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Abstract—Many inverse problems in imaging require
estimating the parameters of a bi-linear model, e.g., the crisp
image and the blur in blind deconvolution. In all these models,
there is a scaling indetermination: multiplication of one term by
an arbitrary factor can be compensated for by dividing the other
by the same factor.

To solve such inverse problems and identify each term of the bi-
linear model, reconstruction methods rely on prior models that
enforce some form of regularity. If these regularization terms
verify a homogeneity property, the optimal scaling with respect
to the regularization functions can be determined. This has two
benefits: hyper-parameter tuning is simplified (a single parameter
needs to be chosen) and the computation of the maximum a
posteriori estimate is more efficient.

Illustrations on a blind deconvolution problem are given with
an unsupervised strategy to tune the hyper-parameter.

Index Terms—Inverse problem, Bi-linear models, Scaling
indetermination, Blind deconvolution

I. INTRODUCTION

There are many problems in signal and image processing
that can be formulated as inverse problems: the observed
signals or images do not directly correspond to the parameters
of interest but can be related via a model. Estimating the
parameters of interest requires inverting the model. It is often
the case that the model also depends on other parameters,
e.g., instrumental parameters, and that these parameters need
to be jointly estimated from the data. Such inverse problems
are often called “blind” reconstruction problems to emphasize
that, beyond the reconstruction of the parameters of interest,
another set of parameters must be estimated. The family of
bi-linear models covers a wide range of such models.

In order to identify each set of parameters in a blind
reconstruction problem, regularization terms are introduced.
These terms favor solutions in good agreement with our prior
knowledge, for example with sufficient temporal or spatial
smoothness.

There is a scaling indetermination to all bi-linear models:
the model is unchanged when one set of parameters is
multiplied by a factor and the other is divided by the same
factor. This indetermination is solved by the regularization and
the domain constraints imposed on the parameters.

We show in this paper that regularization terms that verify a
homogeneity property lead to a closed form expression of the

optimal scaling, for a given weighting of each regularization
term. This optimal scaling can be beneficial by (i) simplifying
the tuning of the relative weights of regularization terms (so-
called hyper-parameters of the blind reconstruction problem);
(ii) leading to a more efficient reconstruction algorithm; (iii)
being applicable to an unsupervised reconstruction strategy
based on the minimization of a criterion like Stein’s unbiased
risk estimate SURE [1].

The paper is organized as follows: Section II derives the
expression of the optimal scaling and describes the proposed
method. Section III illustrates this general methodology on
a blind deconvolution problem, i.e., the joint estimation of a
crisp image and of the blur. Section IV concludes the paper.

II. PROPOSED METHOD

A. Bi-linear models and scaling invariance

We consider a class of inverse problems for which the direct
model of the data writes:

d ≈ x⊗ y , (1)

where d ∈ D, x ∈ X and y ∈ Y are real-valued vectors:
d represents the measurements while x and y represent
unknowns which are combined by the bi-linear operator ⊗.
The above symbol ≈ is to account for discrepancies due to
the approximations of the model x ⊗ y and to measurement
noise. Since the direct model x⊗y is bi-linear, it verifies the
property:

∀(α, β,x,y) ∈ R2×X×Y, (αx)⊗(β y) = (αβ) (x⊗y) (2)

Instances of such problems are numerous in signal and
image processing, for example:

• Blind deconvolution [2] with x the observed object, y
the instrumental point spread function (PSF) and ⊗ the
bi-dimensional convolution operator.

• Blind source separation [3] where x and y are matrices1

while ⊗ denotes the usual matrix product.

1In the case of blind source separation, x may represent the end-members
while y represent the mixture coefficients.
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• Low-rank approximations where a matrix d is
approximated as the matrix product of a tall matrix and
a wide matrix.

To account for the approximate relation in Eq. (1), the
inverse problem of recovering the unknowns x and y given the
data d involves fitting the model x⊗ y to the data. Formally,
this fitting can be expressed by:

min
x∈X,y∈Y

G(x⊗ y) (3)

where G: D → R implements a distance between the model
x⊗ y and the data d.

As a consequence of the Property (2), the relation

G((αx)⊗ (y/α)) = G(x⊗ y) (4)

holds for any α ∈ R? ≡ R\{0}. This means that there
is a multiplicative degeneracy in the inverse problem which
cannot be disentangled by the data alone whatever the metric
implemented by G. In the general case, the Problem (3)
is extremely ill-posed due to its numerous degeneracies
(such as swap, shift or reducibility degeneracies in the blind
deconvolution case [4]).

Hence, it is necessary to add some a priori knowledge
on both unknowns x and y by the means of regularization
penalties and/or by tightening the feasible sets X and/or Y
[5]. The inverse problem then amounts to solving the following
optimization problem:

min
x∈X,y∈Y

{
F(x, µ,y, ν) = G(x⊗y)+µJ (x)+ν K(y)

}
(5)

where J : X → R+ and K: Y → R+ are regularization
penalties to enforce the prior constraints, µ ∈ R+ and
ν ∈ R+ are hyper-parameters to tune the relative weights of
the different terms of the objective function F . Many a priori
models have been proposed in the literature, such as quadratic
regularization [5], total variation (TV) [6] or edge-preserving
smoothness [7].

B. Exploiting the scaling indetermination

In order to exploit the scaling indetermination of the direct
model, we require that the regularization penalties J (x) and
K(y) be homogeneous functions of degree q > 0 and r > 0
respectively. That is:

J ∈ Ω(X, q) and K ∈ Ω(Y, r) , (6)

where Ω(U, p) denotes the set of homogeneous functions from
the convex cone2 U to R+ of degree p. In other words, we
assume that X and Y are convex cones and that:

J (αx) = αq J (x) ≥ 0 , (7a)
K(αy) = αr K(y) ≥ 0 , (7b)

hold for any x ∈ X, y ∈ Y and α ∈ R+.
Under these assumptions, the identity:

F(αx, µ,y/α, ν) = F
(
x, µ αq,y, ν α−r

)
, (8)

2A convex cone U is such that: u ∈ U ⇒ αu ∈ U for any α ≥ 0.
Examples of convex cones are Rn or Rn

+.

holds ∀α ∈ R?+. This identity shows that scaling the unknown
parameters in such a way that the model is left unchanged
amounts to changing the regularization terms of the objective
function.

We now introduce E(α) the value of the objective function
in Eq. (8) as a function of the scaling factor α:

E(α) = F(αx, µ,y/α, ν)

= G(x⊗ y) + µαq J (x) + ν α−r K(y) , (9)

for any given x ∈ X, y ∈ Y, µ > 0, ν > 0 and α 6= 0 such
that J (x) > 0 and K(y) > 0. The derivative of E(α) writes:

E ′(α) = q µαq−1 J (x)− r ν α−r−1K(y) .

Since J (x) > 0 and K(y) > 0, E(α) is strictly convex on
R?+. The optimal scaling factor which minimizes E(α) is α̂
the only positive root of E ′(α):

α̂(x, µ,y, ν) =

(
r ν K(y)

q µJ (x)

) 1
q+r

. (10)

Replacing the optimal scaling parameter α̂ in the objective
function yields:

min
α>0
F(αx, µ,y/α, ν) = F(αx, µ,y/α, ν)

∣∣
α=α̂(x,µ,y,ν)

= H
(
x,y, η̂(µ, ν)

)
(11)

where:

H(x,y, η) = G(x⊗ y) + ηJ (x)
r

q+r K(y)
q

q+r , (12)

and:

η̂(µ, ν) =
(

(r/q)
q

q+r + (q/r)
r

q+r

)
(µr νq)

1
q+r . (13)

The criterion defined in Eq. (12) shows that when considering
the shape of the solution (that is x and y up to some
scaling factor), the regularity of the two variables is mutually
dependent, indeed only the value of µr νq matters to set the
importance of the regularization. As a consequence a single
hyper-parameter, η, instead of two, µ and ν, is sufficient to
tune the regularization level. This property can be exploited
to simplify the tuning of the regularization. Minimization
problems of the form of equation (5) generally have
several local minima. The solution reached by minimization
algorithms, therefore, depends on the optimization path
followed during the iterations. Exploiting relation (10) to
select, at each iteration, the optimal scaling can also help
avoiding some poor local minima.

There is no closed form solution for the general Problem (5),
so most practical algorithms to solve this problem are iterative:
starting from some initial guess

(
x(0),y(0)

)
∈ X × Y,

the objective function is progressively minimized to yield
improved estimates

(
x(m),y(m)

)
∈ X×Y after m iterations.

To take advantage of the scaling invariance there are several
possible strategies, the most obvious ones are:

1) Choose a regularization level η > 0 and minimize the
objective function H(x,y, η) defined in Eq. (12).
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Algorithm 1: Rescaled alternating strategy with two
hyper-parameters (one is arbitrary).

Input: µ > 0, ν > 0, α0 > 0 and y(0) ∈ Y s.t.
K
(
y(0)

)
> 0.

Output: A local optimum (x?,y?) ∈ X× Y.
for k = 0, 1, 2, . . . ,m− 1 do

while true do
x(k+1) ≈ x̂

(
y(k), αqk µ

)
see Eq. (14a)

αk+1/2 = α̂
(
x(k+1), µ,y(k), ν

)
see Eq. (10)

if k > 0 or αk+1/2 ≈ αk then break;
αk ← αk+1/2

y(k+1) ≈ ŷ
(
x(k+1), α−rk+1/2 ν

)
see Eq. (14b)

αk+1 = α̂
(
x(k+1), µ,y(k+1), ν

)
see Eq. (10)

Result: (x?,y?) =
(
αm x(m),y(m)/αm

)
2) Choose the regularization levels µ > 0 and ν > 0

(one of which can have an arbitrary fixed value) and
minimize the criterion F(x, µ α̂q,y, ν α̂−r) with α̂ the
best scaling factor given by Eq. (10) and either set before
the first iteration, i.e. according to x(0) and y(0), or
at every stages of the optimization, i.e. according to
x(k) and y(k). Optimally scaling the variables at every
iterations (or the hyper-parameters) has been shown
to speed-up the convergence [8] so the former variant
should be more efficient.

Remarks: (i) Whatever the strategy, it is necessary that
J
(
x(k)

)
> 0 and K

(
y(k)

)
> 0 for all iterates k. (ii) Owing

to the identity in (8), the scaling of the hyper-parameters in
the 2nd method is equivalent to a scaling of the variables.

Directly minimizing the objective function H(x,y, η)
defined in Eq. (12) is not very practical as it requires to solve a
non-linear problem whether the variables x and y are jointly,
hierarchically or alternately updated. The 2nd strategy is easier
to implement if x and y are updated alternately as it can re-use
existing methods to solve the two half-problems of estimating
x given y and µ and estimating y given x and ν:

x̂(y, µ) = arg min
x∈X
F(x, µ,y, ν)

= arg min
x∈X
{G(x⊗ y) + µJ (x)} , (14a)

ŷ(x, ν) = arg min
y∈Y
F(x, µ,y, ν)

= arg min
y∈Y
{G(x⊗ y) + ν K(y)} . (14b)

As previously discussed, these updates should be performed
with rescaled hyper-parameters to apply the optimal scaling
factor given in Eq. (10) before each update. These
considerations suggest the alternating method implemented
by our Algorithm 1 whose output (up to a scaling of the
unknowns) depends on a single tuning hyper-parameter, the
other being fixed at an arbitrary value.

An advantage of the proposed algorithm is that only y(0) has
to be provided. However, since x(0) is unknown, the optimal
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Fig. 1. Convergence curves for two versions of a blind deconvolution
algorithm initialized with y(0) = β yinp with different values of β but same
input PSF yinp. In blue, the unscaled algorithm, that is alternated minimization
of F(x, µ,y, ν) as defined in (5). In red, the proposed algorithm.

initial scaling α0 cannot be computed by the closed form
expression (10). To automatically determine a good initial
scaling, our algorithm implements a simple alternated method
to jointly estimate x(1) and α0. This simple procedure ensures
that the other iterations (and hence the output of the algorithm)
do not depend on the scaling of y(0). In other words, taking
y(0) = β yinp for a given yinp gives the same results whatever
the value of β > 0. As shown by Fig. 1, this feature is
important to avoid that the solution and the convergence speed
be driven by the scaling of the initial variables.

The updates of the variables x and y according to Eq. (14a)
and (14b) do not have to be very precise, it is enough to seek
for an approximate solution ensuring a sufficient reduction
of the objective function. Starting at the previous estimate, a
few iterations of the optimization algorithms designed to solve
Eq. (14a) and (14b) will do the job. Thanks to the symmetry
of the problem, the roles of (x,X, µ) and (y,Y, ν) can be
exchanged and the algorithm started with an initial x(0).

III. APPLICATION TO BLIND DECONVOLUTION

Blind deconvolution is typical of the class of problems
considered in this paper and we choose it to demonstrate
the interest of exploiting the scale invariance property. The
objective of image blind deconvolution [2], [8], [9] is to
recover the object of interest, say x, and the instrumental point
spread function (PSF), say y, given a single observed image,
the data d, of the object, this image being degraded by the
blurring due to the PSF and by the noise. Such a problem is
challenging but has a great interest in situations where the PSF
is unknown or expensive to calibrate (e.g., astronomy, medical
imaging, etc.).

A. Statement of the problem

Assuming that the noise statistics is well approximated
by a multi-variate Gaussian distribution, an excellent way to
measure the distance between the model x ⊗ y and the data
d is provided by the co-log-likelihood of the data:

G(x⊗ y) = ‖d− x⊗ y‖2W , (15)
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Fig. 2. The true object (the galaxy M51).

where ⊗ denotes discrete convolution product, implemented
by means of the fast Fourier transform (FFT), W is the
precision matrix of the data and ‖u‖2W

def
= uT·W·u is

a Mahalanobis squared norm. In practice, we considered
independent noise so that the precision matrix W is diagonal
with diagonal terms given by:

Wj,j =

{
1/Var(dj) if jth data pixel is valid,
0 otherwise.

(16)

This definition provides simple means to consistently account
for defective pixels.

As strict constraints such as positivity are beneficial to solve
the blind deconvolution problem of images [9], we impose that
both the object and the PSF be nonnegative everywhere (for
physical reasons, this is always true for the PSF in optics).
This means that X and Y are equal to Rn+ with n the number
of pixels.

For this paper, we consider the following two
regularizations:

H2(u) =
∑

j
‖Dj ·u‖2 , (17)

H1(u) =
∑

j

√
‖Dj ·u‖2 + ε ‖u‖2 , (18)

where ε ≥ 0 is another tuning parameter and Dj : U →
Rp yields a discrete approximation of the p-dimensional
gradient of its argument (p = 2 for images) at j-th position.
These regularizations are homogeneous functions of respective
degrees 2 and 1, they both favor the smoothness of the
variables u. The second regularization, H1(u), implements
total variation (TV) regularization [6] for ε = 0 and a
homogeneous version of edge-preserving smoothness [7] for
ε > 0.

B. Results

We generated synthetic data given an image of the galaxy
M51 (Fig. 2) and the PSF of the 3.60 m Canada-France Hawaii
telescope equipped with one of the first adaptive optics systems
(Fig. 3). The resulting data, shown in Fig. 5, is the true object
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Fig. 3. The instrumental PSF
(courtesy François Roddier).
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Fig. 4. Initial PSF y(0) assumed in
Algorithm 1.
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Fig. 5. The data.

blurred by the PSF and with additional i.i.d. random Gaussian
noise of standard deviation σ = 1.5 ADU which corresponds
to a PSNR of ' 80.

For the initial guess of the PSF y(0), we took the
instrumental response of a perfect 3.60 m telescope, that is
an Airy function (Fig. 4).

For the regularizations, we first considered the same
quadratic regularization, given in Eq. (17), for the object x and
the PSF y. As the PSF is rather smooth (as expected from the
physics) while the object has sharp features (stars), we also
considered a homogeneous edge-preserving regularization for
the object while keeping a quadratic smoothness for the PSF:
J (x) = H1(x) and J (y) = H2(y).

As the considered objective functions are differentiable (for
ε > 0), we used VMLM-B [8], a limited memory quasi-
Newton method implementing bound constraints, to solve the
sub-problems (14a) and (14b) on the nonnegative orthant. To
ensure convergence, the alternating strategy implemented by
Algorithm 1 is applied for m = 200 iterations, while each of
the sub-problems is solved by 10 iterations of VMLM-B.

We used the SURE criterion [1], an unbiased estimation of
the mean squared error, to determine the regularization level.
We fixed ν and run Algorithm 1 for a wide range of values of
µ to produce the curves shown by Fig. 6. A global minimum of
SURE criterion is obtained for µ ' 0.05 when x and y have
the same quadratic regularizations and for µ ' 0.02 when
edge-preserving regularization is applied to x. Figures 9 and
7 show the recovered instrumental PSF and object both with
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Fig. 6. The SURE criterionR(µ) as a function of µ only (i.e., for ν optimally
set), for quadratic regularization for both the object and the PSF (blue line),
and for edge-preserving and quadratic regularizations for the object and the
PSF respectively and a given value of ε (orange dashed line).
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Fig. 7. The recovered object with a quadratic smoothness regularization.

quadratic smoothness priors and for the optimal value µ =
0.05. Figures 10 and 8 show the instrumental PSF and object
recovered when imposing quadratic smoothness to the PSF
and edge-preserving smoothness to the object for the optimal
value µ = 0.02 in that case. Clearly, the value of the hyper-
parameter µ found by the proposed procedure is correct in the
two considered cases. Besides, imposing more suitable edge-
preserving smoothness is beneficial for the object in particular
for the recovering of sharp features such as the foreground
stars and the cores of the two galaxies.

IV. CONCLUSIONS

We have demonstrated that the scaling indetermination of
bi-linear models in inverse problems can, theoretically and
for homogeneous regularizations, be exploited to simplify the
tuning of the regularization (as one less tuning parameter is
necessary) and to speed-up convergence. We have proposed
a simple alternating strategy to solve the inverse problem in
this context and whatever the scaling of the initialization.
We have applied our algorithm to the blind deconvolution
of astronomical images under various regularizations whose
importance is automatically tuned by minimizing Stein’s
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Fig. 8. The recovered object with an homogeneous edge-preserving
smoothness regularization.
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Fig. 9. The recovered PSF with
quadratic smoothness regularizations
on the PSF and on the object.
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Fig. 10. The recovered PSF with a
quadratic smoothness regularization
while imposing edge preserving
smoothness for the object.

unbiased estimator of the mean weighted error. On the basis of
simulated images, we have shown that the proposed algorithm
was able to recover good estimates of the object and the
instrumental point spread function (PSF) given a single blurred
and noisy image.
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