence of the whole operator.  However, considering the 
semi-norm defined as 

I l a x l l  
IIMIIN = sup  ( A . 4 a )  

x + ~ +  t lxl l  ' 

where N is such that the chosen vector X{")(a) in (A.2b) belongs to 5N- Since this definition only 
involves finite submatrices of M, we have 

lira IIM(.p) - a (~) [IN = 0 (A.4b) 
p ~ v ¢  

Now, we can choose p such that 

It M< :p) - M< : ) L  < +~. (A.5a)  

Combining, (A.5a) and (A.2b) yields 

It[x=- i(~p~lx<~>(~)ll 
IIx<-,<~)ll 

ll[xt-M(~)]x<"(~)ll II[M<~) - M<~p)] X"'<~) It < + 
It x<~< ~)ll it x<°>< ~ )It 

<+~+½~:~. (A.5b) 

Using (A.la),  we have Mi,j(oz p) = Mi , / ( a '  + r lpl)  = Mi+,, , , j+, , (cd) .  Then, considering the vector Y(a') = 
= k'< ") , (A.5b) becomes {Y/} defined as Y, __, ,,, 

II[~n- a(~') ]  Y(~') tl 
< e .  (A.6) 

II r(~,)I1 
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Since for any positive e, there exists a vector Y(a') which fulfills (A.6), it is clear that a sequence of 
vectors ¥,,(a') can be constructed for a given sequence e,  converging to zero. Thus, x also belongs to the 
spectrum of M(c(). Conversely, for any y in the spectrum of M(a'), it can be proven identically that y 
also belongs to the spectrum of M(a). The spectrum of M(a) and M(a') are thus identical and 
independent of the phase a, which proves this proposition. 

Let us note here that this proof can be extended identically for weakly periodic structures [21]. The 
important fact in this proof is that any local structure of a configuration for a given "phase"  is found 
again within any arbitrary accuracy in the translated configurations obtained for any other "phase".  For 
example, the ground state of a model on a square lattice with energy Y'~(i,j)L(ui, uj), where (i ,j)  are 
nearest-neighbor sites and L(x, y) is only continuous with respect to (x, y), may be neither periodic 
(commensurate) nor quasi-periodic (incommensurate). When L(x,y) has neither the property of 
diagonal periodicity nor the "convexity" property required for the extended FK model, the theories 
developed in ref. [21] predict that the ground state is necessarily a "weakly periodic" structure. The set 
of weakly periodic ground states is then generated from any single ground state ~ =  {ui} as the closed set 
of all translated configurations {ui+ p} for all p and all their limits considered with the weak topology. 
This set ~ thus generalizes the concept of phase for an incommensurate structure. Choosing ~ in ~ is 
analogous to choosing the phase of an incommensurate structure. Then the same proof as above readily 
extends and allows one to prove that the spectrum of the QEAM of a ground state ~ in ~ is 
independent of the choice of this ground state ~ or in other words of its "phase".  

Appendix B. Proof of proposition 2 

We assume that the hull function f(x) of the incommensurate ground state {u i} has a non-constant 
continuous part f~(x)=fa~(x)÷f~¢(x). Since f(x) fulfills the functional equation (10), it comes out that 
measure df¢(x)  is 2~v-periodic and fulfills the functional equation obtained by differentiation 

O,2Lv(f(x +l~), f (x))dfc(x +l,) 
u~B 

+ ~ [ 0 2 2 L v ( f ( x  + l u ) , f ( x ) )  + O l l L . ( f ( x l , f ( x  -/.1)] dfc(X ) 
u~B 

+ ~, O,2L , ( f (x ) , f ( x - l~ ) )d fc (x - l~)=0.  
uE~ 

(B.1) 

It is easy to prove that fc(x) is strictly increasing. To prove this result, let us assume that ffl d fc (x)  = 0 
for some couple (a, b). By integration of (B.1) over the interval [a, b], it follows that 

fa b A = -  Y'~ Ol2L~(f(x +l~), f(x))df~(x +l~) 

- ~ fabO,2L,,(f(x),f(x-l~))df~(x-l, .)=0. 
gee 

(B.2a) 

Condition ( ld)  implies that the integrands -012L~(f(x + l~),f(x)) and -Ol2L~(f(x),f(x- l,)) are 
strictly positive and larger than C for all x. Since each term in the sum (B.2a) is positive or zero, the 
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equality of their sum to zero implies that each term is zero. Since for all u e ~, we have 

fat' fa t' df~( x 0 = -  O , 2 L ~ ( f ( x + l , ) , f ( x ) ) d f c ( x + l ~ ) > C  +/~) )  >_ 0, (B.2b) 

it follows that 

-- j, 
(B.3a) 

and 

~bdf~(x-l~)= fb£t"dfc(x)=O. (B.3b) 

Thus the variations of fc(X) on the intervals [a + Iv, b + /v ]m o d  2"rr are also zero. Then, it is easy to show 
recursively that the variation of re(x)  on any interval [a +pl+ 2p'rr, b +pl + 2prr] with p = {pv} ~ 2 a 
and p ~ 7/is zero. Because of condition (5b), these intervals cover the whole real axis, which implies that 
d fc(x)  should be identically zero. This condition contradicts the initial assumption, which proves that 
when f~(x) is not a constant, it is a strictly increasing function. 

Then it is possible to choose ~" = fc(x)  as a new variable instead of x. The functions f (x  + nl)= cbn(~) 
considered as functions of ~" are strictly increasing. According to a theorem of Lebesgue [18], they are 
differentiable with respect to s ~ almost everywhere for the measure d{: = dfc(X), that is for x belonging 
to a subset ~ of [~ such that 

fxe:4 n[0,2~] d r y ( x )  = f0 2~df~(x)"  (B.4a) 

For the countable intersection d of these supports, a¢=, of the measure dfc(x)  

~¢'= N ~,,  (B.4b) 
h E 2  d 

we also have 

fx ~,~¢tA[(),2,rr ] d fc  ( x )  = fo 2'rr d f c  ( x ) .  (B.4c) 

Therefore,  eq. (B.1) shows that for x E de', the derivative 

h,(x)  - df~(x  +nl) 
dfc(X) (B.5a) 

is a positive solution of the eigen-equation of the QEAM defined by (6) for the incommensurate ground 
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state (5a) with phase x 

~_,Mi,/(x ) h i (x)  " O. 
J 

We also have 
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(B.5b) 

2~d fc (x+n l )  = f02= d f ~ ( + n l )  f o2~h , ( x )d fc (x )=fo  d f c ( x )  dfc(X ) x 

The assertions of proposition 2 are now proven. 

(B.6) 

Appendix C. Proof of proposition 3 

We prove in fact a more general result: 

Let M = {Mi, j} be a self-adjoint operator  which acts on the vector space X =  {X i} ~ R z~ where the 
indices i = {i,} ~ Z d are the sites of a d-dimensional square lattice. Mi, / = ( i l M I j )  is non-zero only for 
i = j  and for the sites i , j  which are connected by a bond in the set B: j - i  = + v  ~ B. (The number  of 
connective bonds around each site i is finite and we set p = sup~Bllul] the radius of 6.) 

Let us assume that zero does not belong to the spectrum of the operator  M and that {~i} is a solution 
of the eigen-equation at zero eigenvalue. 

~ M i . j ~ .  = 0 for all i. (C . l a )  
J 

We define for n > 0 

A . =  Y'~ I~Fil 2 (C . l b )  
iED  n 

where I), are the sites i = {i~} fulfilling max~li~[ = Ilill = n. These sites form the boundary of the cube K~ 
defined by max~li,I = Ilill -< n. 

Then A ,  diverges exponentially for n going to infinity when the gap parameter  A = 1/IIMII IIM-111 of M 
is non-vanishing. More precisely, we have the following bound for all n > 1: 

K exp(yn) <A. ,  (C.2a) 

where the constant 3', which is non-vanishing, only depends on this gap parameter  and on the 
connectivity set B and the dimensionality of the model while the constant K although non-vanishing, may 
depend on the solution {agi}. 



490 S. Aubry et al. / Incommensurate ground states o f  the Frenkel-Kontorowa models 

Proof. Since zero does not belong to the spectrum of M, then M is invertible and I[M-I]] is finite. Thus, 
for any vector 4, = {4,i}, we have with 4,' = M • 4, 

]]M .4,][  _ ]]4,']] > i~f []~'[] - 1 ( C . 3 a )  
I I~ll I L M - ' - ~ ' I I  - ' I IM - ~ ' 1 1  IIM-'II 

o r  

1 
ItM. 4,1t_ ~ 1 1 4 , 1 t .  (C.3b) 

For n > 0, let us now choose the particular vector {¢hi} defined as 

~hi = ~i for i ~ ~,, (C.4a) 

and 

qS~ = 0 for i ~ ~,, .  (C.4b) 

Because of (C.3b), we have 

1 
IIM" 4,112 > - -  ~ Iq~il z. ( C . 5 )  

- IIM 1112icK. 

Using (C.1) and (C.4) and the fact that M~, i = 0 when i and j are not identical and _+(i - j )  ~ B yields 
that  

(1) for i e ~ , _ p  and for i ~ ~ , + p ,  we have 

(M .4,)i  = 0; (C.6a) 

(2) for i close enough to the boundary of ~,,, that  is for i e ~,,+p - ~,, p, 

(M-  4,), = ~ M~, j~  4: 0. (C.6b) 
j E: [K n 

Since the maximum number  of sites j connected to a site i by a bond in B is (2p + 1) d, we have the 
inequality 

[(M" 4,)ilz = ~J 2 < (2p  + 1)2a~_~i IMi'jqrj]2" (C.7a) 

Using the trivial property IM,,jl < IIMII, we obtain for n > 0 

IIM " 4,112= E ( M . 4 , ) ~  < (2p  + 1)2asuplMi,jl2× E Iq~il 2 
i~(~n+p--~n p i~Kn+p ~n p 

< (2p  + 1)2allM[12 ~ y ,  1~[2 (C.7b) 
--p<j<--p i~D,,+i 
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(C.5) and (C.7b) yield 

1~12<(2p+ 1)2dlli-~ll211itlZ ~ I~il z. (C.8a) 
iE~(~ n i E ~ ) n +  i 

Using the definition (C.lb), (C.8a) becomes 

c ~ A  i< E An+j, (C.8b) 
i = 0  --p<j<_p 

where the constant c is 

z~ 2 

c (2p  + 1) 2d" (C.8c) 

For n > p ,  this positive sequence A n is necessarily larger than the positive and monotonically increasing 
sequence a n generated by 

n 

C E ai = E an+j ( C . 9 a )  
i = 0  --p<j<_p 

with the initial conditions a. = A .  > 0 for n <p .  
Considering eq. (C.9a) obtained by changing n into n - 1 

n - 1  

c E ai= E a._,+j,  (C.9b) 
i = 0  --p<j<_p 

one obtains by comparing (C.9a) and (C.9b) 

ca. = a.+p - a._p. (C.9c) 

For a given n <p ,  the sequence bi =a,+~p. fulfills the recursive relation b~+ I =cb i +bg_ r The 
characteristic matrix of this recursion relation (~ ~I with determinant - 1, has two real eigen-values 
y > l :  

y = ~ c +  1 2v~cZ + 4 1  2 = e x p ( p y )  > 1 + 2 c >  1 ' (C.10a) 

and _y - 1 .  y >  0 only depends on c and p but is independent on the solution 1/',- Since it initial 
conditions are always positive, this sequence b i = a. +ip always diverges exponentially as yi and since the 
second eigenvalue of the characteristic matrix has a modulus strictly smaller than 1, there exists a 
non-vanishing constant K .  such that b i > K . y  i =IV. exp(-ny)exp[( ip  +n)y ] .  Thus, there also exists a 
non-vanishing constant K = Inf 0 <. ~ p[K. e x p ( - n y ) ]  which depends on the initial values of A .  such that 
for all m we have 

Kexp(my) < a  m < A m ,  (C.10b) 

which proves proposition 3. 
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Appendix  D. Proof  of  proposi t ion 4 

T h e  p roof  of  this propos i t ion  requires  different  hypotheses  f rom those of appendix  C. We first write 

the identi ty 

M = IIMII(I - B) ( D . l a )  

with 

M 
B = I - - -  ( D . l b )  

IIMII" 

Since ope ra to r  M is strictly positive, the uppe r  bound  of  the spec t rum of  M is IIMII and its lower bound is 
1/IIM-~II.  Thus,  the whole spec t rum of B defined by (DAb)  belongs to the interval [0, 1 - 1/IIMII IIM tll] 
and consequent ly ,  we have 

IIBII = 1 1 - 1 - A  < 1. ( D . 2 a )  
IIMII IIM '11 

As a result,  B is a strictly positive ope ra to r  with a norm strictly smal ler  than  1. This condit ion implies 

Bi, i > 0 for all i. Since Bi, j = 6i,j  - Mi,j/IIMI[, we also have for i -~ j 

Bi, j > O. (D .2b)  

In addit ion,  we have 

Bi, j = 0 for all i , j  ~ y a such that  [i - j l  > p  = sup Ilvll ( D . 2 c )  
u C ~  

( the bond  interact ion).  Since IIBII < 1, we can write the inverse M-~ as a convergent  series of  ope ra to r s  

N = M _ I =  1 +~ IIMII ~ B'.  ( D . 3 a )  
n = 0  

Since the coefficients B~, i are all posit ive or  zero,  the coefficients (Bn)~,j are also positive or  zero.  In 

addit ion,  using the fact that  Bk, j = 0 for [k - j l  > p  and the recursion relat ion 

a n m l ( ) i , j -  Y '~(B n-  ) i , ~ B k , j  (D .3b )  
k 

we find recursively that  

( B " ) i , j  = 0 for l i - j l  > np .  ( D . 4 a )  

We  have 

0 ~ ( a " ) i , j  ~ IIa"ll ~ Ilall n ~ (1 - - A ) "  for li - - j l  < n p .  (D .4b )  
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Then, it follows that 

1 1 
0 < N i a =  [IMII ~ (B")~a-< IIMII ~ (1 - a ) "  

n>_ l i - j l / p  n>_ l i - j l / p  

1 
= Allldll (1 -A) l i - j l /P=Kexp(--Yl i -J l ) ,  

which proves proposition 4 for 

K = (allMII) - '  = IIM-'II 

and 

(D.Sa) 

(D.5b) 

3/= - p - '  ln(1 - A )  > 0. (D.5c) 

Appendix E. Proof of theorem 3 

The hull function f (x )  being discontinuous for x = x  0, we consider the two incommensurate ground 
state configurations defined as 

u+=f+(il -Xo) , (E . la )  

uF=f-( i l  -Xo),  (E. lb)  

where f+(x) and f - ( x )  are the right continuous and the left continuous determinations of the hull 
function respectively. Then, we have 

ui + -  u F = tS_i, (E. lc)  

where ~-i  is the amplitude of discontinuity of f (x )  at x_i= - i l + x  o defined in (21). These two 
configurations {u +} and {ui-} fulfill eq. (2a) 

~_, 02L~,(u + i+v'U?) + E O l t v ( u F , u ~ v )  = 0  
vEB v~B 

(E.2a) 

and 

E E o,L.(.; ,u;_.)=o. 
v ~ B  u~B  

(E.2b) 

Since functions L~(x, y) have continuous second-order derivatives, for each bond, (i, v) (or (i, - v)), 
there exists a couple of numbers (~:i, ~, r/i, ~) (or (~¢i, ~, r/i. ~)) which fulfill the inequalities 

u/-< ~:i,~ < u/+ and ui-+~< ~7i,~ < u++~, (E.3a) 

+ (E.3b) U/--_~< ~i.-v -~< U? and uT-,< ?~i,-v <-~ Ui -v  
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02 Lv(  ui++ v, u ?  ) - 02 L,,( ui+,, u~-) 

= ( U ? - -  b/Z) 022Lv('rli.v, ~i,v) + ( u/++v - b / L . )  t92,L,,('lTi.v,~i.,,) 

= a  i022Lv(rli,~,,~i,~,) + a  (i+.)021L~,('qi .... sO/,,,), 

Ol L v (  u i  t , b/~- - ) - (91 g v (  b/i , b/i v ) 

= (b/?--  U i )  Ol lLv(~i  , _v ,T l i , _v )  + (ld? v -  u i - v )  O12Lv(~i , -v ,T / i . -v )  

= a_iOllLv(~i ,_~,rb._v) + a_(i , , tOlzL,,(~i . . . .  "eli. ,.). 

Then by difference of the first members of eqs. (E.2), we obtain 

EP,, i6 ; = O, 
J 

where the infinite matrix P = {P~,~} is defined as 

Pi.i = O,lL~,( ~i . . . .  rli, - v )  + c922L~,( rli,,,, ~i.,,), 

Pi,j=Ol2L~,(~i _~,Zli,_~) w h e n v = i - j ~ B ,  

Pi,j=O21L~,(rli  .... ~i,v) when v = j - i  ~B ,  

Pi,j=O w h e n i - j ~ B  and j - i ~ g .  

Since ~ is positive and the series E ~  z~ 6i -< 2at convergent, we have 

lim 6~ = 0 
lit - ,~ 

and consequently 

lim (~: i , . -uT)  = lim (~:~.,,-u 7) =0 ,  

lim ( r l ~ , , - u L , ) =  lim (~7~, , - u / _ , ) = 0 .  

(E.4a) 

(E.4b) 

(E.5a) 

(E.5b) 
(E.Sc) 

(E.5d) 

(E.5e) 

(E.6a) 

(E.6b) 

(E.6c) 

Since the second-order derivatives of L~(x; y) are supposed to be uniformly continuous functions of 
(x, y) for Ivl _<p, we have the uniform limit 

lira IPi,; - Mi.jl = 0, (E.6d) 

Ijl --,~ 

where M = {Mi, ~} is the QEAM of configuration {u~}. 
Let us now define the truncated infinite matrices M ~r) and p(r) which are self-adjoint operators in the 

subspace E (r) of states spanned by the basis of all vectors li) with lil > r. (For r = 0, E~o) is the full 
space.) 

Since operator  M and its submatrices a (r) are positive, their spectral norms lIMII and 1/IIM-~11, which 
are equivalently defined by (8b) and (8c), fulfill 

(XIMIX) (XIMIX) = IIMII, (E.7a)  IIM~r)ll = sup ( g i g )  < sup 
05&XE~ (r, X~-O ( X [ X )  
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which is the inf imum of  the spec t rum of M, as 

1 inf (XIMIX) (X[MIX) 1 - 2 inf = - -  (E .7b)  IIM(')-'II 0 . x ~ - ,  ( s i x )  x~o ( x l x )  I IM- ' I I  

Since each site i is connec ted  at most  to (2p  + 1) a sites j, each line or  column of  M (r), p(r) and 
M(r) _ p(r) contains at most  (2p  + 1) a t e rms  which are non-zero.  Consequent ly ,  we have the inequali ty 

gr=llM<r)-p(r)ll~(2p+l)a sup Iei,j - M~,yl 
ti[ >r, Jjl >_r 

(E .8a )  

for the spectral  no rm of ope ra to r s  II tl. Since the limit (E.6d) is uniform,  N~ goes to zero for r ---, ~, and 
we can choose r large enough,  in o rder  that  we have the strict inequali ty 

I l i  <r) - P(r)ll = g ~  < 1/IlM-'II. (E .8b )  

The  lower bound  of the spec t rum of  M <r) is larger  than 1/IIM-I[[  SO that  this condit ion (E.8b) implies that  
the spec t rum of  ope r a to r  p(r) is also strictly positive. We also have 

1 - i n f  IlP(r)Xll inf II[(P(r)-M(r))+M<r)]xH 
JJp<r)-I JJ X ~ , r ,  Ilxll x~v. ,  Ilxll 

>__ inf IIM(~)X[I I](P(r)-M<r))x][ 
x~ ,r ,  Ilxll sup x~e.  Ilxll 

1 1 
> [IM'r)-'l[ ] ] (P(r) -M<°)I[>  [IM-'I~] Nr>O' ( E . 9 a )  

which implies that  the gap p a r a m e t e r  of  P<~) fulfills 

] > a _ N r  
a , =  ilP(r)[i [ ip.>_,l  I ii-j-~ > 0, (E.9b) 

where  A is the gap p a r a m e t e r  of  M. 

We now note  that  eq. (E.5a) can also be  wri t ten as 

p(r) . Z~r = e r (E . lOa)  

where  At ,  B r are vectors  defined for  ]il >-- r as 

( a r ) i  = { ~ - i } ,  (E . lOb)  

( B r ) i  = -- Z e i , j 3 _ j  ~ o .  ( E . 1 0 c )  
IJl <r 

A is square  summable  because  the positive series E i ~ z a 3 i  is convergent .  We  note  that  only a finite 
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n u m b e r  of  c o m p o n e n t s  of  n r are  n o n - z e r o  s ince  

( B , ) i = 0  for [ i [ > _ r + p .  ( E . 1 1 a )  

B r a n d  A r b o t h  b e l o n g  to the  H i l b e r t  space  E ~'). S ince  o p e r a t o r  pc,) is i nve r t i b l e  in this  space  IF('), we 

have  

Ar = p ( r ) - I  . B r  " ( E . 1 1 b )  

It fulfills the hypothesis of proposition 4, which yields for Iil > r 

O < ~ - i < g r  E e x p ( - Y r l i - j l ) ( n , ) j  ( E . 1 2 a )  
IJl <p+r 

with 

g r = II 11 ( E . 1 2 b )  

a n d  

1 l n A r  l l n ( A _  N, ) ( E . 1 2 c )  ")/r= - - p  = - - p  ~ ' 

Theorem 3 is proven with constants K and Y in (23) defined as 

K = s u p ( s u P 6 i e x p ( y l i l ) , K  r ~ exp(T, Ijl) ( B , ) j )  > 0 
l<r  Ijl < r + p  

(E.13) 

and 7 = y,. 
Let us note that N r can be small, which shows that this coefficient Yr can be chosen very close to that 

of M. (However, the constant K might become very large.) Thus in the case when a twist map can be 
associated with the variational form (1), 7 can be indeed chosen very close to the Lyapunov coefficient of 
the trajectory corresponding to the incommensurate  ground states. 
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