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Abstract
Motivated by the algorithmic study of 3-dimensional manifolds, we explore the structural relationship
between the JSJ decomposition of a given 3-manifold and its triangulations. Building on work of
Bachman, Derby-Talbot and Sedgwick, we show that a “sufficiently complicated” JSJ decomposition
of a 3-manifold enforces a “complicated structure” for all of its triangulations. More concretely, we
show that, under certain conditions, the treewidth (resp. pathwidth) of the graph that captures
the incidences between the pieces of the JSJ decomposition of an irreducible, closed, orientable
3-manifold M yields a linear lower bound on its treewidth tw(M) (resp. pathwidth pw(M)), defined
as the smallest treewidth (resp. pathwidth) of the dual graph of any triangulation of M.

We present several applications of this result. We give the first example of an infinite family
of bounded-treewidth 3-manifolds with unbounded pathwidth. We construct Haken 3-manifolds
with arbitrarily large treewidth—previously the existence of such 3-manifolds was only known in
the non-Haken case. We also show that the problem of providing a constant-factor approximation
for the treewidth (resp. pathwidth) of bounded-degree graphs efficiently reduces to computing a
constant-factor approximation for the treewidth (resp. pathwidth) of 3-manifolds.
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1 Introduction

Manifolds in geometric topology are often studied through the following two-step process.
Given a piecewise linear d-dimensional manifold M, first find a “suitable” triangulation of
it, i.e., a decomposition of M into d-simplices with “good” combinatorial properties. Then
apply algorithms on this triangulation to reveal topological information about M.

The work presented in this article is motivated by this process in dimension d = 3. Here
every manifold can be triangulated [43] and questions about them typically admit algorithmic
solutions [34, 38, 53].1 At the same time, the feasibility of a particular computation can

1 In higher dimensions none of these statements is true in general. See, e.g., [40], [42] or [45, Section 7].
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greatly depend on structural properties of the triangulation in use. Over the past decade,
this phenomenon was recognized and exploited in various settings, leading to fixed-parameter
tractable (FPT) algorithms for several problems in low-dimensional topology, some of which are
even known to be NP-hard [14, 15, 16, 17, 18].2 Although these algorithms have exponential
running time in the worst case, for input triangulations with dual graph of bounded treewidth
they always terminate in polynomial (in most cases, linear) time.3 Moreover, some of
them have implementations that are highly effective in practice, providing useful tools for
researchers in low-dimensional topology [12, 13].

The theoretical efficiency of the aforementioned FPT algorithms crucially depends on the
assumption that the dual graph of the input triangulation has small treewidth. To understand
their scope, it is thus instructive to consider the treewidth tw(M) of a compact 3-manifold M,
defined as the smallest treewidth of the dual graph of any triangulation of M. Indeed, the
relation between the treewidth and other quantities associated with 3-manifolds has recently
been investigated in various contexts [25, 26, 27, 28, 41]. For instance, in [28] together with
Wagner we have shown that the treewidth of a non-Haken 3-manifold is always bounded below
in terms of its Heegaard genus. Combined with earlier work of Agol [1]—who constructed
non-Haken 3-manifolds with arbitrary large Heegaard genus—this implies the existence of
3-manifolds with arbitrary large treewidth. Despite the fact that, asymptotically, most
triangulations of most 3-manifolds must have dual graph of large treewidth [28, Appendix
A], this collection described by Agol has remained, to this date, the only known family of
3-manifolds with arbitrary large treewidth.

The main result In this work we unravel new structural links between the triangulations
of a given 3-manifold and its JSJ decomposition [30, 31, 32]. Employing the machinery of
generalized Heegaard splittings [49], the results developed in [28], and building on the work
of Bachman, Derby-Talbot and Sedgwick [5, 6], we show that, under suitable conditions,
the dual graph of any triangulation of a given 3-manifold M inherits structural properties
from the decomposition graph that encodes the incidences between the pieces of the JSJ
decomposition of M. More precisely, in Section 4 we prove the following theorem.

I Theorem 1 (Width inheritance). For any closed, orientable and irreducible 3-manifold M

with sufficiently complicated4 torus gluings in its JSJ decomposition D, the treewidth and
pathwidth of M and that of the decomposition graph Γ(D) of D satisfy

tw(Γ(D)) ≤ 18 · (tw(M) + 1) (1) and pw(Γ(D)) ≤ 4 · (3 pw(M) + 1). (2)

An algorithmic construction Much work in 3-dimensional topology has been devoted
to the study of 3-manifolds constructed by pasting together simpler pieces along their
boundary surfaces via “sufficiently complicated” gluing maps, and to understand how different
decompositions of the same 3-manifold interact under various conditions, see, e.g., [4, 5, 6,
7, 35, 39, 47, 52]. Theorem 1 allows us to leverage these results to construct 3-manifolds,
where we have tight control over the treewidth and pathwidth of their triangulations [25].

By combining Theorem 1 and [4, Theorem 5.4] (cf. [6, Appendix]), in Section 5 we prove
the following result.

2 See [8] for an FPT algorithm checking tightness of (weak) pseudomanifolds in arbitrary dimensions.
3 The running times are given in terms of the size of the input triangulation, i.e., its number of tetrahedra.
4 The notion of “sufficiently complicated” under which we establish Theorem 1 is discussed in Section 4.
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I Theorem 2. There is a polynomial-time algorithm that, given an n-node graph G with
maximum node-degree ∆, produces a triangulation TG of a closed 3-manifold MG, such that

1. the triangulation TG contains O∆(pw(G) · n) tetrahedra,5

2. the JSJ decomposition D of MG satisfies Γ(D) = G, and
3. there exist universal constants c, c′ > 0, such that

a. (c/∆) tw(MG) ≤ tw(G) ≤ 18 · (tw(MG) + 1), and
b. (c′/∆) pw(MG) ≤ pw(G) ≤ 4 · (3 pw(MG) + 1).

Applications In Section 6 we present several applications of Theorem 2. First, we construct
a family of bounded-treewidth 3-manifolds with unbounded pathwidth (Corollary 12). Second,
we exhibit Haken 3-manifolds with arbitrary large treewidth (Corollary 13). To our knowledge,
no such families of 3-manifolds had been known before. Third, we show that the problem of
providing a constant-factor approximation for the treewidth (resp. pathwidth) of bounded-
degree graphs reduces in polynomial time to computing a constant-factor approximation for
the treewidth (resp. pathwidth) of 3-manifolds (Corollary 14). This reduction, together with
previous results [46, 55, 56], suggests that this problem may be computationally hard.

Outline of the proof of Theorem 1. We now give a preview of the proof of our main result.
As the arguments for showing (1) and (2) are analogous, we only sketch the proof of (1). To
show that tw(Γ(D)) ≤ 18(tw(M) + 1), we start with a triangulation T of M whose dual graph
has minimal treewidth, i.e., tw(Γ(T)) = tw(M). Following [28, Section 6], we construct from
T a generalized Heegaard splitting H of M, together with a sweep-out Σ = {Σx : x ∈ H}
along a tree H, such that the genus of any level surface Σx is at most 18 · (tw(Γ(T)) + 1).
If H is not already strongly irreducible, we repeatedly perform weak reductions until we
get a strongly irreducible generalized Heegaard splitting H′ with associated sweep-out
Σ′ = {Σ′x : x ∈ H} along the same tree H. Crucially, weak reductions do not increase the
genera of level surfaces [49, Section 5.2], thus 18 · (tw(Γ(T)) + 1) is still an upper bound
on those in Σ′. Now, by the assumption of the JSJ decomposition of M being “sufficiently
complicated,” each JSJ torus can be isotoped in M to coincide with a connected component
of some thin level of H′. This implies that, after isotopy, each level set Σ′x is incident to at
most 18 · (tw(Γ(T)) + 1) + 1 JSJ pieces of M. Sweeping along H, we can construct a tree
decomposition of Γ(D) where each bag contains at most 18 · (tw(Γ(T)) + 1) + 1 nodes of Γ(D).
Hence tw(Γ(D)) ≤ 18 · (tw(Γ(T)) + 1) = 18 · (tw(M) + 1). J

Organization of the paper In Section 2 we review the necessary background on graphs and
3-manifolds. Section 3 contains a primer on generalized Heegaard splittings, which provides
us with the indispensable machinery for proving our main result (Theorem 1) in Section 4.
In Section 5 we describe the algorithmic construction of 3-manifolds that “inherit” their
combinatorial width from that of their JSJ decomposition graph (Theorem 2). Then, in
Section 6 we present the aforementioned applications of this construction (Corollaries 12–14).
The paper is concluded with a discussion and some open questions in Section 7. Selected
results from 3-manifold topology we rely on are collected in the Appendix.

5 Similar to the standard big-O notation, O∆(x) means “a quantity bounded above by x times a constant
depending on ∆.” To ensure that 3a is satisfied, but not necessarily 3b, O∆(tw(G) ·n) tetrahedra suffice.
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2 Preliminaries

2.1 Graphs
A (multi)graph G = (V,E) is a finite set V = V (G) of nodes6 together with a multiset
E = E(G) of unordered pairs of not necessarily distinct nodes, called arcs. The degree dv of
a node v ∈ V equals the number of arcs containing it, where loop arcs are counted twice. G
is k-regular, if dv = k for all v ∈ V . A tree is a connected graph with n nodes and n− 1 arcs.

A tree decomposition of a graph G = (V,E) is a pair (X = {Bi : i ∈ I}, T = (I, F )) with
bags Bi ⊆ V and a tree T = (I, F ), such that 1.

⋃
i∈I Bi = V (node coverage), 2. for all

arcs {u, v} ∈ E, there exists i ∈ I such that {u, v} ⊆ Bi (arc coverage), and 3. for all v ∈ V ,
Tv = {i ∈ I : v ∈ Bi} spans a connected sub-tree of T (sub-tree property). The width of a
tree decomposition equals maxi∈I |Bi| − 1, and the treewidth tw(G) is the smallest width of
any tree decomposition of G. Replacing all occurrences of “tree” with “path” in the definition
of treewidth yields the notion of pathwidth pw(G). We have tw(G) ≤ pw(G).

2.2 Manifolds
A d-dimensional manifold is a topological space M, where each point x ∈M has a neighbor-
hood homeomorphic to Rd or to the closed upper half-space {(x1, . . . , xd) ∈ Rd : xd ≥ 0}.
The latter type of points of M constitute the boundary ∂M of M. A compact manifold is
said to be closed if it has an empty boundary. We consider manifolds up to homeomorphism
(“continuous deformations”) and write M1 ∼= M2 for homeomorphic manifolds M1 and M2.

3-Manifolds and surfaces

The main objects of study in this paper are 3-dimensional manifolds, or 3-manifolds for short.
Here we give a brief introduction to 3-manifolds tailored to our purposes. We refer the reader
to [51] (and the references therein) for more details. All 3-manifolds and surfaces encountered
in this article are compact and orientable. We let Sg denote the closed, connected, orientable
surface of genus g. We also refer to the d-dimensional torus and sphere as Td and Sd,
respectively (hence S0 = S2 and S1 = T2). The genus g(S) of a (not necessarily connected)
surface S is defined to be the sum of the genera of its connected components.

Triangulations and the treewidth of 3-manifolds A triangulation T of a given 3-manifold
M is a finite collection of abstract tetrahedra glued together along pairs of their triangular
faces, such that the resulting space is homeomorphic to M. Unpaired triangles comprise a
triangulation of the boundary of M. Note that the face gluings may also identify several
tetrahedral edges (or vertices) in a single edge (or vertex) of T. Every compact 3-manifold
admits a triangulation [43] (cf. [10]). Given a triangulation T, its dual graph Γ(T) is the
multigraph whose nodes correspond to the tetrahedra in T, and arcs to face gluings (Figure 1).

For a compact 3-manifold M, its treewidth tw(M) (resp. pathwidth pw(M)) is defined as
the smallest treewidth (resp. pathwidth) of the dual graph of any triangulation of M.

Incompressible surfaces and essential disks Given a 3-manifold M, a surface S ⊂ M is
said to be properly embedded in M if ∂S ⊂ ∂M and (S \ ∂S) ⊂ (M \ ∂M). Given a properly

6 Throughout this paper we use the terms edge and vertex to refer to an edge or vertex in a 3-manifold
triangulation, whereas the terms arc and node denote an edge or vertex in a graph, respectively.
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(ii) Γ(T )(i) T

∆1

0
1

3
∆2

0
1

2

3

2
∆1 ∆2

ϕ1

ϕ2 ϕ3

ϕ3

ϕ1

ϕ2

Figure 1 (i) Example of a triangulation T with two tetrahedra ∆1 and ∆2, and three face gluing
maps ϕ1, ϕ2 and ϕ3. The map ϕ1 is specified to be ∆1(123)←→ ∆2(103). (ii) The dual graph Γ(T)
of the triangulation T. Reproduced from [26, Figure 1].

embedded surface S ⊂ M, an embedded disk D ⊂ M with int(D) ∩ S = ∅ and ∂D ⊂ S a
curve not bounding a disk on S is called a compressing disk. If such a disk exists, S is said
to be compressible in M, otherwise – and if S is not a 2-sphere – it is called incompressible.
A 3-manifold M is said to be irreducible, if every embedded 2-sphere bounds a 3-ball in M.
A disk D ⊂ M properly embedded in a 3-manifold M is called inessential if it cuts off a
3-ball from M, otherwise D is called essential. A compact, orientable, irreducible 3-manifold
is called Haken if it contains an orientable, properly embedded, incompressible surface, and
otherwise is referred to as non-Haken.

Heegaard splittings of closed 3-manifolds A handlebody H is a connected 3-manifold
homeomorphic to a thickened graph. The genus g(H) of H is defined as the genus of
its boundary surface ∂H. A Heegaard splitting of a closed, orientable 3-manifold M is
a decomposition M = H ∪S H′ where H and H′ are homeomorphic handlebodies with
H ∪H′ = M and H ∩H′ = ∂H = ∂H′ = S called the splitting surface. Introduced in [24],
the Heegaard genus g (M) of M is the smallest genus g(S) over all Heegaard splittings of M.

The JSJ decomposition A central result by Jaco–Shalen [30, 31] and Johannson [32] asserts
that every closed, irreducible and orientable 3-manifold M admits a collection T of pairwise
disjoint embedded, incompressible tori, where each piece of the complement M \T is either
Seifert fibered7 or atoroidal8. A minimal such collection of tori is unique up to isotopy and
gives rise to the so-called JSJ decomposition (or torus decomposition) of M [23, Theorem 1.9].
We refer to this collection of incompressible tori as the JSJ tori of M. The graph with nodes
the JSJ pieces, and an arc for each JSJ torus (with endpoints the two nodes corresponding
to its two adjacent pieces) is called the dual graph Γ(D) of the JSJ decomposition D of M.

3 Generalized Heegaard Splittings

A Heegaard splitting of a closed 3-manifold is a decomposition into two identical handlebodies
along an embedded surface. Introduced by Scharlemann and Thompson [50], a generalized
Heegaard splitting of a compact 3-manifold M (possibly with boundary) is a decomposition
of M into several pairs of compression bodies along a family of embedded surfaces, subject to
certain rules. Following [49, Chapters 2 and 5],9 here we give an overview of this framework.

7 See [51, Section 3.7] or [23, p. 18] for an introduction to Seifert fibered spaces (cf. Appendix A.2).
8 An irreducible 3-manifold M is called atoroidal if every incompressible torus in M is boundary-parallel.
9 For an open-access version, see [48, Sections 3.1 and 4].
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3.1 Compression bodies and forks

A compression body C is a 3-manifold with boundary obtained by the following procedure.

1. Consider the thickening S × [0, 1] of a closed, orientable, possibly disconnected surface S,
2. optionally attach some 1-handles, each being of the form D× [0, 1] (thickened edge, where

the disk D is the cross-section), to S × {1} along D × {0} ∪D × {1}, and
3. optionally fill in some collection of 2-sphere components of S × {0} with 3-balls.

We call ∂−C = S × {0} \ {filled-in 2-sphere components} the lower boundary of C and
∂+C = ∂ C \ ∂−C its upper boundary. By construction, g(∂+C) ≥ g(∂−C). Note that, if ∂−C
is empty, then C is a handlebody. We allow compression bodies to be disconnected.

A fork, more precisely an n-fork, F is a tree with n+ 2 nodes V (F ) = {ρ, γ, τ1, . . . , τn},
where ρ, called the root, is of degree n + 1, and the other nodes are leaves. One of them,
denoted γ, is called the grip, and the remaining leaves τ1, . . . , τn are called tines. A fork can
be regarded as an abstraction of a connected compression body C, where the grip corresponds
to ∂+C and each tine corresponds to a connected component of ∂−C, see, e.g., Figure 2.

h1

h2

T2 × [0, 1]

S2 × [0, 1]

(a) A compression body C (b) C after some isotopy

∂+C ← grip

← root

←
tine

∂
(1)
− C ∂

(2)
− C

==
T2 × {0} S2 × {0}

(c) A 2-fork representing C

Figure 2 The compression body C is obtained by first thickening the disconnected surface T2 ∪S2

to (T2∪S2)× [0, 1], then attaching two 1-handles (h1 and h2) between T2×{1} and S2×{1}. For the
lower boundary of C we have ∂−C = (T2∪S2)×{0}, and for its upper boundary ∂+C = ∂ C\∂−C ∼= S4.

Non-faithful forks In certain situations (notably, in the proof of Theorem 1, cf. Section 4)
it is useful to also take a simplified view on a generalized Heegaard splitting. To that end,
one may represent several compression bodies by a single non-faithful fork, where the grip
and the tines may correspond to collections of boundary components. To distinguish faithful
forks from non-faithful ones, we color the roots of the latter with gray, see Figure 3.

 

Figure 3 Two faithful forks bundled into a non-
faithful fork. The colors show the grouping of the tines.

Γ

C H

Figure 4 Spines of a compression
body C and of a handlebody H.
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Spines and sweep-outs of compression bodies A graph Γ embedded in a compression
body C is called a spine of C, if every node of Γ that is incident to ∂−C is of degree one, and
C \ (Γ ∪ ∂−C) ∼= ∂+C × (0, 1], see Figure 4. Assume first that ∂−C 6= ∅. A sweep-out of C
along an interval, say [−1, 1], is a continuous map f : C → [−1, 1], such that f−1(±1) = ∂±C,

f−1(t) ∼=


∂+C, if t ∈ (0, 1),
Γ ∪ ∂−C, if t = 0, and
∂−C, if t ∈ (−1, 0).

(3)

Writing Σt = f−1(t), we get a 1-parameter family of surfaces (except for Σ0) “sweeping
through” C. For handlebodies, the definition of a sweep-out is similar, but it “ends at 0”
with the spine: f−1(1) = ∂H, f−1(t) ∼= ∂H if t ∈ (0, 1), and f−1(0) = Γ, see Figure 5.

1

0

−1

Σ1

Σ0

Σ−1

1

1/2

0

Σ1

Σ1/2

Σ0

Figure 5 Sweep-outs of the compression body C and of the handlebody H shown in Figure 4.

I Remark 3 (Sweep-out along a fork). It is straightforward to adapt the definition of sweep-out
in a way that, instead of an interval, we sweep a compression body C along a (faithful or
non-faithful) fork F . Such a sweep-out is a continuous map f : C → ‖F‖ (where ‖F‖ denotes
a geometric realization of F ) that satisfies very similar requirements to those in (3), however,
the components of the lower boundary ∂−C may appear in different level sets, see Figure 6.

1

0

−1

Σ1

Σ0

Σ−1

grip

root

tines

Σγ

Σρ

Στ1 ∪ Στ2

Figure 6 Sweep-out of a compression body along [−1, 1] (left) and along its faithful fork (right).

3.2 Generalized Heegaard splittings and fork complexes

Heegaard splittings revisited Let M be a 3-manifold, and {∂1M, ∂2M} be a partition of the
components of ∂M. A Heegaard splitting of (M, ∂1M, ∂2M) is a triplet (C1, C2,S), where C1
and C2 are compression bodies with C1 ∪ C2 = M, C1 ∩ C1 = ∂+C1 = ∂+C2 = S, ∂−C1 = ∂1M,
and ∂−C2 = ∂2M. The genus of the Heegaard splitting (C1, C2,S) is the genus g(S) of the
splitting surface S. The Heegaard genus g (M) of M is the smallest genus of any Heegaard
splitting of (M, ∂1M, ∂2M), taken over all partitions {∂1M, ∂2M} of ∂M.

I Proposition 4 ([49, Theorem 2.1.11], cf. [26, Appendix B]). For any partition {∂1M, ∂2M}
of the boundary components of M, there exists a Heegaard splitting of (M, ∂1M, ∂2M).
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∂1M M ∂2M ∂−C1 {

C1

S

{

C2

∂−C2
∂−C1

{

C1

S

{

C2

∂−C2

Figure 7 Schematic of a 3-manifold M with a partition of its boundary components (left). Faithful
(center) and non-faithful (right) fork complexes representing a Heegaard splitting of (M, ∂1M, ∂2M).

Generalized Heegaard splittings A generalized Heegaard splitting H of a 3-manifold M

consists of 1. a decomposition M =
⋃

i∈I Mi into submanifolds Mi ⊆M intersecting along
closed surfaces (Figure 8a), 2. for each i ∈ I a partition {∂1Mi, ∂2Mi} of the components
of ∂Mi that together satisfy an acyclicity condition: there is an ordering, i.e., a bijection
` : I → {1, . . . , |I|}, such that, for each i ∈ I the components of ∂1Mi (resp. ∂2Mi) not
belonging to ∂M are only incident to submanifolds Mj with `(j) < `(i) (resp. `(j) > `(i)),
and 3. a choice of a Heegaard splitting (C(i)

1 , C(i)
2 ,Si) for each (Mi, ∂1Mi, ∂2Mi). Such a

choice of splitting surfaces Si (i ∈ I) is said to be compatible with `, see, e.g., Figure 8b.

M2

M1

M4

M3

R1

R2

R3

R4

(a) A decomposition of M into
four submanifolds M1, . . . ,M4
intersecting along (possibly dis-
connected) closed surfaces Ri.

S2

S1

S4

S3

∂1M1 = ∅
∂2M1 = R1 ∪R2

∂1M3 = R2
∂2M3 = R4

∂1M2 = R1
∂2M2 = R3

∂1M4 = R3 ∪R4
∂2M4 = ∅

(b) An admissible choice of
splitting surfaces Si for the Mi

that is compatible with the
trivial ordering `(i) 7→ i.

S2

S1

S4

S3

(c) The faithful fork complex
that represents the generalized
Heegaard splitting shown in
the center (Figure 8b).

Figure 8 Schematics of a generalized Heegaard splitting (based on figures from [26, Section 2.4]).

Just as compression bodies can be represented by forks, (generalized) Heegaard splittings
can be visualized via fork complexes, see Figures 7 and 8c (cf. [49, Section 5.1] for details).

Sweep-outs of 3-manifolds A generalized Heegaard splitting H of a 3-manifold M induces
a sweep-out f : M→ ‖F‖ of M along any fork complex F that represents H (here ‖F‖ denotes
a drawing, i.e., a geometric realization of the abstract fork complex F) by concatenating the
corresponding sweep-outs of the compression bodies that comprise H (cf. Remark 3). We
also refer to a sweep-out f : M→ ‖F‖ by the ensemble Σ = {Σx : x ∈ ‖F‖} of its level sets,
where Σx = f−1(x).

The width of a generalized Heegaard splitting For a generalized Heegaard splitting H,
the surfaces Si (i ∈ I) are also called the thick levels, and the lower boundaries ∂−C(i)

1 , ∂−C(i)
2

are called the thin levels of H. The width w(H) of H is the sequence obtained by taking a
non-increasing ordering of the multiset {g(Si) : i ∈ I} of the genera of the thick levels.

A generalized Heegaard splitting H of a 3-manifold M for which w(H) is minimal with
respect to the lexicographic order (<) among all splittings of M is said to be in thin position.
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3.3 Weak reductions
A Heegaard splitting (C1, C2,S) of a connected 3-manifold is said to be weakly reducible [19],
if there are essential disks Di ⊂ Ci (i = 1, 2)10 with ∂D1 ∩∂D2 = ∅, see Figure 9. In this case
we also say that the splitting surface S is weakly reducible. A generalized Heegaard splitting
H is weakly reducible, if at least one of its splitting surfaces is weakly reducible; otherwise H

is called strongly irreducible. Every 3-manifold possesses a strongly irreducible generalized
Heegaard splitting and this fact can be exploited in various contexts (e.g., in the proof of
Theorem 1). The usefulness of such splittings is mainly due to the following seminal result.

I Theorem 5 ([49, Lemma 5.2.4], [50, Rule 5]). Let H be a strongly irreducible generalized
Heegaard splitting. Then every connected component of every thin level of H is incompressible.

Given a weakly reducible generalized Heegaard splitting H with a weakly reducible
splitting surface11 S and essential disks D1 and D2 as above, one can execute a weak
reduction at S. This modification amounts to performing particular cut-and-paste operations
on S guided by D1 and D2, and decomposes each of the two compression bodies adjacent to S
into a pair of compression bodies. Importantly, this operation results in another generalized
Heegaard splitting H′ of the same 3-manifold with w(H′) < w(H).

We illustrate weak reductions via Example 16 and refer to [49, Proposition 5.2.3] for
further details (notably, Figures 5.8–5.13 therein, but also Lemma 5.2.2, Figures 5.6 and 5.7,
and Proposition 5.2.4), including an exhaustive list of instances of weak reductions.12

D1

S D2

Figure 9 Local picture of a portion of a weakly reducible splitting surface S.

4 The Main Result

In this section we prove Theorem 1. The inequalities (1) and (2) are deduced in the same way,
thus we only show the proof of (1) in detail, and then explain how it can be adapted to that
of (2). First, we specify what we mean by a “sufficiently complicated” JSJ decomposition.

I Definition 6. Given δ > 0, the JSJ decomposition of an irreducible 3-manifold M is
δ-complicated, if any incompressible or strongly irreducible Heegaard surface S ⊂ M with
genus g(S) ≤ δ can be isotoped to be simultaneously disjoint from all the JSJ tori of M.

10The assumption that Di is essential in the compression body Ci implies that ∂Di ⊂ ∂+Ci = S (i = 1, 2).
11For future reference we remind the reader that splitting surfaces, also called thick levels, correspond to

grips in the faithful fork complex that represents the generalized Heegaard splitting H.
12 In the open-access version [48] these are Proposition 4.2.3 and Figures 87–92 (as well as Lemma 4.2.2,

Figures 85 and 86, and Lemma 4.2.4).
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Proof of inequality (1). Our goal is to prove that tw(Γ(D)) ≤ 18(tw(M) + 1), where Γ(D)
is the dual graph of the δ-complicated JSJ decomposition of the irreducible 3-manifold M.
To this end, we set δ = 18(tw(M) + 1) and fix a triangulation T of M, whose dual graph Γ(T)
has minimal treewidth, i.e., tw(Γ(T)) = tw(M). Now, (1) is established in four stages.

1. Setup. By invoking the construction in [28, Section 6], from T we obtain a generalized
Heegaard splitting H of M together with a sweep-out f : M→ ‖F•‖ along a non-faithful fork
complex F• representing H. By construction, F• is a tree with all of its nodes having degree
one or three (Figure 10), moreover all non-degenerate level surfaces Σx = f−1(x) have genus
bounded above by 18(tw(M) + 1). Let F◦ be the faithful fork complex representing H. Note
that F◦ is obtained from F• by replacing every non-faithful fork F ∈ F• with the collection
CF of faithful forks that accurately represents the (possibly disconnected) compression body
C corresponding to F . The inverse operation, i.e., for each F ∈ F• bundling all faithful forks
in CF into F (see Figure 3), induces a projection map π : ‖F◦‖ → ‖F•‖ between the drawings
(cf. Figures 11(i)–(ii)). Note that every fork, tine, or grip in F• corresponds to a collection of
the corresponding items in F◦ and so the projection map is well-defined. C

S1

S0

S3

S4

S2

S5

S6

S7

Sr

(i) (ii)

S1

S0

S3

S4

S2

S5

S6

S7

Sr

Γ(T)

0

41

2 3

r
Γ(T)

1

2

4

0

3

A

B

C

F•

Figure 10 (i) A. The dual graph Γ(T) of some triangulation T of a 3-manifold M. B. Low-
congestion routing of Γ(T) along a host tree with marked root arc r. C. Drawing of a non-faithful
fork complex F• that represents the generalized Heegaard splitting of M induced by the routing of
Γ(T). The genera of all (possibly disconnected) thick levels Si is bounded above by 18(tw(M) + 1).
(ii) Color-coded segmentation of ‖F•‖ in preparation for the next stage of the proof (cf. Figure 11).

2. Weak reductions. In case H is weakly reducible, we repeatedly perform weak reductions
until we obtain a strongly irreducible generalized Heegaard splitting H′ of M. Since weak
reductions always decrease the width of a generalized Heegaard splitting, this process
terminates after finitely many iterations. Throughout, we maintain that the drawings of
the associated faithful fork complexes follow ‖F•‖. Let F′◦ be the faithful fork complex
representing the final splitting H′, f ′ : M → ‖F′◦‖ be the sweep-out of M induced by H′,
and π′ : ‖F′◦‖ → ‖F•‖ be the associated projection map (Figure 11(iii)). Due to the nature
of weak reductions, 18(tw(M) + 1) is still an upper bound on the genus of any (possibly
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disconnected) level surface of π′ ◦ f ′ : M→ ‖F•‖. As M is irreducible, we may assume that
no component of such a level surface is homeomorphic to a sphere (cf. [36, p. 337]). It follows
that the number of components of any level set of π′ ◦ f ′ is at most 18(tw(M) + 1). C

3. Perturbation and isotopy. We now apply a level-preserving perturbation π′  π′′ on π′,
after which each thin level of H′ lies in different level sets of π′′◦f ′ : M→ ‖F•‖ (Figure 11(iv)).
Since H′ is strongly irreducible, its thick levels are strongly irreducible (by definition), and
its thin levels are incompressible (by Theorem 5). Moreover, all these surfaces have genera at
most 18(tw(M) + 1). Hence, as the JSJ decomposition of M is assumed to be δ-complicated
with δ = 18(tw(M) + 1), we may isotope all JSJ tori to be disjoint from all the thick and
thin levels of H′. Then, by invoking [5, Corollary 4.5] we can isotope each JSJ torus of M to
coincide with a component of some thin level of H′ (Figure 11(v)). As a consequence, every
compression body of the splitting H′ is contained in a unique JSJ piece of M. C

−→

(i)

(ii)

(iii)

(v)

(vi)

2

3

1

4 5

6

7

8

9

(iv)

B4

B3

Bjoin B6
B7

B+
8

B−
8 = Bout

B
(2)
in

B2

9

B
(1)
in

S6

S(1)
6

S(2)
6

Figure 11 Overview of the proof of inequality (1). The figure shows the circled area in Figure 10(ii).
Stage 1: Construction of initial fork complex (i) and split into faithful fork complex (ii). Stage 2:
Weak reductions (iii), see [49, Proposition 5.2.3, Figures 5.8–5.13] for a complete list and their effects
on the underlying fork complexes. Stage 3: perturbations and isotopy (iv). Stage 4: Construction of
tree decomposition (v) and (vi).

4. The tree decomposition of Γ(D). First note that every level set (π′′ ◦ f ′)−1(x) is incident
to at most 18(tw(M) + 1) + 1 = 18 tw(M) + 19 JSJ pieces of M. The ‘plus one’ appears,
because if (π′′ ◦ f ′)−1(x) contains a JSJ torus, then this torus is incident to two JSJ pieces of
M. Also note that, because of the perturbation performed in the previous stage, each level
set (π′′ ◦ f ′)−1(x) can contain at most one JSJ torus of M.

We now construct a tree decomposition (X, T ) of Γ(D) of width 18(tw(M)+1). Eventually,
T will be a subdivision of F• (which is a tree) with nodes corresponding to the bags in X,
which we now describe. By [28, Section 6 (p. 86)], each leaf l of F• corresponds to a spine of
a handlebody Hl. We define a bag that contains the unique node of Γ(D) associated with
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the JSJ piece containing Hl. As we sweep through ‖F•‖ (cf. the arrows on Figure 10(2)),
whenever we pass through a point x ∈ ‖F•‖ such that the level set (π′′)−1(x) contains a tine
of ‖F′◦‖, one of four possible events may occur (illustrated in Figure 11(v)–(vi)): 1. A new
JSJ piece appears. In this case we take a copy of the previous bag, and add the corresponding
node of Γ(D) into the bag. 2. A JSJ piece disappears. Then we delete the corresponding
node of Γ(D) from a copy of the previous bag. 3. Both previous kinds of events happen
simultaneously. In this case we introduce two new bags. The first to introduce the new JSJ
piece, the second to delete the old one. 4. If neither a new JSJ piece is introduced, nor an old
one is left behind, we do nothing. Whenever we arrive at a merging point in the sweep-out
(i.e., a degree-three node of ‖F•‖), we introduce a new bag, which is the union of the two
previous bags. Note that the two previous bags do not necessarily need to be disjoint. C

It remains to verify that (X, T ) is, indeed, a tree decomposition of Γ(D) of width at
most 18 tw(M) + 18. Node coverage: Every node of Γ(D) must be considered at least once,
since we sweep through the entirety of ‖F•‖. Arc coverage: we must ensure that all pairs of
nodes of Γ(D) with their JSJ pieces meeting at a tine are contained in some bag. This is
always the case for 1, because a new JSJ piece appears while all other JSJ pieces are still
in the bag. It is also the case for 2 because a JSJ piece disappears but the previous bag
contained all the pieces. In 3 a new JSJ piece appears and at the same time another JSJ
piece disappears. However, in this case we first introduce the new piece, thus making sure
that adjacent JSJ pieces always occur in at least one bag. Sub-tree property: This follows
from the fact that a JSJ piece, once removed from all bags, must be contained in the part of
‖F•‖ that was already swept. Now, every JSJ piece incident to a given level set (π′′ ◦f ′)−1(x)
of the sweep-out must contribute a positive number to its genus. Hence, it follows that every
bag can contain at most 18 tw(M) + 19 elements (with equality only possible where a tine
simultaneously introduces and forgets a JSJ piece). This proves inequality (1). J

Proof of inequality (2). We start with the results from [28, Section 5] yielding a fork-complex
F• whose underlying space ‖F•‖ is a path, and the genus of the level sets of the associated
sweep-out is bounded above by 4(3 pw(M) + 1). Setting δ = 4(3 pw(M) + 1), the remainder
of the proof is analogous with the proof of inequality (1). J

5 An Algorithmic Construction

Here we establish Theorem 2 that paves the way to the applications in Section 6. In what
follows, ∆ denotes an arbitrary, but fixed, positive integer. Let G = (V,E) be a graph with
|V | = n and maximum degree ∆. Theorem 2 asserts that, in poly(n) time one can construct a
triangulation TG of a closed, irreducible 3-manifold MG, such that the dual graph Γ(D) of its
JSJ decomposition D equals G, moreover, the pathwidth (resp. treewidth) of G determines
the pathwidth (resp. treewidth) of MG up to a constant factor.

Our proof of Theorem 2 rests on a synthesis of work by Lackenby [37] and by Bachman,
Derby-Talbot and Sedgwick [6]. In [37, Section 3] it is shown that the homeomorphism
problem for closed 3-manifolds is at least as hard as the graph isomorphism problem. The
proof relies on a simple construction that, given a graph G, produces a closed, orientable,
triangulated 3-manifold whose JSJ decomposition D satisfies Γ(D) = G. This gives the
blueprint for our construction as well. In particular, we use the same building blocks that are
described in [37, p. 591]. However, as opposed to Lackenby, we paste together these building
blocks via high-distance torus gluings akin to the construction presented in [6, Section 4].
This ensures that we can apply Theorem 1 for the resulting 3-manifold MG and deduce
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the right-hand-side inequalities of 3a and 3b. The left-hand-side inequalities are shown by
inspecting TG. We now elaborate on the ingredients of the proof of Theorem 2.

The building blocks We first recall the definition of the building blocks from [37, p. 591].
Let k ∈ N be a positive integer. Consider the 2-dimensional torus T2 = S1 × S1, and let T2

k

denote the compact surface obtained from T2 by the removal of k pairwise disjoint open
disks. We define N(k) = T2

k × S1. Note that the boundary ∂N(k) of N(k) consists of k tori,
which will be the gluing sites. See Figure 12 for the example of N(3).

We choose a triangulation T(k) for N(k) that induces the minimal 2-triangle triangulation
of the torus (cf. Figure 13) at each boundary component. Note that T(k) can be constructed
from O(k) tetrahedra. An explicit description of T(k) is given in Appendix B.

N(3) = × S1

Figure 12 Illustration of N(3). Figure 13 Minimal triangulation of the torus T2.

Overview of the construction of MG We now give a high-level overview of constructing
MG from the above building blocks. Given a graph G = (V,E), for each node v ∈ V we pick
a block Nv

∼= N(dv), where dv denotes the degree of v. Next, for each arc e = {u, v} ∈ E,
we pick a homeomorphism φe : T2 → T2 of sufficiently high distance (we discuss this notion
below) and use it to glue together a boundary torus of Nu with one of Nv. After performing
all of these gluings, we readily obtain the 3-manifold MG (cf. Figure 14(i)–(ii)).

B Claim 7 (Based on [37, p. 591]). The JSJ decomposition D of MG satisfies Γ(D) = G.

For a proof of Claim 7 we refer to Appendix A.2.

high-distance
torus gluings

layered
triangulations

MG Γ(TG)

N(3) ∼= Nv

N(1) ∼= Nu

Nw Nz ∼= N(2)

Γ(T(1))

Γ(T(3))

Γ(T(2)) Γ(T(2))

G

u

v

w z

(i)

(ii)

(iii)

Figure 14 Schematic overview of the construction underlying Theorem 2.



14 On the Width of Complicated JSJ Decompositions

High-distance torus gluings As already mentioned, to ensure that we can apply Theorem 1
to MG, we use torus homeomorphisms of “sufficiently high distance” to glue the building
blocks together. This notion of distance, which is defined through the Farey distance, is
somewhat technical. Thus, we refer to [6, Section 4.1 and Appendix] for details, and rather
recall a crucial result that makes the usefulness of distance in the current context apparent.

I Theorem 8 ([6, Appendix], [4, Theorem 5.4]13). There exists a computable constant K,
depending only on the homeomorphism types of the blocks, so that if any set of blocks are
glued with maps of distance at least Kδ along their torus boundary components to form a
closed 3-manifold M, then the JSJ decomposition of M is δ-complicated (cf. Definition 6).

Triangulating the gluing maps We have already discussed that the block N(k) admits a
triangulation T(k) with O(k) tetrahedra, where T(k) induces a minimal, 1-vertex triangulation
at each torus boundary of N(k). It is shown in [6, Section 4.2] that the gluings beading these
blocks together can be realized as layered triangulations [29]. These triangulations manifest
as “daisy chains” in the dual graph Γ(TG) of the final triangulation TG, see Figure 14(iii).

I Lemma 9 ([6, Lemma 4.6]). There exist torus gluings with distance at least D, that can be
realized as layered triangulations using 2D tetrahedra.

B Claim 10. There exist universal constants c, c′ > 0 such that
(c/∆) tw(MG) ≤ tw(G) and (c′/∆) pw(MG) ≤ pw(G).

Proof. Since every node of G has degree at most ∆, the construction of MG only uses building
blocks homeomorphic to N(1), . . . ,N(∆). Hence, for each v ∈ V the triangulation T(dv)
of the block Nv contains O(∆) tetrahedra. This, together with the above discussion on
triangulating the gluing maps implies that (upon ignoring multi-arcs and loop arcs, which
are anyway not “sensed” by treewidth or pathwidth), the dual graph Γ(TG) is obtained from
G by 1. replacing each node v ∈ V with a copy of the graph Γ(T(dv)) that contains O(∆)
nodes, and by 2. possibly subdividing each arc e ∈ E several times.

Now, the first operation increases the treewidth (resp. pathwidth) at most by a factor of
O(∆), while the arc-subdivisions keep these parameters basically the same, cf. Lemma 11.
Hence tw(Γ(TG)) ≤ O(∆ tw(G)) and pw(Γ(TG)) ≤ O(∆ pw(G)), and the claim follows. C

I Lemma 11 (Folklore, cf. [9, Lemma A. 1]). Let G = (V,E) be a graph. If G′ is a graph
obtained from G by subdividing a set F ⊆ E of arcs an arbitrary number of times. Then

pw(G′) ≤ pw(G) + 2 and tw(G′) ≤ max{tw(G), 3}.

Finishing the proof of Theorem 2. We have already shown 2 (Claim 7) and the left-hand-
sides of the inequalities 3a and 3b (Claim 10). To prove the remaining parts of Theorem 2, let
δ = max{18(tw(G) + 1), 4(3 pw(G) + 1)} = O(pw(G)). By Theorem 8, there is a computable
constant K∆ depending only on N(1), . . . ,N(∆) and hence only on ∆, so that if we glue
together the blocks via maps of distance at least K∆δ, then the JSJ decomposition of MG is
δ-complicated. By Lemma 9, each such gluing map can be realized as a layered triangulation
consisting of 2K∆δ tetrahedra. Since G has at most ∆n/2 arcs, these layered triangulations
contain at most 2K∆δ∆n/2 = ∆K∆δn = O(∆K∆ pw(G) · n) = O∆(pw(G) · n) tetrahedra
altogether. Since the triangulated blocks T(dv) contain O(∆ · n) tetrahedra in total, the
triangulation TG of the manifold MG can be built from O∆(pw(G) · n) ≤ O∆(n2) tetrahedra.
Last, as it follows from [6, Section 4], the construction can be executed in quadratic time. J

13The notation and the statement of Theorem 8 have been adapted to match the present context.
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6 Applications

I Corollary 12. There exist 3-manifolds (Mh)h∈N with tw(Mh) ≤ 2 and pw(Mh) h→∞−→ ∞.

I Corollary 13. There exist Haken 3-manifolds (Nk)k∈N with tw(Nk) k→∞−→ ∞.

Proof of Corollaries 12 and 13. Using Theorem 2, the construction of bounded-treewidth
(Haken) 3-manifolds with arbitrarily large pathwidth follows by taking Mh = MTh

(with the
notation of Theorem 2), where Th is the complete binary tree of height h. The construction of
Haken 3-manifolds of arbitrary large treewidth is deduced by setting Nk = MGrid(k), where
Grid(k) denotes the k× k grid graph. See Figure 15. Obtained as JSJ decompositions, where
the JSJ tori are two-sided, incompressible surfaces, all of these manifolds are Haken. J

(ii) tw(k × k-grid) = k(i) tw(Th) = 1, pw(Th) = dh/2e

T3 Grid(5)

Figure 15 (i) The complete binary tree Th of height h has pathwidth dh/2e, cf. [11, Theorem
67]. (ii) The k × k grid graph is known to have pathwidth and treewidth both equal to k.

I Corollary 14. Approximating the treewidth (resp. pathwidth) of closed, orientable 3-
manifolds up to a constant factor is at least as hard as giving a constant-factor approximation
of the treewidth (resp. pathwidth) of bounded-degree graphs.

Proof. The argument for treewidth and pathwidth is the same. Given a graph G with
maximum vertex degree ∆, we use the polynomial-time procedure from Theorem 2 to build a
3-manifold M with tw(M) within a constant factor of tw(G). An oracle for a constant-factor
approximation of tw(M) hence gives us a constant-factor approximation of tw(G) as well. J

I Remark 15. Computing a constant-factor approximation of treewidth (resp. pathwidth)
for arbitrary graphs is known to be conditionally NP-hard under the Small Set Expansion
Hypothesis [46, 55, 56]. For proving Corollary 14, however, we rely on the assumption that
the graph has bounded degree. Thus the conditional hardness of approximating the treewidth
(resp. pathwidth) of a 3-manifold does not directly follow. Establishing such a hardness
result would add to the growing, but still relatively short list of algorithmic problems in
low-dimensional topology that are known to be (conditionally) hard, cf. [2, 6, 21, 33, 37].

7 Discussion and Open Problems

We have demonstrated that 3-manifolds with JSJ decompositions with dual graphs of
large treewidth (resp. pathwidth) and “sufficiently complicated” gluing maps cannot admit
triangulations of low treewidth (resp. pathwidth). This provides a technique to construct
a wealth of families of 3-manifolds with unbounded tree- or pathwidth that hopefully will
prove to be useful for future research in the field.

One obvious limitation of our construction is a seemingly heavy restriction on the JSJ
gluing maps in order to deduce a connection between the treewidth of a 3-manifold and that
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of the dual graph of its JSJ decomposition. Hence, a natural question to ask is, how much
this restriction on gluing maps may be relaxed while still allowing meaningful structural
results about treewidth. In particular, we have the following question.
I Question 1. Given a 3-manifold M with JSJ decomposition D and no restrictions on its
JSJ gluings. Is there a lower bound for tw(M) in terms of tw(Γ(D))?

Note that the assumption that we are considering the JSJ decomposition of M is necessary:
Consider a graph G = (V,E) and a collection of 3-manifolds {Mv}v∈V , where Mv has deg(v)
torus boundary components. Assume that we glue the manifolds Mv along the arcs of G to
obtain a closed 3-manifold M. Without restrictions on how these pieces are glued together,
this cannot result in a lower bound tw(M) in terms of tw(G): we can construct Seifert fibered
spaces M in this way, even if G = (V,E) is the complete graph with |V | arbitrarily large. At
the same time, Seifert fibered spaces have constant treewidth, see [27].
I Question 2. What is the complexity of computing the treewidth of a 3-manifold?

We believe that this should be at least as hard as computing the treewidth of a graph.

References
1 I. Agol. Small 3-manifolds of large genus. Geom. Dedicata, 102:53–64, 2003. doi:10.1023/B:

GEOM.0000006584.85248.c5.
2 I. Agol, J. Hass, and W. Thurston. The computational complexity of knot genus and spanning

area. Trans. Am. Math. Soc., 358(9):3821–3850, 2006. doi:10.1090/S0002-9947-05-03919-X.
3 M. A. Armstrong. Basic topology. Undergrad. Texts Math. Springer-Verlag, New York-Berlin,

1983. Corrected reprint of the 1979 original. doi:10.1007/978-1-4757-1793-8.
4 D. Bachman. Stabilizing and destabilizing Heegaard splittings of sufficiently complicated

3-manifolds. Math. Ann., 355(2):697–728, 2013. doi:10.1007/s00208-012-0802-4.
5 D. Bachman, R. Derby-Talbot, and E. Sedgwick. Heegaard structure respects complicated JSJ

decompositions. Math. Ann., 365(3-4):1137–1154, 2016. doi:10.1007/s00208-015-1314-9.
6 D. Bachman, R. Derby-Talbot, and E. Sedgwick. Computing Heegaard genus is NP-hard. In

A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek, pages 59–87. Springer,
Cham, 2017. doi:10.1007/978-3-319-44479-6_3.

7 D. Bachman, S. Schleimer, and E. Sedgwick. Sweepouts of amalgamated 3-manifolds. Algebr.
Geom. Topol., 6:171–194, 2006. doi:10.2140/agt.2006.6.171.

8 B. Bagchi, B. A. Burton, B. Datta, N. Singh, and J. Spreer. Efficient algorithms to decide
tightness. In 32nd Int. Symp. Comput. Geom. (SoCG 2016), volume 51 of LIPIcs. Leibniz Int.
Proc. Inf., pages 12:1–12:15. Schloss Dagstuhl–Leibniz-Zent. Inf., 2016. doi:10.4230/LIPIcs.
SoCG.2016.12.

9 R. Belmonte, T. Hanaka, M. Kanzaki, M. Kiyomi, Y. Kobayashi, Y. Kobayashi, M. Lampis,
H. Ono, and Y. Otachi. Parameterized complexity of (A, `)-path packing. Algorithmica,
84(4):871–895, 2022. doi:10.1007/s00453-021-00875-y.

10 R. H. Bing. An alternative proof that 3-manifolds can be triangulated. Ann. Math. (2),
69:37–65, 1959. doi:10.2307/1970092.

11 H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput.
Sci., 209(1–2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

12 B. A. Burton. Computational topology with Regina: algorithms, heuristics and implementa-
tions. In Geometry and Topology Down Under, volume 597 of Contemp. Math., pages 195–224.
Am. Math. Soc., Providence, RI, 2013. doi:10.1090/conm/597/11877.

13 B. A. Burton, R. Budney, W. Pettersson, et al. Regina: Software for low-dimensional topology,
1999–2022. Version 7.2. URL: https://regina-normal.github.io.

14 B. A. Burton and R. G. Downey. Courcelle’s theorem for triangulations. J. Comb. Theory,
Ser. A, 146:264–294, 2017. doi:10.1016/j.jcta.2016.10.001.

https://doi.org/10.1023/B:GEOM.0000006584.85248.c5
https://doi.org/10.1023/B:GEOM.0000006584.85248.c5
https://doi.org/10.1090/S0002-9947-05-03919-X
https://doi.org/10.1007/978-1-4757-1793-8
https://doi.org/10.1007/s00208-012-0802-4
https://doi.org/10.1007/s00208-015-1314-9
https://doi.org/10.1007/978-3-319-44479-6_3
https://doi.org/10.2140/agt.2006.6.171
https://doi.org/10.4230/LIPIcs.SoCG.2016.12
https://doi.org/10.4230/LIPIcs.SoCG.2016.12
https://doi.org/10.1007/s00453-021-00875-y
https://doi.org/10.2307/1970092
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1090/conm/597/11877
https://regina-normal.github.io
https://doi.org/10.1016/j.jcta.2016.10.001


K. Huszár and J. Spreer 17

15 B. A. Burton, T. Lewiner, J. Paixão, and J. Spreer. Parameterized complexity of discrete
Morse theory. ACM Trans. Math. Softw., 42(1):6:1–6:24, 2016. doi:10.1145/2738034.

16 B. A. Burton, C. Maria, and J. Spreer. Algorithms and complexity for Turaev–Viro invariants.
J. Appl. Comput. Topol., 2(1–2):33–53, 2018. doi:10.1007/s41468-018-0016-2.

17 B. A. Burton and W. Pettersson. Fixed parameter tractable algorithms in combinatorial
topology. In Proc. 20th Int. Conf. Comput. Comb. (COCOON 2014), pages 300–311, 2014.
doi:10.1007/978-3-319-08783-2_26.

18 B. A. Burton and J. Spreer. The complexity of detecting taut angle structures on triangulations.
In Proc. 24th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA 2013), pages 168–183,
2013. doi:10.1137/1.9781611973105.13.

19 A. J. Casson and C. McA. Gordon. Reducing Heegaard splittings. Topology Appl., 27(3):275–
283, 1987. doi:10.1016/0166-8641(87)90092-7.

20 H. S. M. Coxeter. Regular honeycombs in hyperbolic space. In Proc. Int. Congr. Math.,
Amsterdam, The Netherlands, September 2–9, 1954, volume 3, pages 155–169. Erven P.
Noordhoff; North-Holland, 1956. Available at https://www.mathunion.org/fileadmin/ICM/
Proceedings/ICM1954.3/ICM1954.3.ocr.pdf (accessed: March 12, 2023).

21 A. de Mesmay, Y. Rieck, E. Sedgwick, and M. Tancer. The unbearable hardness of unknotting.
Adv. Math., 381:Paper No. 107648, 36, 2021. doi:10.1016/j.aim.2021.107648.

22 Henri Paul de Saint-Gervais. Uniformization of Riemann surfaces. Revisiting a hundred-year-
old theorem. Translated from the French by R. G. Burns. Herit. Eur. Math. Eur. Math. Soc.
(EMS), Zürich, 2016. doi:10.4171/145.

23 A. Hatcher. Notes on basic 3-manifold topology. Available at https://pi.math.cornell.edu/
~hatcher/3M/3Mfds.pdf (accessed: February 18, 2023).

24 P. Heegaard. Sur l’"Analysis situs". Bull. Soc. Math. France, 44:161–242, 1916. doi:10.24033/
bsmf.968.

25 K. Huszár. Combinatorial width parameters for 3-dimensonal manifolds. PhD thesis, IST
Austria, June 2020. doi:10.15479/AT:ISTA:8032.

26 K. Huszár. On the pathwidth of hyperbolic 3-manifolds. Comput. Geom. Topol., 1(1):1–19,
2022. doi:10.57717/cgt.v1i1.4.

27 K. Huszár and J. Spreer. 3-Manifold triangulations with small treewidth. In 35th Int. Symp.
Comput. Geom. (SoCG 2019), volume 129 of LIPIcs. Leibniz Int. Proc. Inf., pages 44:1–44:20.
Schloss Dagstuhl–Leibniz-Zent. Inf., 2019. doi:10.4230/LIPIcs.SoCG.2019.44.

28 K. Huszár, J. Spreer, and U. Wagner. On the treewidth of triangulated 3-manifolds. J. Comput.
Geom., 10(2):70–98, 2019. doi:10.20382/jogc.v10i2a5.

29 W. Jaco and J. H. Rubinstein. Layered-triangulations of 3-manifolds, 2006. 97 pages, 32
figures. arXiv:math/0603601.

30 W. Jaco and P. B. Shalen. A new decomposition theorem for irreducible sufficiently-large 3-
manifolds. In Algebraic and Geometric Topology, volume 32, part 2 of Proc. Sympos. Pure Math.,
pages 71–84. Am. Math. Soc., Providence, RI, 1978. doi:10.1090/pspum/032.2/520524.

31 W. H. Jaco and P. B. Shalen. Seifert fibered spaces in 3-manifolds. Mem. Am. Math. Soc.,
21(220):viii+192, 1979. doi:10.1090/memo/0220.

32 K. Johannson. Homotopy equivalences of 3-manifolds with boundaries, volume 761 of Lect.
Notes Math. Springer, Berlin, 1979. doi:10.1007/BFb0085406.

33 D. Koenig and A. Tsvietkova. NP-hard problems naturally arising in knot theory. Trans. Am.
Math. Soc. Ser. B, 8:420–441, 2021. doi:10.1090/btran/71.

34 G. Kuperberg. Algorithmic homeomorphism of 3-manifolds as a corollary of geometrization.
Pacific J. Math., 301(1):189–241, 2019. doi:10.2140/pjm.2019.301.189.

35 M. Lackenby. The Heegaard genus of amalgamated 3-manifolds. Geom. Dedicata, 109:139–145,
2004. doi:10.1007/s10711-004-6553-y.

36 M. Lackenby. Heegaard splittings, the virtually Haken conjecture and property (τ). Invent.
Math., 164(2):317–359, 2006. doi:10.1007/s00222-005-0480-x.

https://doi.org/10.1145/2738034
https://doi.org/10.1007/s41468-018-0016-2
https://doi.org/10.1007/978-3-319-08783-2_26
https://doi.org/10.1137/1.9781611973105.13
https://doi.org/10.1016/0166-8641(87)90092-7
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1954.3/ICM1954.3.ocr.pdf
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1954.3/ICM1954.3.ocr.pdf
https://doi.org/10.1016/j.aim.2021.107648
https://doi.org/10.4171/145
https://pi.math.cornell.edu/~hatcher/3M/3Mfds.pdf
https://pi.math.cornell.edu/~hatcher/3M/3Mfds.pdf
https://doi.org/10.24033/bsmf.968
https://doi.org/10.24033/bsmf.968
https://doi.org/10.15479/AT:ISTA:8032
https://doi.org/10.57717/cgt.v1i1.4
https://doi.org/10.4230/LIPIcs.SoCG.2019.44
https://doi.org/10.20382/jogc.v10i2a5
http://arxiv.org/abs/math/0603601
https://doi.org/10.1090/pspum/032.2/520524
https://doi.org/10.1090/memo/0220
https://doi.org/10.1007/BFb0085406
https://doi.org/10.1090/btran/71
https://doi.org/10.2140/pjm.2019.301.189
https://doi.org/10.1007/s10711-004-6553-y
https://doi.org/10.1007/s00222-005-0480-x


18 On the Width of Complicated JSJ Decompositions

37 M. Lackenby. Some conditionally hard problems on links and 3-manifolds. Discrete Comput.
Geom., 58(3):580–595, 2017. doi:10.1007/s00454-017-9905-8.

38 M. Lackenby. Algorithms in 3-manifold theory. In I. Agol and D. Gabai, editors, Surveys in
3-manifold topology and geometry, volume 25 of Surv. Differ. Geom., pages 163–213. Int. Press
Boston, 2020. doi:10.4310/SDG.2020.v25.n1.a5.

39 Tao Li. Heegaard surfaces and the distance of amalgamation. Geom. Topol., 14(4):1871–1919,
2010. doi:10.2140/gt.2010.14.1871.

40 C. Manolescu. Lectures on the triangulation conjecture. In Proc. 22nd Gökova Geom.-Topol.
Conf. (GGT 2015), pages 1–38. Int. Press Boston, 2016. URL: https://gokovagt.org/
proceedings/2015/manolescu.html.

41 C. Maria and J. Purcell. Treewidth, crushing and hyperbolic volume. Algebr. Geom. Topol.,
19(5):2625–2652, 2019. doi:10.2140/agt.2019.19.2625.

42 A. Markov. The insolubility of the problem of homeomorphy (in Russian). Dokl. Akad. Nauk
SSSR, 121:218–220, 1958.

43 E. E. Moise. Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermu-
tung. Ann. Math. (2), 56:96–114, 1952. doi:10.2307/1969769.

44 P. Orlik, E. Vogt, and H. Zieschang. Zur Topologie gefaserter dreidimensionaler Mannig-
faltigkeiten. Topology, 6:49–64, 1967. doi:10.1016/0040-9383(67)90013-4.

45 B. Poonen. Undecidable problems: a sampler. In Interpreting Gödel, pages 211–241. Cambridge
Univ. Press, 2014. doi:10.1017/CBO9780511756306.015.

46 P. Raghavendra and D. Steurer. Graph expansion and the unique games conjecture. In Proc.
2010 ACM Int. Symp. Theor. Comput. (STOC’10), pages 755–764. ACM, New York, 2010.

47 M. Scharlemann and J. Schultens. Comparing Heegaard and JSJ structures of orientable
3-manifolds. Trans. Am. Math. Soc., 353(2):557–584, 2001. doi:10.1090/S0002-9947-00-
02654-4.

48 M. Scharlemann, J. Schultens, and T. Saito. Lecture notes on generalized Heegaard splittings,
2005. Open-access version of [49] with slightly different structure. arXiv:math/0504167.

49 M. Scharlemann, J. Schultens, and T. Saito. Lecture Notes on Generalized Heegaard Splittings.
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016. doi:10.1142/10019.

50 M. Scharlemann and A. Thompson. Thin position for 3-manifolds. In Geometric topology
(Haifa, 1992), volume 164 of Contemp. Math., pages 231–238. Am. Math. Soc., Providence,
RI, 1994. doi:10.1090/conm/164/01596.

51 J. Schultens. Introduction to 3-Manifolds, volume 151 of Grad. Stud. Math. Am. Math. Soc.,
Providence, RI, 2014. doi:10.1090/gsm/151.

52 J. Schultens and R. Weidmann. Destabilizing amalgamated Heegaard splittings. In Workshop
on Heegaard Splittings, volume 12 of Geom. Topol. Monogr., pages 319–334. Geom. Topol.
Publ., Coventry, 2007. doi:10.2140/gtm.2007.12.319.

53 P. Scott and H. Short. The homeomorphism problem for closed 3-manifolds. Algebr. Geom.
Topol., 14(4):2431–2444, 2014. doi:10.2140/agt.2014.14.2431.

54 F. Waldhausen. Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II. Invent. Math.,
3:308–333; ibid. 4:87–117, 1967. URL: https://eudml.org/doc/141878 and https://eudml.
org/doc/141884. doi:10.1007/BF01402956.

55 Y. Wu, P. Austrin, T. Pitassi, and D. Liu. Inapproximability of treewidth, one-shot pebbling,
and related layout problems. J. Artificial Intelligence Res., 49:569–600, 2014. doi:10.1613/
jair.4030.

56 K. Yamazaki. Inapproximability of rank, clique, Boolean, and maximum induced matching-
widths under small set expansion hypothesis. Algorithms (Basel), 11(11):Paper No. 173, 10,
2018. doi:10.3390/a11110173.

https://doi.org/10.1007/s00454-017-9905-8
https://doi.org/10.4310/SDG.2020.v25.n1.a5
https://doi.org/10.2140/gt.2010.14.1871
https://gokovagt.org/proceedings/2015/manolescu.html
https://gokovagt.org/proceedings/2015/manolescu.html
https://doi.org/10.2140/agt.2019.19.2625
https://doi.org/10.2307/1969769
https://doi.org/10.1016/0040-9383(67)90013-4
https://doi.org/10.1017/CBO9780511756306.015
https://doi.org/10.1090/S0002-9947-00-02654-4
https://doi.org/10.1090/S0002-9947-00-02654-4
http://arxiv.org/abs/math/0504167
https://doi.org/10.1142/10019
https://doi.org/10.1090/conm/164/01596
https://doi.org/10.1090/gsm/151
https://doi.org/10.2140/gtm.2007.12.319
https://doi.org/10.2140/agt.2014.14.2431
https://eudml.org/doc/141878
https://eudml.org/doc/141884
https://eudml.org/doc/141884
https://doi.org/10.1007/BF01402956
https://doi.org/10.1613/jair.4030
https://doi.org/10.1613/jair.4030
https://doi.org/10.3390/a11110173


K. Huszár and J. Spreer 19

A Selected Results from 3-Manifold Topology

In this appendix we collect important facts about the topology of 3-manifolds we rely on.
We do not aim to reproduce their complete proofs; indeed, those are often quite technical or
include lengthy case analyses. However, we do aim to give precise statements and references.

A.1 Weak reductions
I Example 16. The 3-torus T3 = S1 × S1 × S1 is a closed 3-manifold built by identifying
opposite faces of a solid cube K (Figure 16a). It is well-known that T3 has Heegaard genus
g
(
T3) = 3. A genus-three Heegaard splitting H = (H1,H2,S) of T3 can be obtained as

follows: Upon the face-identifications, the 1-skeleton of K becomes a bouquet of three
circles. We let H1 = NT3( ) be a closed regular neighborhood of in T3, H2 be the closure
of T3 \ H1, and S = H1 ∩H2 be the resulting splitting surface (Figure 16b).

BA
C

CAB
(a) The 3-torus T3 = S1×S1×S1

can be obtained by identifying
opposite faces of a solid cube.

(b) A surface S ⊂ T3 defining
a Heegaard splitting (H1,H2,S)
of T3 of minimum genus three.

D1

D2

(c) Two essential disks Di ⊂ Hi
(i = 1, 2) witnessing the weak
reducibility of (H1,H2,S).

Figure 16 A weakly reducible minimum-genus Heegaard splitting of the 3-torus T3 = S1×S1×S1.

Note that D1 and D2 in Figure 16c are essential disks in the handlebodies H1 and H2,
respectively, and ∂D1 ∩ ∂D2 = ∅, hence the splitting H = (H1,H2,S) is weakly reducible.
Now, a weak reduction at S may be carried out as presented on Figure 17. We refer to [49,
p. 108–111] for details (cf. [48, p. 61–62]).
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Figure 17 Schematic “movie” of a weak reduction of the genus-three Heegaard splitting of T3.
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A.2 Seifert fibered spaces and JSJ decompositions
A key assertion about the manifold MG constructed in Section 5 is Claim 7, according to
which the dual graph Γ(D) of the JSJ decomposition D of MG satisfies Γ(D) = G. This can
be shown through the same argument that is outlined by Lackenby in [37, p. 591]. However,
while we use the same building blocks as Lackenby (namely the manifolds N(k)), we glue
them together via different (high-distance) maps. Therefore, some explanations are in order.
To this end, closely following [23], we recall some basic definitions and important results.

Seifert fiberings A model Seifert fibering of the solid torus S1 ×D is a decomposition of
S1 ×D into disjoint circles, called fibers, obtained as follows. Consider the solid cylinder
[0, 1]×D and identify its boundary disks {0} ×D and {1} ×D through a rotation by 2πp/q,
where p and q are relatively prime integers with q > 0. After this identification the segment
[0, 1] × {0} becomes a fiber S1 × {0}, whereas every other fiber consists of q segments of
the form [0, 1]× {x}. Next, a Seifert fibering of 3-manifold M is a decomposition of M into
disjoint circles (also called fibers), such that each fiber has a neighborhood homeomorphic to
that of a fiber in some model Seifert fibering of S1×D via a fiber-preserving homeomorphism.
A 3-manifold that admits a Seifert fibering is called a Seifert fibered space. The following
classical result says that most Seifert fibered spaces admit a unique Seifert fibering.

I Theorem 17 ([44, 54], adapted from [23, Theorem 2.3]). Every orientable Seifert fibered
space admits a unique Seifert fibering up to fiber-preserving homeomorphism, except for:

S1 ×D, the solid torus (various model fiberings; see above),
S1 ∼× S1 ∼× I, the orientable S1-bundle over the Möbius band (two fiberings),
Seifert fibered spaces over RP 2 with one exceptional fiber (two fiberings),
lens spaces L(p, q) including S3 and S1 × S2 (various fiberings), and
S1 ∼× S1 ∼× S1, the orientable S1-bundle over the Klein bottle (two fiberings).

I Corollary 18. The manifolds N(k) defined in Section 5 admit unique Seifert fiberings.

Proof. The statement follows by observing that N(k) is a Seifert fibered space over the torus,
and so it does not belong to any of the exceptional manifolds mentioned in Theorem 17. J

I Proposition 19 (folklore, see [23, Proposition 1.6]). If an irreducible 3-manifold M̃ is a
covering space of the interior of another 3-manifold M, then M is irreducible as well.

B Claim 20 (folklore, see [23, p. 11]). For any compact, connected and orientable surface F
(possibly with boundary) other than S2, the interior of F ×S1 has R3 as its universal cover.14

Proof. If F � S2, it is well-known that the universal cover of F is R2. Indeed, for F ∼= T2

a covering map R2 → F can be defined through the regular tiling of the Euclidean plane
via squares, while for F ∼= Sg with genus g > 1 such a map can be obtained through the
regular tiling of the hyperbolic plane via regular 4g-gons, with 4g such polygons meeting
at each vertex [20]. If F has non-empty boundary, then by the theory of covering spaces
[3, Theorem 10.19] the interior of F has some universal cover X, and by the uniformization
theorem [22, Theorem XII.0.1], this space X – being a non-compact, open, simply-connected
surface – must be homeomorphic to R2. As the universal cover of S1 is R, it follows that the
universal cover of F × S1 is R3. C

14The claim holds for non-orientable surfaces as well with the exception of RP 2.
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B Claim 21 (folklore, see [23, p. 14]). A 2-sided torus T ⊂M in an irreducible 3-manifold M

is compressible if and only if T either bounds a solid torus S1 ×D ⊂M or lies in a ball in M.

I Corollary 22. For any k ∈ N, N(k) is irreducible and has incompressible boundary.

Proof. The irreducibility of N(k) is a consequence of Proposition 19 and Claim 20. Then,
the incompressibility of ∂N(k) follows from Claim 21 by noting that ∂N(k) is a union of tori
and, by construction of N(k), none of them bounds a solid torus or lies in a ball in N(k). J

I Proposition 23. The manifold MG constructed in Section 5 is irreducible.

Proof. Let G = (V,E) be a multigraph on n nodes with m arcs, and T = {T1, . . . , Tm} be
the collection of pairwise disjoint tori Ti ⊂MG that are the images of the boundary tori of
the manifolds Nv

∼= N(dv) after performing the torus-gluings in the construction of MG.
Let us assume that MG is not irreducible, i.e., there is some reducing 2-sphere S ⊂MG.

By definition, S does not bound a ball in MG. Note that S cannot be entirely contained in
any of the building blocks Nv ⊂MG, otherwise it would imply the reducibility of Nv

∼= N(dv),
contradicting Corollary 22. It follows that S∩(∪m

i=1Ti) 6= ∅. Thus, after an isotopy if necessary,
we may assume that S intersects ∪m

i=1Ti transversally, and the intersection S ∩ (∪m
i=1Ti) is a

union of pairwise disjoint closed curves α = {α1, . . . , α`} with ` being minimal.
Now let αj ∈ α be a curve that is innermost in S, i.e., one of the two disks bounded by

αj in S, say D ⊂ S, does not contain any other curves from α. After relabeling if necessary,
let Tj ∈ T denote the torus for which αj = S ∩ Tj . Note that, if αj also bounds a disk
D′ ⊂ Tj , then D∪D′ is a sphere entirely contained in one of the building blocks Nw incident
to Tj . Since Nw is irreducible (Corollary 22), D ∪D′ bounds a ball B ⊂ Nw, which can be
used to eliminate αj by first isotoping D inside B to coincide with D′ and then pushing D′
off the torus Tj , contradicting the minimality of α. Hence the disk D is essential in Nw.
However, this contradicts the incompressibility of Tj in Nw (Corollary 22). J

Proof of Claim 7. We follow the notation introduced in the proof of Proposition 23. By
Corollary 18, each building block Nv admits a unique Seifert fibering. In particular, each
boundary component of Nv has a uniquely determined fibering. Therefore, when two building
blocks Nu and Nu′ are glued together along boundary tori T ⊂ ∂Nu and T ′ ⊂ ∂Nu′ , the
resulting 3-manifold is not Seifert fibered, unless the gluing map aligns the (identical) Seifert
fiberings of T and T ′. Now, it follows from the definition of distance [6, Section 4.1] that
gluing maps of distance at least one do not align these Seifert fiberings. (In fact, for any two
fixed Seifert fiberings of the torus, there are precisely two maps that align them.) Hence,
upon the manifold MG is constructed, the Seifert fibrations of adjacent building blocks induce
different fibrations on each torus in T = {T1, . . . , Tm}. Now, by construction of the building
blocks, none of the tori in T bounds a solid torus (cf. [37, p. 591]), therefore they are all
incompressible (cf. Claim 21) and pairwise non-parallel. This implies that the building blocks
Nv (v ∈ V ) are indeed the JSJ pieces of MG and the tori in T comprise its JSJ tori. J
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B Triangulating the building blocks

Here we describe the triangulation T(k) of the building block N(k) introduced in Section 5.
Topologically, N(k) = T2

k × S1, where T2
k is obtained by removing the interiors of k pairwise

disjoint disks from the torus T2. To construct T(k), first we triangulate T2
k with 3k+2 triangles

as shown in Figure 18. This triangulation of T2
k naturally lifts to a decomposition of T2

k× [0, 1]
into 3k + 2 triangular prisms, each of which can be triangulated with three tetrahedra, see
Figure 19. The construction of T(k) is concluded by identifying the triangulations of T2

k×{0}
and T2

k×{1} via the identity map. It immediately follows that T(k) consists of 9k+ 6 = O(k)
tetrahedra and induces a two-triangle triangulation at each boundary torus.

Figure 18 A minimal triangulation of T2
k with 3k + 2 triangles, drawn for k = 3. The extension

of the drawing for larger k is straightforward.
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Figure 19 (i) The triangular prism (the shape described as t× [0, 1], where t denotes a triangle)
can be triangulated with three tetrahedra. (ii) A triangulation of the triangular prism and its
corresponding dual graph. (iii) A triangular prism with its top and bottom triangles identified.
Reproduced from [27, Figure 13].
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