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Abstract: We present a machine learning approach to program the light phase modulation
function of an innovative thermo-optically addressed, liquid-crystal based, spatial light modulator
(TOA-SLM). The designed neural network is trained with a little amount of experimental data
and is enabled to efficiently generate prescribed low-order spatial phase distortions. These results
demonstrate the potential of neural network-driven TOA-SLM technology for ultrabroadband
and large aperture phase modulation, from adaptive optics to ultrafast pulse shaping.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Spatial light modulators (SLMs) are two-dimensional objects, enabling to modulate the intensity,
phase or polarization of an incident light beam, at any point of the SLM surface, through a local
change of the optical path. Their applications in photonics are too numerous to be enumerated,
enough is to say that SLMs are now widely employed in complex optical systems [1]. In
particular, the ability to manipulate the light phase is required for applications as varied as
holography, optical sensing, femtosecond pulse shaping, singular beams generation and adaptive
optics [2–6]. The latter item, adaptive optics, refers to the addition of an active or passive
component in an optical system to correct spatial phase aberrations so as to optimize the point
spread function for the targeted application, which can belong to many fields, from microscopy to
astronomy, including the spatial control of high-power lasers for high-field physics or industrial
laser processing [7–11]. A plethora of technologies provide such dynamic components for phase
correction, among them mechanically or thermally deformable mirrors, magneto-optic devices
or acoustic-optic Bragg cells, and non-mechanical components which exploit the electro-optic
anisotropy of liquid crystals (LCs).

Recently, a new SLM concept has been proposed [12], relying on a local thermal modification
of a thick LC layer, that is optically-induced through the absorption of a control beam. This
innovative thermo-optically addressed LC-SLM, coined TOA-SLM, has shown dynamic phase
control capabilities over multi-octave light spectrum, as a promising candidate for spatial or
temporal manipulation of ultrafast pulses. In addition to being ultra-broadband and programmable,
such a device is low-cost, large-aperture (>50 mm) and un-segmented with a high number of
control points (estimated density of 50 control points per cm2).

Physical modeling of the TOA-SLM by finite element analysis provides insight about the
relative role of distinct physical mechanisms in the TOA-SLM operation. However, making a
model quantitatively predictive is in general difficult, due to poorly known boundary conditions
and uncertainties on the thermal coefficients of the different components of the structure. Beyond
this difficulty though, physical modeling is at best predictive in terms of the final state of a system
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assuming some known input. On the contrary, a practical, reliable and reconfigurable control of
the modulator operation requires to guess which control beam profile must be applied in order
to obtain a prescribed phase profile, which is known as an inverse problem. Even assuming an
extremely simple physical model of the phase modulator in terms of the heat equation, solving
the inverse problem is a long standing question [13], which can be answered analytically only in
very specific conditions (see eg [14]). Even in this case, this would still not take into account
the nonlinearity of the LC thermal response and other, harder to model, details of the device.
To circumvent these difficulties, machine learning can be a suitable approach. We note that the
task to be performed (control the TOA-SLM as a nonlocal and nonlinear dynamical system)
is in principle a control task, for which reinforcement learning for instance could provide an
interesting approach. However, since we are not interested in dynamical control but only in the
stationary state reached by the TOA-SLM under constant operating condition, the task becomes
more of a design task for an optical component with prescribed phase retardation properties.

Machine learning algorithms are currently being developed to address many topics in photonics,
in order to add new functionalities, solve inverse problems and enhance performances, with
applications in ultrafast photonics, photonic sensing or design of photonic structures, to name a
few [15–21]. While the first applications of machine learning to adaptive optics can be dated
back to the early 90’s [22,23], these tools might now be used in every stage of an adaptive optics
system, i.e. intelligent wavefront sensing, wavefront prediction and post-processing [24].

In this paper, we propose the construction and training of a neural network-based statistical
model suitable to provide configurable design of a prototype TOA-SLM [25]. The network is
trained on available experimental data and tested by predicting parameters to generate typical
low-order spatial phase aberrations. The paper is organized as follows: section 2 presents the
experimental methods, section 3 describes the neural network design and training, and the last
section gathers the experimental results, assessing the capacities of our device for low-order
aberrations correction.

2. Experimental methods

2.1. Principle and prototype description

The device is an ultra-broadband reflective spatial light modulator, whose design is issued from
previous investigations on the use of thick cells of thermotropic nematic LCs [26–28]. Unlike
traditional SLMs, no electrode is required, as the modulation of the optical index of the LC
layer is introduced by a local modification of its temperature, itself induced by the absorption
of a control beam. The absorption process generates heat and establishes a localized thermal
gradient in the LC layer by diffusion. The LC being thermotropic and birefringent, both the
ordinary and extraordinary optical refractive indices are locally modulated, with a non linear
dependence on the temperature [26]. As a result, the device is ultra-broadband (validated aver
500nm–2600nm spectral bandwidth) and unsegmented. The phase modulation range can reach
three wave-numbers even at the longest wavelengths. The active area can reach 50 mm, with a
density of control points around 50 pts/cm2. Spatial resolution is limited to a few hundreds of
µm by thermal diffusion, which also limits the commutation time (between 30-60s depending of
the LC layer thickness) and refresh time (about 100ms) [12].

All the tests presented here are realized with a prototype of TOA-SLM with 50 mm lateral
aperture, depicted in Fig. 1(a). The multi-layer structure is composed of: (i) a BK7 window
(2 mm), coated on one side by a 100 nm gold layer and by an AR-coating at 465 nm on the
other side , (ii) a SiO2 window (2 mm) with a broadband AR-coated on one side and uncoated
on the other side. A thin film of polyvinyl alcohol (PVA) is spin-coated on both the gold layer
and the uncoated SiO2 surface, and then rubbed to anchor the molecules in a plane parallel to
the substrate. Finally, a layer of 80 µm of the nematic mixture E7 (Merck) is inserted between
the substrates, in contact with the PVA layers. The gold layer achieves simultaneously partial
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absorption (≃60% absorption) of a control beam at 465 nm and reflection of the probe light. As
shown in Fig. 1(b), thermo-optical addressing is applied from the back of the TOA-SLM, with
a 465 nm fiber-coupled laser diode (2.4 W) propagating through the BK7 substrate. Arbitrary
phase modulation is then achieved by spatially shaping the output of the 465 nm laser with digital
light processing (DLP6500, Texas Instruments). The DLP diffracts two modes: a mode that
reproduces the loaded image and its complementary image. The latter, the complementary mode,
is relay-imaged from the DLP plane onto the metallic layer by a two-lens telescope.

Fig. 1. (a) Design of the TOA-SLM and cross-section of the multi-layer structure (b)
Schematic of the adaptive optical setup characterization. (c) Example of how a DLP pattern
(black parts correspond to a maximum of blue light) enables spatial phase modulation.

2.2. Phase detection

The induced spatial phase modulation is probed by a super-continuum laser (ElectroVisir, Leukos),
with a bandpass filter selecting a spectral bandwidth of a few tens of nm around 800 nm, but
could be replaced by a CW or femtosecond laser source. The beam size is fixed to 10 mm and
the laser polarization is chosen to match the LC extraordinary axis. A beam-splitter enables
pick-up of the reflected beam and the TOA-SLM plane is then relay-imaged with ≃ 3.1 reduction
factor onto a wavefront sensor based on quadri-wave lateral shearing interferometry (SID4-GE,
Phasics) [29]. We underline that an homogeneous phase offset (piston) cannot be measured with
the wavefront sensor. The minimum phase shift that can be detected by the sensor is 0.02λ
(corresponding to an optical path difference of 16 nm). The wavefront acquired without any blue
light applied to the TOA-SLM (phase shift throughout the pupil lower than 0.05λ) is considered
as the reference wavefront and subtracted to forthcoming measurements. For this study, the
maximum stroke of the TOA-SLM is ≃ 0.8λ, i.e. an optical phase difference (OPD) of 640 nm,
which corresponds to a LC refractive index change of 0.005 and a temperature change of 3-4 K,
limited by the power of the available laser diode (here less than 1 W/cm2). For each acquisition,
the wavefront is recorded when the thermal steady state is reached, ie when the wavefront no
longer evolves within the detection limit of the sensor (approximately 1 minute). Between
each illumination, the TOA-SLM returns to the equilibrium (lab. temperature). Figure 1(c)
illustrates how a pattern loaded onto the DLP modulates the introduced spatial phase. As the DLP
complementary mode is imaged onto the TOA-SLM, a local minimum in the pattern (in black)
corresponds to a local maximum of control blue light, which generates heat. The extraordinary
index of the LC material then decreases, which translates as a positive phase-shift detected by
the wavefront sensor. As can be seen in Fig. 1(c), the wavefront pattern in the steady-state
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regime reproduces the applied chess-like amplitude modulation, convolved with a large-scale
background modulation, originating from heat diffusion in the multi-layer structure. The phase
inhomogeneity observed between the center and the edges of the image may result from heat
diffusion at the edges and from the residual inhomogeneity of the writing beam incident on the
TOA-SLM, due to the imperfect reflectivity of the DLP and collection of diffraction orders.

3. Neural network model and training

3.1. Model design

The proposed model is expected to be able to suggest which parametric condition (ie which DLP
profile) must be applied in order to achieve a desired phase profile correction through the thermally
induced refractive index variation. Thus, the network’s task is to solve the inverse problem of the
experiment by outputting (starting from a prescribed two-dimensional wavefront) the numerical
bidimensional pattern which should be uploaded to the DLP device. This pattern will then be
used to spatially modulate the (blue) control beam profile which in turn will locally heat the liquid
crystal modulator to obtain experimentally the prescribed phase modulation. From empirical
observations, it appears that the phase modulation imposed by the patterning beam depends both
on the locally applied power but also on the total applied power in the patterning beam. Thus, a
locally connected network would imply connections over a very large neighborhood, leading
to a huge number of coefficients. We choose instead to build a convolutional network [25],
considering that at least some approximate spatial invariance exist (rotations in particular). We
use the Keras library [30] (a deep learning application programming interface written in Python,
running on top of the machine learning platform TensorFlow) to build a relatively small network
inspired by the U-Net architecture [31] and adapted to the specifics of our data as detailed in the
following. At the input of the network, a layer computes the gradient of the phase image in order
to get rid of the arbitrary homogeneous offset implied by the lack of piston data in the phase
images (see section 2). The following stages of the network consist of a contracting stack of
convolutional and pooling layers followed by an expanding stack of transposed-convolution [32]
and convolutional layers. The contracting and the expanding parts of the network are connected
at two spatial scales by concatenating the output of a convolution layer of the contracting part
with the output of a convolutional layer with the same size in the expanding part (see Fig. 2).
All convolution layers use a Rectifier as nonlinear activation function except the last one which
uses a sigmoid function since the signal sent to the DLP must be between 0 and 1. The kernel
size at each layer is 3 and the number of kernels grows towards the center of the network before
decreasing again so as to obtain a simple bidimensional image between 0 and 1 at the output of
the network. Only a very moderate amount of hyperparameter tuning [33] has been performed
since we aim at a proof of operation and not pushing the network performance to the limits.
Thus, the number of kernels (much smaller than the original U-net [31]) has been chosen so as to
minimize the total number of trainable parameters (2.4 ∗ 105) without appreciable degradation
of the error during training. Two dropout layers (with 20% drop probability) are used in the
contracting part.

3.2. Training

The experimental data available for training consists of 138 wavefront images together with
the DLP pattern which was used to produce the phase images. The amount of training data is
limited by the time needed to reach thermal equilibrium for each acquisition. The DLP patterns
consist of periodic square and line patterns (with different wavelengths and different levels of
gray) and of randomly generated patterns of the superposition of three gaussian bumps with
different maximum value and standard deviation. These two sets of images are randomly mixed
and a subset of 108 couples is kept for training while the remaining 30 will be used for model
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Fig. 2. Network architecture. A contracting-expanding stack of convolutional layers, both
sides being connected via concatenation at two different scales. The output shape is shown
after each convolutional layer, which all use 0-padding to preserve image size. Visualization
done with [34].

validation. Before any other processing, the phase images are downscaled to 256 × 256 pixels,
which is sufficient to accurately sample the spatial phase variations. The DLP patterns are
cropped and shifted so that the central point in the phase images correspond to the central spot
in the DLP pattern. The patterns also undergo a 45◦ rotation to compensate for the positioning
of the DLP device with respect to the wavefront sensor in the experiment. The DLP patterns
are then downscaled to 256 × 256 pixels as the phase images and finally a magnification factor
matching the experimental magnification is applied to DLP patterns.

Since the number of training images is very small (due to the rather time-consuming acquisition
process), data augmentation is required. Although we know that the physics is not perfectly
symmetric with respect to rotations (because of tiny residual anisotropies during fabrication and
imperfection of the relay imaging system) we apply during training random arbitrary rotations
around the geometric center of the images to both the DLP patterns and their corresponding
phase images. As noted above, the system is clearly not invariant by translation since boundary
effects are expected to be strong due to heat flow at the edges, therefore we do not apply synthetic
translations during training. To augment the variability of the training data, we randomly apply
small "swirl transformations" (a local rotation whose angle exponentially decreases with the
distance from the rotation center) to wavefronts and their corresponding DLP patterns. Thanks
to the data augmentation, 1024 examples are shown to the network at each epoch of the training
(and a new set of 1024 is generated at each epoch).

We train the network by minimizing a weighted loss function based on mean squared difference
between the actual DLP pattern and the network-generated pattern, taylored to the physics of the
system and to the data augmentation we use. Since we apply rotations which imply unknown
values at the corners of some images, the mean squared error is weighted by a supergaussian
of order 4 and standard deviation σ = 0.8 in units of image size. As noted in 2, the blue beam
reaching the phase modulator is actually the complementary image of the numerical DLP profile.
Therefore, low values in the DLP control matrix translate into high intensity control beam
reaching the liquid crystal device. Since the refractive index variation is expected to depend
faster than linearly on the control beam intensity, we choose to confer a larger weight to the
regions of large control beam intensity. We achieve this by dividing locally the mean squared
error value by max(0.1, DLP(x, y)) so as to emphasize the regions where the DLP matrix is near
0. Two examples of training data are shown on the top row of Fig. 3. On both images, we show
the DLP pattern in scales of blue and, on top of it, the resulting wavefront in scales of green. The
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annotated circles outline the supergaussian which is used to weight the quadratic error between
prediction and truth during training. On the left picture, one observes that the three distant bumps
in the DLP matrix (which result in three low intensity bumps over a homogeneous background
in the patterning beam) result in a rather smooth gaussian-like wavefront, the rightmost bump
having barely any effect on the phase. On the right image, the diffusion process at play is also
clearly apparent but in this case the phase modulation caused by the DLP pattern is much clearer,
especially in the central area.

Fig. 3. Training data and training results. Top row: two examples of DLP patterns and
the resulting phase profile obtained in the experiment. The anotated circles outline the
weighting used for the loss function during training. Middle row: example of how the model
reproduces training data (i.e. data set seen during the training): from the left phase image,
the model proposes the middle DLP image. The actual DLP image is shown on the right,
with the same color scale. Bottom row: example of how the model predicts validation data
(i.e. data set not seen during the training).

After training (during 160 epochs by batches of 8), the model is able to reproduce very well
the data presented in the training set (middle row of Fig. 3). The weighted RMS error is down to
0.10 on the validation set and correspondingly the model predicts also very well the data used for
validation, ie data which was never shown to the model during training (bottom row of Fig. 3).
Attempts of training with a smaller number of kernels in order to reduce potential overfitting led
to a worsening of the RMS error on the validation set, ie poorer generalization. On a consumer
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grade GPU card (GeForce GTX 1060), the network training takes about one hour. On a desktop
CPU, producing a DLP image from a phase profile takes 130 ms, including the computation time
dedicated to scaling the predicted image and saving it to disk in a format amenable for upload to
the DLP. The actual inference time per image is about 85 ms.

We note that in principle there might be more than one way to achieve a specified phase
profile, so that the problem we try to solve with the neural network is ill-posed. This may make it
impossible for the training process to converge since the network may be exposed to two very
different DLP profiles leading to a single (or very similar) phase profile(s). Trying to minimize
an error in this case would lead to an "average" solution of the two true solutions, which is not a
solution at all. This difficulty, if it arises, can be overcome by a clever approach in form of tandem
networks [20,35]. Here, our data set is so small that we did not have to resort to that method and
the training converged easily because we had no such conflicting solutions in our training set.

4. Results

Section 3 has shown the model ability to predict, after training, with reasonable accuracy the
control beam profile which was used to obtain some wavefront profiles. We now assess the
performance of the whole phase control system (ie the experimental apparatus driven with
guidance of the model) in achieving some prescribed wavefronts, totally outside of the training
and validation sets.

To do so, quantification of the phase data is required. The first metric to quantify a wavefront
is the peak-to-valley value (PtV), that is the maximum phase shift present throughout the pupil.
If the phase is written φ(x, y), then the PtV value is simply expressed as:

PtV = φmax(x, y) − φmin(x, y) (1)

To go further, a usual method consists in decomposing the wavefront as a sum of Zernike
polynomials. The Zernike polynomials form an orthogonal basis over the unit circular aperture.
They are commonly used to describe the low-spatial-frequency wavefront distortions, as the
first polynomials correspond to the principal aberrations occurring in optical systems [36]. The
wavefront is then written as :

φ(x, y) =
N∑︂

(i,j)=1
α

j
iZ

j
i (2)

with αj
i the coefficient of the Zernike mode i, j (i is the polynomial degree and j the azimuthal

frequency), and N the number of modes used for the decomposition (here N=15). The
decomposition allows to better appreciate the contribution of each aberration to the phase profile.
The sensor does not measure the piston, this term (Z0

0 ) is then neglected.
In order to test the efficiency of the neural network, the prescribed target wavefronts are chosen

among the Zernike polynomials, with a given variable phase amplitude (PtV) and different sign.
The quality of the experimental wavefront is then quantified in the following way. For each target,
we visualize the residual phase error by plotting: φtarget(x, y) − φmeasured(x, y). From this image,
we deduce the residual RMS defined as (with Np the number of pixels):

σ =

√︄
1

Np

∑︂
[φtarget(x, y) − φmeasured(x, y)]2 (3)

From this value, the Strehl Ratio (Sr), which quantifies the focal spot degradation due to the
error on the wavefront correction, can be estimated using the Maréchal approximation [37]:

Sr ≃ 1 −

(︃
2π
λ

)︃2
× σ2 (4)
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Finally, each target and measured wavefront is projected on the Zernike polynomials (the tilt
terms, Z−1

1 and Z1
1 , are not shown). The projection allows us to assess the functional error of the

TOA-SLM, through the weight of the unwanted Zernike modes. We thus define a generation
efficiency factor for a given polynomial [9]:

A =
αl

k√︂∑︁N
(i,j)=1(α

j
i )

2
(5)

With k, l the labels of the targeted polynomial.
We first consider the simple case of a parabolic (positive and negative) wavefront. Such

adaptive focusing or defocusing optics can then be exploited for slow thermal lens fluctuations
correction in high average power lasers sytems [10]. The results are displayed in Fig. 4, the
wavefront is featured as an optical phase difference (OPD, in nm). The target corresponds to
a convex, respectively concave, mirror with PtV = 0.4λ = 320 nm. The wavefronts, measured
when applying the predicted DLP pattern, are in good agreement with the targets, with a residual
RMS error of 51 nm and 26 nm respectively. In both cases, the error is minimal at the center of
the pupil, due to the weighted optimization function applied in the algorithm (Fig. 3 top row). In
both cases, the experimental PtV is slightly different from the target. This is explained by the
lack of piston measurement forcing for the network to optimize the phase gradient instead of the
phase itself. For the negative wavefront curvature (i.e. convex mirror, Fig. 4(a)), PtV value is
slightly overreached in the experimental case. Zernike projection shows a dominant Z0

2 mode, as
expected, and minor dispersion in the other modes with A = 0.98. For the positive wavefront
curvature (i.e. concave mirror, Fig. 4(b)), PtV value is slightly lower than the target and an
unwanted Z−2

2 term appears, with a coefficient ratio of 20% of the target mode. This parasitic
term corresponds to a 45◦ astigmatism, visible on the edges of the experimental wavefront. The
asymmetry between the negative and positive curvatures can be understood and originates from
the TOA-SLM and optical setup. First, realizing a temperature profile with positive curvature in
TOA-SLM is more difficult than a negative one, given the wide spatial diffusion of the thermal
gradient [12]. Second, the concave mirror case is more likely to be affected by heat flow at the
edges, as already seen in Fig. 1(c). Nevertheless, a good function efficiency is obtained in both
cases.

Figure 5 displays the results obtained for targeted more complex higher-order aberrations.
Astigmatism (Z2

2) is generated with a target PtV = 0.2λ = 160 nm (Fig. 5(a)). The measured
wavefront after prediction is of very good quality with a RMS error of only 10 nm and A = 0.98.
Trefoil (Z3

3) is also obtained with a low error (20 nm) and good efficiency (A = 0.96, Fig. 5(b)).
The production of such phase pattern with low symmetry orders validates the predictive efficiency
of the network and the training procedure. Finally, the results obtained for spherical aberration
(Z0

4) are shown in Fig. 5(c). This aberration remains usually challenging to produce, due to the
deep phase modulation across the pupil. The RMS is 54 nm for a target PtV = 0.4λ = 240 nm and
A = 0.77. In all three instances, the projection on the Zernike polynomials shows the generation
of a parasitic term of non-negligible relative amplitude: Z0

2 term, which stands for focus/defocus
and comes from the phase error at the edges of the pupil. This error is due on the one hand to the
weighted optimization function described in the former section, but also to the device itself, with
its intrinsic difficulty in keeping the heat generated at the pupil edges.

Table 1 gathers the metrics (PtV, σ, Sr, A) corresponding to all the wavefronts tested in this
study. For all of them, the residual phase error fulfills the Maréchal criterion (Sr>0.8). We have
demonstrated that the developed neural network for TOA-SLM can efficiently generate Zernike
polynomials up to the fourth-order, opening the way for aberration compensation using this
technology, with a correction up to a few hundreds of nm across a 10 mm pupil, limited by the
available blue light power. The generation performance is comparable to other types of thermally
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Fig. 4. Focusing (a) and defocusing (b) mirror (Z0
2 ): targeted wavefront, measured wavefront,

residual phase difference and wavefronts projection of the Zernike modes.

deformable mirrors [9]. Higher-order modes may be compensated by a larger beam aperture, so
as to overcome the limited spatial resolution. Thus, these results endorse the performance of the
neural network as an efficient phase designer, as well as the performances of the TOA-SLM in
terms of wavefront corrections.

Table 1. Metrics from all the wavefronts tested in this study.

Target PtVtarget (nm) PtVexp (nm) σ (nm) (Eq. (3)) Sr (Eq. (4)) A (Eq. (5))

Z0
2 (foc.) (Fig. 4(a)) 320 432 35 0.94 0.98

Z0
2 (defoc.) (Fig. 4(b)) 320 225 30 0.95 0.96

Z0
2 (foc.) 240 430 51 0.86 0.98

Z0
2 (defoc.) 240 169 26 0.96 0.95

Z0
2 (foc.) 160 329 40 0.90 0.98

Z0
2 (defoc.) 160 107 20 0.97 0.94

Z2
2 (Fig. 5(a)) 160 190 10 0.99 0.97

Z1
3 160 220 48 0.86 0.9

Z3
3 (Fig. 5(b)) 240 298 21 0.97 0.96

Z3
3 320 347 23 0.96 0.94

Z0
4 (Fig. 5(c)) 240 237 54 0.83 0.77

Z0
4 160 198 19 0.98 0.9
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Fig. 5. Z2
2 (a), Z3

3 (b) and Z0
4 (c): targeted wavefront, measured wavefront, residual phase

difference and wavefronts projection of the Zernike modes.

5. Conclusion

To conclude, we have proposed the reconfigurable design of a novel thermo-optically addressed
SLM (TOA-SLM) by a neural network. The phase modulation function relies on local heating
of a thick birefringent and thermotropic LC layer, induced by local absorption of a shaped
control beam in a metallic layer. While the physical system in itself is very promising, its
actual use requires overcoming two difficulties. The first is to produce and tune a quantitatively
accurate physical model of the experimental device. This model must include heat diffusion
across a complex multilayer structure with poorly known boundary conditions (LC cell assembly
dependent) and nonlinear thermo-optic effect. The second is to actually guess from that model
what input is needed to achieve a prescribed phase profile. While the first task is difficult but
doable, the second is analytically impossible and therefore would rely on a very time consuming
and unreliable trial and error process based on numerical simulations of the model. In order to
overcome these difficulties, we bypass physical modelling altogether and train a neural network
to solve the inverse problem directly from experimental data.

We have shown that a relatively small convolutional network (about 2.4 ∗ 105 weights) can
be trained very well on the moderate amount of existing experimental data. After training, the
network is capable of accurately predicting (in less than 0.1 s) a control beam profile leading to
many kinds of prescribed phase profiles, as we have illustrated here on convergent and divergent
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mirrors and Zernike polynomials up to the fourth order, with a stroke several hundreds of nm.
While these results (including a generation efficiency above 90%) fully validate the overall
approach, several avenues for improvement exist. First, designing an experimental measurement
capable of providing an accurate piston value would allow for much better prediction capabilities:
the model would then consider the physically relevant absolute values of the phase instead of
only gradients. Second, progressing on a quantitatively accurate physical model would open
the way to transfer learning for the inverse problem after training a network on numerical data
(perhaps including a tandem network approach [20,35]). The neural network approach could
also be used to learn the thermal conditions at the cell boundaries.

Even at the current stage, we have demonstrated that a TOA-SLM device can be accurately
operated thanks to a neural network-based statistical model. This step, together with the ultra-
broadband acceptance of the device and its ability to introduce continuous and deep phase
modulation over a large aperture, opens the way for ultrafast laser aberration compensation using
this new technology.
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