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CONTINUOUS LEBESGUE MEASURE-PRESERVING MAPS ON

ONE-DIMENSIONAL MANIFOLDS: A SURVEY

JOZEF BOBOK, JERNEJ ČINČ, PIOTR OPROCHA, AND SERGE TROUBETZKOY

Abstract. We survey the current state-of-the-art about the dynamical be-
havior of continuous Lebesgue measure-preserving maps on one-dimensional

manifolds.

1. Introduction

Let M denote a compact connected one-dimensional manifold, namely the unit
interval, I := [0, 1], and the unit circle, S1. Define C(M) to be the set of contin-
uous maps of M . Let λ denote the Lebesgue measure on an underlying manifold.
Our survey will focus on discussion of topological and dynamical properties in the
space Cλ(M) ⊂ C(M) of Lebesgue measure-preserving continuous maps of M with
the metric of uniform convergence; the space Cλ(M) is a complete metric space,
see [12, Proposition 4]. Our particular interest is in Lebesgue measure-preserving
continuous maps on M which are not necessarily invertible, so the case that is not
usually studied in Ergodic Theory.

The class Cλ(M) contains very large spectrum of maps; on one hand nowhere
differentiable ones or even without finite or infinite one-sided derivative [10] and on
the other hand many piecewise monotone maps, many piecewise smooth maps and
of course maps id and 1− id. Furthermore, Cλ(S1) also contains all circle rotations.

For a general compact manifold M, let Hλ(M) denote the space of Lebesgue
measure-preserving homeomorphisms of M, which is again a complete metric space
when equipped with the uniform metric. In the setting of volume preserving home-
omorphisms in dimension 1, the dynamical behavior is simple and thus not of much
interest. However, there are some similarities of the dynamics of higher dimensional
homeomorphisms with the one dimensional continuous maps, so we will mention
them throughout the article. There is a survey book by Alpern and Prasad on the
dynamics of generic volume preserving homeomorphism [4], thus we only briefly
mention some such results for comparison with Cλ(M).

Our choice of Cλ(M) (and Hλ(M)) is motivated by the fact that they are one-
dimensional versions of volume-preserving maps, or more broadly, conservative dy-
namical systems; ergodic maps preserving Lebesgue measure are the most funda-
mental examples of maps having a unique physical measure. Since generic maps in
Cλ(M) are weakly mixing [17], the Ergodic Theorem implies that for a generic map
in Cλ(M) the closure of a typical trajectory has full Lebesgue measure, thus the
statistical properties of typical trajectories can be revealed by physical observations.

Or as Karl Petersen says in the introduction of [47]:

Measure-preserving systems model processes in equilibrium by trans-
formations on probability spaces or, more generally, measure spaces.
They are the basic objects of study in ergodic theory, a central part
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of dynamical systems theory. These systems arise from science and
technology as well as from mathematics itself, so applications are
found in a wide range of areas, such as statistical physics, infor-
mation theory, celestial mechanics, number theory, population dy-
namics, economics, and biology.

On the other hand, they represent a variety of possible one-dimensional dynamics
as highlighted in the following remark which is proven in the interval case in the
introduction of [12]; in the circle case the proof is analogous using Lemma A.1 from
the Appendix.

Remark 1.1. Let f ∈ Cλ(M), then (i) and (ii) are equivalent, and (iii) implies
(i).

(i) f preserves a non-atomic probability measure µ with supp µ = M .
(ii) There exists a homeomorphism h of M such that h ◦ f ◦ h−1 ∈ Cλ(M).

(iii) f has a dense set of periodic points, i.e., Per(f) = M .

Furthermore, if Per(f) 6= ∅, we have (i) implies (iii). Otherwise f is conjugate to
an irrational rotation.

The main line of research in this area has been describing the size of the set
of maps satisfying a certain topological or dynamical property. These results are
discussed in Section 2 and are summarized in the following table.

Property Cλ(M) Result

Weak mixing generic Theorem 2.2.1 & 2.2.3
Strong mixing dense, but of first category Theorem 2.2.2
Leo open dense Theorem 2.3.2 & 2.3.4
Shadowing generic Corollary 2.5.2 & Theorem 2.5.4
Periodic shadowing generic Theorem 2.5.2 & Corollary 2.5.5
Specification prop. open dense Corollary 2.3.3 & 2.3.5
Hausdorff dim. Γf 1 Theorem 2.4.1
Lower box dim. Γf 1 Theorem 2.4.1
Upper box dim. Γf 2 Theorem 2.4.1
λ-a.e. knot point generic Theorem 2.6.1
δ-crookedness generic Theorem 2.7.2

While the previous table summarizes the properties which are the same in Cλ(I)
and Cλ(S1) there are some properties that are different or we do not known if they
are the same. In particular, Theorem 2.5.4 shows that s-limit shadowing is generic in
Cλ(S1), however, we can only prove the s-limit shadowing property and limit shad-
owing property are dense in Cλ(I) (see Proposition 2.5.3). We also give a theorem
describing the structure and dimensions of the set of periodic points of generic maps
from Cλ(I) and Cλ(S1). Results are identical in these settings (see Theorems 2.4.2
and 2.4.3) except for the circle maps of degree one (see Theorem 2.4.4).

In Section 3 we state Theorems 3.1.1 and 3.1.2 that show that certain topological
and metric properties are equivalent for sufficiently smooth maps. In Subsection 3.2
we state Theorem 3.2.1 which shows that there exists a nowhere monotone map in
Cλ(I) that has finite topological entropy. This motivates a more general interesting
question regarding the connection between nowhere differentiability and infinite
topological entropy.

We finish the article with Section 4 where we give an overview of known related
results for spaces of maps on M equipped with smoother topologies.
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Not to disturb the flow of reading, we give in the appendix a proof of Lemma 4
which is needed to argue for Remark 1.1.

2. Denseness properties

First one needs to note that both spaces Cλ(I) and Cλ(S1) equipped with the
metric of uniform convergence are complete. This follows from Proposition 4 of
[12] which is proven for M = I, however the analogous proof works also for S1.
We call a dense Gδ set residual and call a property generic if it is attained on at
least a residual set of the Baire space on which we work. In this section we will
study three different notions of denseness. The strongest property that we verify is
that a certain dynamical property holds for an open dense set of maps in Cλ(M).
We verify the weaker notion of genericity for many other topological dynamical
properties, while for certain properties we verify only the denseness of maps with
certain properties in Cλ(M).

The study of generic properties in dynamical systems was initiated in the ar-
ticle by Oxtoby and Ulam from 1941 [46] in which they showed that for a finite-
dimensional compact manifold with a non-atomic measure that is positive on open
sets, the set of ergodic measure-preserving homeomorphisms is a generic set in the
strong topology. Later Halmos in 1944 [32],[33] introduced approximation tech-
niques to a purely metric setting. Namely, he studied interval maps which are
invertible almost everywhere and preserve the Lebesgue measure. He showed that
the generic invertible map is weakly mixing (i.e., has continuous spectrum). Sub-
sequently, Rohlin in 1948 [50] showed that Halmos’ result is optimal in a sense
that the set of strongly mixing measure-preserving invertible maps is of the first
category in the same underlying space. It took until 1967 that this line of research
was continued when Katok and Stepin [37] introduced the notion of a speed of
approximation. One of the most notable applications of their methods is the proof
of genericity of ergodicity and weak mixing for certain classes of interval exchange
transformations (IETs). More details on the follow-up history of approximation
theory can be found in the surveys [26], [5] and [54].

Now we restrict to our particular context. The roots for studying generic prop-
erties on Cλ(I) come from the paper [10] and this line of study was continued
recently in [17], [11], [12], [13]. The first observation we can make about maps from
Cλ(I) is that they have dense set of periodic points. This follows directly from
the Poincaré Recurrence Theorem and the fact that in dynamical systems given by
an interval map the closures of recurrent points and periodic points coincide [25].
Furthermore, except for the two exceptional maps id and 1− id, every such map has
positive metric entropy. In fact, except for these two exceptional maps every map is
non-invertible on a set of positive measure and thus by a well known theorem (see
for example [55, Corollary 4.14.3]) has positive metric entropy and thus positive
topological entropy as well.

2.1. Main tools. There are two main tools that are used in most of the results
from this section.

Building on the work of Bobok [10, Lemma 1] the following lemma was proven
in [17, Proposition 12] for the interval case, for the definition of a leo map we refer
the reader to Subsection 2.3.

Lemma 2.1.1. The set of maps that are piecewise affine Markov and leo are dense
in Cλ(M).

Proof. The proof in the circle case follows by combining various known results.
First of all the density of a special collection of maps in PAλ(S1) was shown in
Lemmas 13 and 14 from [11], we can assume all of the absolute values of slopes of
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these maps are at least 4. Then using Lemma 12 from [13] we can find a dense
set of maps in PAλ(S1) all of whose critical values are distinct and again of whose
slopes are at least 4. Finally using Lemma 12 from [17] whose proof also works
without change for the circle we have that there is a dense set of Markov maps in
PAλ(S1). In this proof it is implicitly left as an exercise to the reader to show that
the resulting map is leo, which we do here. Using the notation of the proof of this
lemma in [17], let J := (pi−1, pi+1) and U an arbitrary non-empty open interval.
Since the slopes of f and g1 are at least 4 we have λ(g1(A))/λ(A) ≥ 4/2 = 2 for
any non-empty interval which contains at most one critical point, thus we can find
an n such that V := gn1 (V ) contains at least two consecutive critical points. From
the construction of g1 we have f(V \J) = g1(V \J), f(V ∩J) ⊂ g1(V ∩J) provided
that {pi−1, pi+1} 6= ∅, and if V ⊂ J then since V contains two consecutive critical
points we have g1(V ) = g1(J) = f(J) ⊃ f(V ); and thus g1 is leo. �

The proofs in this section also use window perturbations as the other main tool.
Let J be an arc in M (i.e., a homeomorphic image of [0, 1]). Let m be an odd
positive integer and {Ji ∈ M : 1 ≤ i ≤ m} a finite collection of arcs satisfying
∪mi=1Ji = J and int(Ji)∩ int(Jj) = ∅ when i 6= j. We will refer to this as a partition
of J .

Fix f ∈ Cλ(M) an arc J ∈ M and a partition {Ji} of J . A map h ∈ C(M) is
an m-fold window perturbation of f with respect to J and the partition {Ji} if

• h|Jc = f |Jc

• for each 1 ≤ i ≤ m the map h|Ji is an affinely scaled copy of f |J with the
orientation reversed for every second i, with h|J1 having the same orienta-
tion as f |J .

The essence of this definition is illustrated by Figure 1.

f

a b0 1

1

h

0 1

1

a b

Figure 1. For f ∈ Cλ(M) shown on the left, we show on the right
the graph of h which is a 3-fold piecewise window perturbation of
f on the interval [a, b].

2.2. Measure-theoretic properties. Let B denote the Borel sets in M . The
measure-preserving transformation (f,M,B, µ) is called

• ergodic if for every A ∈ B, f−1(A) = A µ-a.e. implies that µ(A) = 0 or
µ(Ac) = 0.
• weakly mixing, if for every A,B ∈ B,

lim
n→∞

1

n

n−1∑
j=0

|µ(f−j(A) ∩B)− µ(A)µ(B)| = 0.

• strongly mixing if for every A,B ∈ B, limn→∞ µ(f j(A) ∩B) = µ(A)µ(B).
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• measure-theoretically exact if for each set A ∈ ∩n≥0f
−n(B) it holds that

µ(A)µ(Ac) = 0.

In this paper we will mainly focus on the case of particular invariant measure, the
Lebesgue measure λ.

The following measure-theoretic properties of Cλ(I)-generic functions were proven
in [17].

Theorem 2.2.1. The Cλ(I)-generic function

(1) is weakly mixing with respect to Lebesgue measure λ [17, Th. 15],
(2) maps a set of Lebesgue measure zero onto I [17, Cor. 22].

In analogy to Rohlin’s classical result [50], the following result was proven for the
interval in [17, §3]. For the circle case we need several modifications, first for the
density [17, Proposition 12] is replaced by Lemma 2.1.1. Except for the application
of the Block Coven result ([6, Theorem 9], [17, Theorem 18]), all the other steps
work for the circle without change. To apply [6, Theorem 9] in the circle case it
suffices to start with a sufficiently fine Markov partition such that the diameter of
the image of each element of the partition is less than the diameter of the circle.

Theorem 2.2.2. The set of mixing maps in Cλ(M) is dense and is of the first
category.

Returning to the case when M = S1, the following result was obtained in [13,
Theorem 2]. For each α ∈ [0, 1)], let rα : S1 → S1 be a circle rotation for the angle
α. Define the operator Tα,β : Cλ(S1) 7→ Cλ(S1) by Tα,β(f) = rα ◦ f ◦ rβ .

Theorem 2.2.3. There exists a dense Gδ subset G of Cλ(S1) such that

(1) each g ∈ G is weakly mixing with respect to λ,
(2) each g ∈ G maps a set of Lebesgue measure zero onto S1, and
(3) for each pair α, β ∈ [0, 1) and each g ∈ G the map Tα,β(g) ∈ G.

Point (2) was shown in [17, Cor. 22] for the interval, the proof holds without
change in the case of the circle, and furthermore if g maps a set of Lebesgue measure
zero onto S1, then so does Tα,β(g).

In [12, Theorem 2] it was shown that there is a dense set of non-ergodic maps
in Cλ(I); its proof works with natural modifications also in Cλ(S1). Thus Theo-
rem 2.2.3 is optimal since there is no nonempty open set of maps satisfying nice
mixing properties for any α, β.

For volume preserving homeomorphisms we have the following classical result on
the unit cube In due to Oxtoby and Ulam [46] (see also[4, Theorem 7.1]):

Theorem 2.2.4. The generic f ∈ Hλ(In) is ergodic for all n ≥ 2.

The improvement of Theorem 2.2.4 was shown in [2, Theorem 1.2]:

Theorem 2.2.5. The generic f ∈ Hλ(M) is weakly mixing and periodic points of
f are dense in M for any compact manifold M of dimension at least 2.

2.3. Topological expansion properties. We call a map f ∈ Cλ(M)

• transitive if for all nonempty open sets U, V ⊂M there exists n ≥ 0 so that
fn(U) ∩ V 6= ∅,

• totally transitive if fn is transitive for all n ≥ 1.
• (topologically) weakly mixing if its Cartesian product f × f is transitive,
• topologically mixing if for all nonempty open sets U, V ⊂ M there exists
n0 ≥ 0 so that fn(U) ∩ V 6= ∅ for every n ≥ n0,

• leo (locally eventually onto, also known as topologically exact) if for every
nonempty open set U ⊂M there exists n ∈ N so that fn(U) = M .
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By the usual hierarchy in topological dynamics, every leo map is topologically
mixing, topologically weakly mixing, totally transitive and transitive. In [17, The-
orem 9] the following theorem was shown:

Theorem 2.3.1. The Cλ(I)-generic function is leo.

Theorem 2.3.1 was recently improved in [14] where the following result was
shown:

Theorem 2.3.2. There is an open dense set of leo maps in Cλ(I).

If we take any continuous map of I with attracting fixed point in the interior of I
then it is clear that all sufficiently close maps in C(I) cannot be transitive. For any
map in C(I) we can blow up an attracting to an invariant set with attracting fixed
point. Thus non-transitive continuous interval maps and also continuous interval
maps with Per(f) 6= I form open dense sets.

By the result of Blokh [9, Theorem 8.7], for interval maps topological mix-
ing implies periodic specification property (cf. proof of Buzzi [20, Appendix A]).
Therefore, we obtain the following corollary.

Corollary 2.3.3. There is an open dense set of maps from Cλ(I) satisfying the
periodic specification property.

Now we turn to the the circle case, where a more detailed study has been realized
recently in [13].

Theorem 2.3.4. There is an open dense set of maps O ⊂ Cλ(S1) such that:

(1) each map f ∈ O is leo.
(2) for each pair of α, β ∈ [0, 1) and each f ∈ O the map Tα,β(f) ∈ O.

In fact, Blokh’s results about specification property mentioned above generalize
to all topologically mixing maps on topological graphs, in particular to the circle
(see [7], cf. [8, 3]; another approach for proving the generalization of Blokh’s results
on topological graphs can be found in [34] and was inspired by the techniques of
Buzzi for interval maps [20, Appendix A].

Corollary 2.3.5. There is an open dense set of maps from Cλ(S1) satisfying the
periodic specification property.

By the same argument as for the interval maps, this result does not extend to
the whole set C(S1).

We turn to the case of Lebesgue measure-preserving homeomorphisms. A map
f : X → X of a compact metric space X is called maximally chaotic if

(1) f is topologically transitive,
(2) the periodic points of f are dense in X, and
(3) lim supk→∞ diam(fk(U)) = diam(X) for any non-empty open set U ⊂ X.

Notice that maximal chaos implies the well known Devaney chaos. While the leo
property is impossible for homeomorphisms, we have the following result in the
setting of the n-dimensional cube In, which summarizes the results found in [4,
Theorems 4.5 and D]:

Theorem 2.3.6. For n ≥ 2 the generic f ∈ Hλ(In) is topologically weakly mixing
and maximally chaotic.

It is not hard to see that conditions (1) and (3) in the definition of maximal
chaos are immediate consequence of weak mixing. Condition (2) is not in general
consequence of weak mixing, since there exist weakly mixing minimal systems.
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2.4. Periodic points and dimension properties. The Hausdorff, lower and
upper box dimension of the graph of a function is a way to describe the “roughness”
of the function. The following theorem by Schmeling and Winkler [53] was stated
for maps from Cλ(I), but it holds in any dimension1; in particular, in dimension
one we have the following theorem.

Theorem 2.4.1. A graph of a generic map f ∈ Cλ(M) has Hausdorff dimension
equal to the lower box dimension, both equal to 1 and the upper box dimension equal
to 2.

Understanding of the structure of the set of periodic points of the function under
consideration is among the fundamental tasks in dynamical systems theory. Since
generic maps from Cλ(I) are weakly mixing with respect to λ it follows that the
Lebesgue measure of the set of periodic points is equal to 0. It is interesting to
study the finer structure of the set of periodic points for generic maps, in particular
its cardinality and dimension.

The set of periodic points of period k for f is denoted Per(f, k), the set of fixed
points of fk is denoted by Fix(f, k) and of the union of all periodic points of f
is denoted by Per(f). In [12] the authors studied the cardinality and structure of
the set of periodic points and its respective lower box, upper box and Hausdorff
dimensions:

Theorem 2.4.2. For a generic map f ∈ Cλ(I), for every k ≥ 1:

(1) Fix(f, k) is a Cantor set,
(2) Per(f, k) is a relatively open dense subset of the set Fix(f, k),
(3) the set Fix(f, k) has lower box dimension and Hausdorff dimension zero.

In particular, Per(f, k) has lower box dimension and Hausdorff dimension
zero. As a consequence, the Hausdorff dimension of Per(f) is also zero.

(4) the set Per(f, k) has upper box dimension one. Therefore, Fix(f, k) has
upper box dimension one as well.

In the setting of Cλ(S1), due to the presence of rotations, degree 1 maps need to
be treated separately. Denote the set of degree d maps in Cλ(S1) by Cλ,d(S1).

The proof of Theorem 2.4.2 shows:

Theorem 2.4.3. Conclusions of Theorem 2.4.2 hold also for generic maps in
Cλ,d(S1) for each d ∈ Z \ {1}.

The proofs of these two theorems can easily be adapted to show that the generic
map in C(I) and degree d maps in C(S1) (i.e., not necessarily measure preserving)
have the same properties (see [12][Remark 14 and 18]).

For Cλ,1(S1) the situation is more complicated. A periodic point x ∈ Per(f, k)
is called transverse, if the graph of fk crosses the diagonal at x (possibly coincides
with the diagonal on an interval containing x). Consider the open set

Cp := {f ∈ Cλ,1(S1) : f has a transverse periodic point of period p}.
In this setting the proof of Theorem 2.4.2 yields a similar result from [12].

Theorem 2.4.4. For any f in a dense Gδ subset of Cp we have for each k ∈ N
(1) Fix(f, kp) is a Cantor set,
(2) Per(f, kp) is a relatively open dense subset of Fix(f, kp),
(3) Fix(f, kp) has lower box dimension and Hausdorff dimension zero. In par-

ticular, Per(f, kp) has lower box dimension and Hausdorff dimension zero.
As a consequence, the Hausdorff dimension of Per(f) is zero as well.

1Personal communication from Jörg Schmeling.
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(4) the set Per(f, kp) has upper box dimension 1. Thus, Fix(f, kp) and Per(f)
both have upper box dimension also 1.

To interpret this result the set C∞ := Cλ,1(S1) \ ∪p≥1Cp was studied in [12]. It
turns out that a periodic point can be transformed to a transverse periodic point
by an arbitrarily small perturbation of the map, thus the set C∞ consists of maps
without periodic points. Using the same argument one can see that ∪p≥1Cp contains
an open dense set. Therefore, C∞ is nowhere dense in Cλ,1(S1). Furthermore, in
[12] the following complete characterization of the set C∞ was obtained:

Proposition 2.4.5. The set C∞ consists of irrational circle rotations.

Periodic points of generic homeomorphisms have been well studied also in other
contexts. Akin et. al. proved that the set of periodic points is a Cantor set for
generic homeomorphisms of S1 [1, Theorems 9.1 and 9.2(a)]. On the other hand,
Carvalho et. al. have shown that the upper box dimension of the set of periodic
points is full (i.e., of the same dimension as the dimension of the underlying mani-
fold) for generic homeomorphisms on compact manifolds of dimension at least one
[21]2.

Let us recall that generic maps from Cλ(I) will necessarily have Lebesgue mea-
sure 0 on the set of periodic points since λ is weakly mixing. Nonetheless the
following somewhat surprising result is proven in [12, Theorem 2].

Theorem 2.4.6. The set of leo maps in Cλ(I) whose periodic points have full
Lebesgue measure and whose periodic points of period k have positive Lebesgue mea-
sure for each k ≥ 1 is dense in the set Cλ(I).

The following result about volume preserving homeomorphisms is proven in an
unpublished sketch by Guihéneuf [30].

Theorem 2.4.7. The set of periodic points of a generic f ∈ Hλ(M) for a compact
manifold M of dimension at least two is a dense set of zero measure and for every
` ≥ 1 the set of fixed points of f ` is either empty or perfect.

More generally Guihéneuf’s result holds for homeomorphisms preserving a “good”
measure in the sense of Oxtoby and Ulam [46].

2.5. Shadowing properties. One of the classical notions from topological dynam-
ics is the so-called shadowing property. It is of particular importance in systems
possessing sensitive dependence on initial conditions. In such systems, very small
errors could potentially lead to large divergence of orbits. Shadowing is a notion
arising from computer science and is used as a tool for determining if any hypo-
thetical orbit is indeed close to some real orbit of a topological dynamical system.
It assures that the dynamics of maps which satisfy it can be realistically observed
through computer simulations. Let us first give definitions that are important for
this subsection.

For δ > 0, we call a sequence (xn)n∈N0 ⊂ I a δ-pseudo orbit of f ∈ C(I) if
d(f(xn), xn+1) < δ for every n ∈ N0. A periodic δ-pseudo orbit is a δ-pseudo
orbit for which there is N ∈ N0 so that xn+N = xn, for every n ∈ N0. The
sequence (xn)n∈N0

is called an asymptotic pseudo orbit if limn→∞ d(f(xn), xn+1) =
0. Provided a sequence (xn)n∈N0

is a δ-pseudo orbit and an asymptotic pseudo
orbit we say it is an asymptotic δ-pseudo orbit.

Definition 2.5.1. We say that a map f ∈ C(M) has the:

2this statement only appears in the published version of [21].
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• shadowing property if for every ε > 0 there exists δ > 0 satisfying the fol-
lowing: given any δ-pseudo orbit y := (yn)n∈N0

we can find a corresponding
point x ∈M that ε-traces y, i.e.,

d(fn(x), yn) < ε for every n ∈ N0.

• periodic shadowing property if for every ε > 0 there exists δ > 0 satisfying
the following condition: given any periodic δ-pseudo orbit y := (yn)n∈N0

we can find a corresponding periodic point x ∈M , which ε-traces y.
• limit shadowing property if for every asymptotic pseudo-orbit, i.e. se-

quence (xn)n∈N0 ⊂M , so that

d(f(xn), xn+1)→ 0 when n→∞
there exists p ∈M , so that

d(fn(p), xn)→ 0 as n→∞.
• s-limit shadowing property if for every ε > 0 there exists δ > 0 so that

(1) for every δ-pseudo orbit y := (yn)n∈N0
we can find a corresponding

point x ∈M which ε-traces y,
(2) for every asymptotic δ-pseudo orbit y := (yn)n∈N0 of f , there exists

x ∈M which ε-traces y and

lim
n→∞

d(yn, f
n(x)) = 0.

The following theorem was proved by the authors in [12, Theorem 3].

Theorem 2.5.2. The shadowing and periodic shadowing properties are generic for
maps from Cλ(I).

For comparison, in the larger space C(M) Mizera proved in [42] that the shadow-
ing property is generic. Several other results that shadowing is generic in topology
of uniform convergence in more general settings were established (see [43, 38]) using
the techniques of Pilyugin and Plamenevskaya [48] initially developed for proving
genericity of shadowing property of homeomorphisms on any smooth compact man-
ifolds without a boundary.

Proposition 2.5.3. The set of maps f ∈ Cλ(I) that have s-limit shadowing prop-
erty is dense in the set Cλ(I).

The main result in [11] for the setting Cλ(S1) is even stronger than the preceding
two statements.

Theorem 2.5.4. The s-limit shadowing property is generic in Cλ(S1).

Corollary 2.5.5. The limit shadowing, periodic shadowing and shadowing property
are generic in Cλ(S1).

Actually, Theorem 2.5.4 is somewhat surprising since Cλ(S1) is the first envi-
ronment in which s-limit shadowing was proven to be generic. Up to now, only
denseness of s-limit shadowing was established in the setting of compact topolog-
ical manifolds [41]. Theorem 2.5.4 also holds in the setting of C(S1). However,
the methods used in [11] do not work in the setting of Cλ(I). This motivates the
following.

Question A. Is s-limit shadowing generic in Cλ(I)?

Possible positive answer to the above question will require some new techniques
than the ones used in [11]. On the other hand, a standard technique to disprove
that a condition is generic is to find an open set without the required property.
Such approach is again impossible, because of Proposition 2.5.3. In the view of
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Theorem 2.5.4 and the result from [31] it is also natural to ask the following ques-
tion.

Question B. Is s-limit shadowing generic also for the volume preserving homeo-
morphisms on manifolds of dimension greater than 1?

In the context of volume preserving homeomorphisms on manifolds of dimension
at least two (with or without boundary), the genericity of shadowing was recently
proven by Guihéneuf and Lefeuvre [31].

2.6. Knot points. We define the upper, lower, left and right Dini derivatives of
f at x:

D+f(x) := lim sup
t→x+

f(t)− f(x)

t− x
D+f(x) := lim inf

t→x+

f(t)− f(x)

t− x

D−f(x) := lim sup
t→x−

f(t)− f(x)

t− x
D−f(x) := lim inf

t→x−

f(t)− f(x)

t− x
.

We call a point x ∈ M a knot point of function f ∈ C(M) if suprema and
infima of the right and left derivatives at point x satisfy D+f(x) = D−f(x) = ∞
and D+f(x) = D−f(x) = −∞. The following theorem states a consequence of a
more general result proved in [10] for the interval, the circle case can be treated
analogously.

Theorem 2.6.1. The Cλ(M)-generic function has a knot point at λ-almost every
point.

The next result generalizes a classical result of Saks [51] saying that the set of
Besicovitch functions is a meager set in C(I). Its circle version follows from the
fact that a monotonicity result can be applied separately on arcs partitioning the
circle.

A Besicovitch function f ∈ C(M) is a map such that for every x ∈ M , no
unilateral finite or infinite derivative exists at x.

Corollary 2.6.2. The set of Besicovitch functions is a meager set in Cλ(M).

Proof. We use the following well known result (see [52, Theorem 7.3]): if for an arc
A ⊂ M and f : A → M we have D+f(x) ≥ 0 for a.e. x ∈ A and D+f(x) > −∞
for every x ∈ A, then f is non-decreasing.

By Theorem 2.6.1 there is a residual set K ⊂ Cλ(M) such that each element of
K has a knot point at λ almost every point of M . Fix f ∈ K and an arc A ⊂ M ;
we have D+f(x) = +∞ ≥ 0 a.e. on A hence f can not be non-decreasing. Applying
the above result, we conclude that D+(x0) = −∞ for at least one point x0 ∈ A; in
particular f is not a Besicovitch function. �

A Morse function f ∈ C(M) satisfies

max{|D+f(x)|, |D+f(x)|} = max{|D−f(x)|, |D−f(x)|} =∞, x ∈M ;

in the interval case, if x is an endpoint of I, the only max is taken over the derivatives
from inside I. There exists a function f ∈ C(M) which is Besicovitch and Morse.
The following question remains open.

Question C. Does there exist a Besicovitch-Morse function in Cλ(M)?
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2.7. Crookedness. We begin by defining the crookedness property which is one
of the central properties in Continuum Theory. We explain its importance later.

Definition 2.7.1. Let f ∈ C(I), a, b ∈ I and let δ > 0. We say that f is δ-crooked
between a and b if for any two points c, d ∈ I so that f(c) = a and f(d) = b,
there is a point c′ between c and d and there is a point d′ between c′ and d so that
|b− f(c′)| < δ and |a− f(d′)| < δ. We will say that f is δ-crooked if it is δ-crooked
between any pair of points.

In [23, Theorem 1] and [24] the authors proved the following generic property of
maps from Cλ(M), which might be the most surprising of the generic properties
proven yet:

Theorem 2.7.2. There is a dense Gδ set T ⊂ Cλ(M) such that if f ∈ T then for
every δ > 0 there exists a positive integer n so that fn is (f, δ)-crooked.

The δ-crookedness condition is a topological condition that imposes strong re-
quirements on values of the map. Piecewise smooth maps do not verify the crooked-
ness condition, thus Theorem 2.7.2 cannot hold for any open collection of maps in
Cλ(M).

The pseudo-arc is a very curious object arising from Continuum Theory (see the
survey of Lewis [39] and the introduction of [18] for the overview of results involving
the pseudo-arc), which was first discovered by Knaster over a century ago. On one
hand side, its complicated structure is reflected by the fact that it is hereditarily in-
decomposable, i.e., there are no proper subcontinua A,B ⊂ H such that A∪B = H
for every proper subcontinuum H of the pseudo-arc P . On the other hand, the
pseudo-arc is homogeneous, i.e., for every two points x, y ∈ P there exists a homeo-
morphism h : P → P such that h(x) = y. Homogeneity is a property possessed by
the spaces with locally identical structure. Non-trivial examples of homogeneous
spaces are the Cantor set, solenoids and manifolds without boundaries, for instance
the circle.

Let {Zi}i≥0 be a collection of compact metric spaces. For a collection of contin-
uous maps fi : Zi+1 → Zi we define

lim←−(Zi, fi) := {ẑ :=
(
z0, z1, . . .

)
∈ Z0 × Z1, . . .

∣∣zi ∈ Zi, zi = fi(zi+1),∀i ≥ 0}.

We equip inverse limit lim←−(Zi, fi) with the subspace metric which is induced from

the product metric in Z0 × Z1 × . . ., where fi are called the bonding maps.

Corollary 2.7.3. The inverse limit with any Cλ(I)-generic map as a single bonding
map is the pseudo-arc.

This corollary is a direct consequence of Theorem 2.7.2 and a result of Minc
and Transue [44, Proposition 4] connecting crookedness with pseudo-arc as inverse
limit.

2.8. Entropy. The property that the topological entropy of generic maps on the
Lebesgue measure-preserving maps is ∞ can be deduced from the methods of the
article of Yano [56]. Moreover, another way to see it from general theory is to
combine Theorem 2.7.3 with results of [45]. The connection between [56] and Cλ(I)
was explicitly done in [17, Proposition 26]:

Theorem 2.8.1. The generic value of topological entropy in Cλ(I) is ∞.

The proof from [17] easily extends to S1, by replacing the fixed point in the
proof with a periodic point. The generic value of topological entropy for the volume
preserving continuous maps seems not to have been studied for other manifolds. On
the other hand Guihéneuf [29, Théorème 3.17] proved the analogous result holds for



12 JOZEF BOBOK, JERNEJ ČINČ, PIOTR OPROCHA, AND SERGE TROUBETZKOY

generic homeomorphisms of compact, connected manifold of dimension at least 2
preserving a “good” measure in the sense of Oxtoby and Ulam [29]. The analogous
result in the setting of homeomorphisms on manifolds of dimension greater than 1
was proven by Yano [56]. Recently, Yano’s result was strengthened to show that
the generic homeomorphism or continuous map in most settings has an ergodic
measure of infinite entropy [22]. It would be interesting to know if this result holds
also in Cλ(M).

On the other hand the question about generic value of metric entropy is un-
clear. Let PAMλ(M) denote the set of piecewise affine Markov maps that preserve
Lebesgue measure. In [17, Proposition 24] the following theorem is proven for I,
the proof is analogous in the circle case:

Theorem 2.8.2. For every c ∈ (0,∞) the set PAMλ(M)entr=c is dense in Cλ(M).

Furthermore, the following theorem is proven in [17, Proposition 25] for Cλ(I)
and can be analogously done with the help of Lemma 2.1.1 for the circle case:

Theorem 2.8.3. The set of maps from Cλ(M) having metric entropy ∞ is dense
in Cλ(M).

Question D. Does there exist a generic value of metric entropy for maps from
Cλ(M)? If such value indeed exists, what is it? If there is no such value, are all
non-zero values attained by the metric entropy on every generic set?

3. Smoothness versus nowhere differentiability

3.1. Connections between topological and measure-theoretic properties.
In [13] an effort has been made to understand natural conditions when topologi-
cal dynamical properties imply the corresponding measure-theoretic properties in
Cλ(M) (and vice versa). The assumptions in the next two theorems come directly
from the articles of Li and Yorke [40] and Bowen [19] respectively. The first result
was proven in [13, Theorem 3].

Theorem 3.1.1. Let f ∈ Cλ(M) be a piecewise C2 map with a slope strictly greater
than 1. Then f is transitive if and only if (f,M, λ) is ergodic.

It is well known that measure-theoretic exactness implies measure-theoretic strong
mixing, and since λ is positive on open sets this furthermore implies topological
mixing. The first three points of the next result were proven in [13, Theorem 2],
which shows that these are equivalent in a smooth enough one dimensional settings.
They are also an important ingredient of the proof of Theorem 2.2.3.

Theorem 3.1.2. Let f ∈ Cλ(M) be a piecewise C2 map. Then the following
conditions are equivalent:

(1) f is topologically mixing map,
(2) f is strongly mixing,
(3) (f,M, λ) is measure-theoretically exact,
(4) f is leo.

To see that (4) is equivalent to (1)–(3) note that if f ∈ Cλ(M) and is piecewise
C2 then it can have only a finite number of turning points (which in fact, must be
endpoints of pieces on which the map is C2). But by [34], a mixing interval map f
which is not leo has infinitely many turning points.

Theorems 3.1.1 and 3.1.2 are in strong contrast to Theorem 2.4.6, which displays
a difference between piecewise smooth and non-differentiable settings.
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3.2. Nowhere differentiability, knot points and topological entropy. In
[15] Bobok and Soukenka studied continuous piecewise affine interval maps with
countably many pieces of monotonicity that preserve the Lebesgue measure. By
taking limits of such maps they proved the following theorem:

Theorem 3.2.1. There exists a map g ∈ Cλ(I) such that:

(1) g is nowhere monotone,
(2) knot points of g are dense in I and for a dense Gδ set Z of z’s, the set

g−1(z) is infinite;
(3) topological entropy htop(g) ≤ log(2) + ε.

Furthermore, the following two (yet unanswered) questions arose from their
study:

Question E. Does every continuous nowhere differentiable interval map from
Cλ(I) have infinite topological entropy?

The next question relates topological entropy with knot points (see Subsec-
tion 2.6).

Question F. Does every map from Cλ(I) with a knot point λ-a.e. have infinite
topological entropy?

Bobok and Soukenka continued their study in [16] where they studied a special
conjugacy class F of continuous piecewise monotone interval maps with countably
many laps (including Lebesgue measure-preserving maps), which are locally even-
tually onto and all have topological entropy log(9). They show that there exist
maps from F with knot points in its fixed point 1/2.

4. Other topologies

The aspects we discuss above are also interesting with other topologies on the
spaces of Lebesgue measure-preserving maps on one-dimensional compact manifolds
as well as higher dimensional analogues.

de Faria et. al. showed that topological entropy is infinite for homeomorphisms in
two different settings [27, 28]. As above, let M be compact d-dimensional manifold
and H1(M) be the space of homeomorphisms which are bi-Lipschitz in all local
charts. Let H1

α denote the closure of H1 with respect to the α-Hölder-Whitney
topology. Their first result is that topological entropy is generically infinite in H1

α

whenever d ≥ 2 and 0 < α < 1.
For 1 ≤ p, p∗ <∞ let Sp,p

∗
(M) denote the space of homeomorphisms on M which

in all local charts are of Sobolev class W 1,p and whose inverse is of Sobolev class
W 1,p∗ together with the (p, p∗)-Sobolev-Whitney topology. Their second result is
that topological entropy is generically infinite in Sp,p

∗
(M) when d ≥ 2 and d− 1 <

p, p∗ <∞.
In [35] Hazard constructed interesting examples of noninvertible maps with in-

finite topological entropy in these topologies, however he did not study generic
behavior.

These results are the first dynamical genericity results for intermediate smooth-
ness. Generic values of topological entropy in these topologies has not yet been
studied in the volume preserving case. In fact no other dynamical properties have
been studied and it would be interesting to understand which of the results of this
survey hold in analogous topologies for continuous Lebesgue measure preserving
maps as well as simply for the continuous maps.
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Appendix

Let Rec(f) denote the set of recurrent points of a map f ∈ C(M). It is proved

in [36] that for graph maps (in particular for S1) Rec(f) = Per(f) ∪ Rec(f). The
following lemma confirms intuition that recurrence without dense periodicity is
possible only for irrational rotations of S1. The following lemma is the crucial step
in the proof of Remark 1.1 in the case of S1.

Lemma A.1. Let f ∈ C(S1). If Rec(f) = S1 and Per(f) 6= ∅, then Per(f) = S1.

Proof. Assume towards contradiction that there is a nonempty open set U := S1 \
Per(f). Take a point x ∈ U ∩ Rec(f) and its maximal omega limit set W ⊃ ω(x).
Then by [7] (cf. [49]) W is one of the following four types: a periodic orbit, a basic
set, a solenoidal set or a circumferential set. We claim that none of these can occur,
and so we have a contradiction, thus Per(f) = S1.

Recall that x ∈ ω(x), so W ∩ U 6= ∅, thus W can not be a periodic orbit.
Since orbit of x is infinite, there are nonnegative integers k < n < m such that
fk(x), fn(x), fm(x) ∈ U . If W is a solenoidal set, then there is a periodic interval J
such that each of these three points belongs to a different iterate of J . In particular,
there is a non-negative integer s such that fs(J) ⊂ U . But since J is a periodic
interval, fs(J)∩Per(f) 6= ∅ which is again impossible. If W is a circumferential set,
then there is a a connected set K ⊃W and a monotone factor map φ : K → S1 semi-
conjugating f |K with an irrational rotation and such that each non-singleton fiber

of φ is a wandering interval. In particular, if φ is not one-to-one then S1 6= Rec(f)
which is a contradiction. But if φ is one-to-one then K is homeomorphic to S1

which is again impossible, since W = K is a subset of S1 \ Per(f) 6= S1 but
interval is not homeomorphic to a circle. The last case is that W is a basic set.
By repeating the argument from the circumferential set case, we can find a map φ
which conjugates fn|W with a mixing interval map, for some n. But a consequence
of this conjugacy is that periodic points are dense in W , in particular there is a
periodic point arbitrarily close in x, so also in U , which is again a contradiction. �
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saios Matematicos [Mathematical Surveys], 22, Sociedade Brasileira de Matemática, Rio de
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imation, 173–185, Sémin. Congr., 19, Soc. Math. France, Paris, 2009.
[55] P. Walters, An Introduction to Ergodic Theory (New York: Springer), 1982.

[56] K. Yano, A remark on the topological entropy of homeomorphisms, Inv. Math. 59 (1980),

215–220.

(J. Bobok) Department of Mathematics of FCE, Czech Technical University in Prague,

Thákurova 7, 166 29 Prague 6, Czech Republic
Email address: jozef.bobok@cvut.cz

(J. Činč) Centre of Excellence IT4Innovations - Institute for Research and Applica-
tions of Fuzzy Modeling, University of Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech

Republic

Email address: jernej.cinc@osu.cz

(P. Oprocha) Centre of Excellence IT4Innovations - Institute for Research and Ap-

plications of Fuzzy Modeling, University of Ostrava, 30. dubna 22, 701 03 Ostrava 1,

Czech Republic
Email address: piotr.oprocha@osu.cz

(S. Troubetzkoy) Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille,
France postal address: I2M, Luminy, Case 907, F-13288 Marseille Cedex 9, France

Email address: serge.troubetzkoy@univ-amu.fr


	1. Introduction
	2. Denseness properties
	2.1. Main tools
	2.2. Measure-theoretic properties
	2.3. Topological expansion properties
	2.4. Periodic points and dimension properties
	2.5. Shadowing properties
	2.6. Knot points
	2.7. Crookedness
	2.8. Entropy

	3. Smoothness versus nowhere differentiability
	3.1. Connections between topological and measure-theoretic properties
	3.2. Nowhere differentiability, knot points and topological entropy

	4. Other topologies
	Appendix
	Acknowledgements
	References

