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Modulating Multi-Modal Integration
in a Robot Forward Model

for Sensory Enhancement and Self-Perception
Guido Schillaci, Alejandra Ciria, Egidio Falotico, Bruno Lara, Cecilia Laschi

Abstract—This work investigates how different modalities (i.e.,
visual, proprioceptive, motor) can be optimally integrated by a
humanoid robot during a visual prediction task. A multi-modal
forward model inspired on a work from different authors (Shim
and colleagues, [31]) is adopted for generating visual predictions,
given the motor activity and the context the robot is situated in.

We extend the application of this tool by exploiting its optimal
integration and predictive capabilities in sensory attenuation
processes. According to the predictive brain hypothesis, our
brains make sense of the world by anticipating sensory input
and by enhancing or, on the contrary, filtering out information
according to our expectations, motivations, desires and current
contexts and tasks.

We develop a series of robotic studies in which we focus on the
role of sensory attenuation processes in cognitive development. In
particular, we show how attenuating predicted visual information
may enhance the perceptual capabilities of a humanoid robot in
an object detection task.

Moreover, we analyse the dynamics of the model prediction
and its prediction error during the robot movements. In line with
similar studies, our experiments indicate the mismatch between
visual predictions and observations as a computational candidate
for the study of self-perception and self-other distinction in
artificial systems.

Finally, the capability of the model to re-modulate its multi-
modal integration weights under dynamical environmental con-
ditions is tested. This work analyses the dynamic modulation of
multi-modal integration, proposing this to be also an essential
prerequisite for the development of subjective experience in
artificial systems.

Index Terms—Internal models, multi-modal integration, per-
ceptual optimisation, sensory enhancement, self-perception

I. INTRODUCTION

Prediction has been considered as having a fundamental role
in human cognition and in perception, at least since Helmholzt
proposal of unconscious inferences [16]. In cognitive robotics,
prediction and prediction error are seen traditionally as the
key tool for learning and model updating. However, the
effects of prediction error on perception has not been widely
modeled [20]. Few examples link prediction error directly with
perception [5, 19, 30, 9].
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This work presents a multi-modal forward model for a sim-
ulated iCub humanoid robot.This model allows predicting and
attenuating visually perceived movements, either generated by
the robot or produced by other objects in the environment.
Moreover, sensory attenuation processes are implemented to
enable the robot to maintain the sight of task-relevant objects
that could otherwise be occluded by other moving entities. In
fact, predictive processes can enable a low-cost enhancement
of the perceptual capabilities of the agent. Previous studies
[5, 19] are extended by including external moving objects dur-
ing training and testing, and by analysing the impact of these
events on sensory attenuation. In addition, the proposed model
can modulate the integration of different input modalities (i.e.,
visual, proprioceptive, and motor command). Inspired by the
work of Shim et al. [31] and Patel et al. [23], the proposed
model modulates sensory integration by a set of values that
dynamically weight the importance of the different modalities
for their contribution to visual prediction. The impact of
different modulations in the predictive process during an object
detection task is analysed using a mechanism for extraction
and manual modulation of multi-modal integration weights.

The paper is organized as follows. Sections I-A and I-B
frame out this work within the research on sense of agency in
human and robots, and on perceptual enhancement in robots.
Section II introduces the proposed computational model and
the experiments. Results are discussed in section III. Finally,
section IV draws the conclusions and outlines venues for
further research.

A. Sense of agency and multi-modal integration

During their ontogenetic development, starting in the uterus,
foetuses acquire their own body schema, fundamental for their
efficient action planning and interaction with the environment
[35, 25]. These schemas have been proposed to be composed
of associations of different sensory and motor regions in
the brain. In the scientific literature of the last decades,
inverse and forward models have emerged as the standard
computational candidate to encode them. In the literature on
sense of agency, the forward model is also known as the
comparator model [15].Theories claim that, when a motor
command is executed, an efference copy is generated to predict
the consequences of such action on what is sensed by the
organism. The reafference feedback allows the comparison
between the predicted sensory consequences and the actual
sensory consequences of an action. This comparison provides
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the capability to distinguish sensory changes consequence of
voluntary actions from those generated by external causes. The
comparator model theory claims that this comparison is the
necessary and sufficient condition for the sense of agency.
Under this theory, the resulting magnitude of the prediction
error is directly linked to the sense of agency. Prediction
error is also thought to be behind sensory attenuation and
enhancement depending on the context and the task at hand
[17, 8, 12]. Furthermore, sensory attenuation has been argued
by scholars to be one of the markers of pre-reflective subjective
experience [4, 29, 30, 24, 13, 14] and as one of the pre-
requisites for a sense of object permanence [7, 5, 19].

It has been suggested that reafference can help to understand
the origin of a ‘self’. Reafference is a concept introduced by
von Holst and Mittelstaedt [32] to make a distinction between
the sensed consequences of actions and externally caused
sensations, or exafference. Reafference is a characteristic of
living organisms, offering a mechanism to predict sensory
changes consequence of their actions, such as optical flow
during motion. Proprioception is a basic form of reafference,
which, together with efferent motor signals and visual input,
contributes to the visual self-recognition and, thus, to the sense
of agency [3]. Daprati et al. [11] suggest that the contribution
of proprioceptive feedback for the sense of agency is time-
constrained: while movement is ongoing, a constant monitor-
ing of movement, as well as an actualization of the sense
of agency, are needed. It has been proposed that the central
nervous system adjusts the weights given to the reafference
inflow (e.g. visual and proprioceptive information) and efferent
outflow (i.e. motor commands) to estimate the position and ve-
locity of the hand [33]. Thus, optimal sensorimotor integration
for state estimation is based on previous experiences and on
the noise or reliability of the signals. This is in line with the
idea of a higher weighting of efferent information to rapidly
differentiate ourselves from objects and others when visual
information is not reliable [26]. Here, it is suggested that the
sense of agency can be partially explained by the capability
to accurately predict self-produced sensory changes. A further
clue to the sense of agency can be given by the capability
to monitor prediction errors to dynamically assign weights
to motor, proprioceptive, and visual signals for optimal state
estimation during movement in a task within a context.

In artificial agents, the sense of agency has been modeled
mostly using the magnitude of the prediction error as an
indicator. In Schillaci et al. [28], an artificial agent observes
trajectories performed by itself or by another agent. Given
that the agent is better at predicting the consequences of its
own movements, the magnitude of the prediction error on the
velocity profile indicates the authorship of the trajectories.
In line with this idea, in Schillaci et al. [30], Bechtle et al.
[5], Lang et al. [19], prediction error has been used as the main
marker for distinguishing between sensory data generated by
a humanoid robot and by another entity. A similar paradigm is
adopted here, although tested in a more complex experimental
setting, where multiple moving objects are present in the
scene. In addition, we analyse the dynamic modulation of
multi-modal integration weights, and propose this to be also
an essential prerequisite for the development of subjective

experience in artificial system.

B. Enhancing perceptual capabilities in artificial systems

This work focuses on visual perception in robotics and
on the particular issue of visual occlusions. Despite decades
of development, occlusion is still a challenge, especially for
accurate motion estimation [21]. In computer vision, motion
is estimated through optical flow calculations. Optical flow
can be defined as the flow of visual changes resulting from
the relative motion between an observer and the scene, or
objects in the scene. Detecting and estimating movements is of
crucial importance for any living agent, as well as for robots.
Movements can be produced by different sources, including
the agent itself, and anticipating them is fundamental for
interaction.

Machine learning and computer vision literature on optical
flow estimation is substantial. Robotics studies can be found
addressing different applications, including navigation [34]
and object manipulation [2]. Visual occlusions have been the
subject of interest also for non-engineering sciences. Several
related studies can be found in the developmental psychology
literature, in particular on how infants deal with visual occlu-
sions and how object permanence is perceived. In fact, the
sense of object permanence is considered to be a milestone
in infant development [7]. Likely occurring already during the
firsts months of life, it is through the acquisition of the knowl-
edge that objects persist in the environment, even if they are
occluded, that infants start to form internal representations of
objects and to handle them. Very early stages of development
are already characterised by predictive capabilities, which
infants typically exhibit through anticipatory gaze behaviours
[1] Studies show that infants’ knowledge of the permanence
or non-permanence of objects is embodied in their predictive
tracking [6].

Few robotics studies have linked the investigation on move-
ment estimations with the cognitive development of a sense
of object permanence. Here and in previous work [19, 5],
it is argued that such a capability may be in part the result
of predictive and sensory attenuation processes. Attenuating
expected information – such as visually detected self-generated
movements – could help maintaining the focus of attention
on an object of interest. In this work, a new end-to-end
multisensory model for enhancing robot perpeption and that
deals with self-generated body movements occlusions or body
self-occlusions, as well as with movements generated by other
objects in the environment, is presented.

II. METHODOLOGY

We propose a multi-modal forward model for predicting
changes in the visual field. The model is learnt with sensory
data coming from a humanoid robot and is used for sensory
enhancement and self-perception. The proposed framework
has two distinctive features: first, a mechanism for attenuating
predicted visual changes that are either generated by the robot
itself or by other objects in the scene; second, the capability
to learn the influence that each sensory and motor input has in
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the prediction and how this is modulated to perform selective
sampling of sensory information.

A similar mechanism – i.e., precision weighting – has been
proposed in the predictive processing literature (see [10] for a
review). In precision weighting, information incoming from
different modalities is weighted according to the expected
confidence given a certain task in a specific context [22].
The architecture proposed here is capable of learning such
weights and of modulating them. This is performed through
a mechanism inspired on features extraction processes and
typical of autoencoder neural networks.

The model architecture is inspired by the works of Shim
et al. [31] and Patel et al. [23], which combine convolu-
tional networks with sensor fusion techniques and fusion
weights regularization through auxiliary uni-modal branches
for classification purposes. In their NetGated architecture
[23], authors employ a gating and sensor fusion approach to
integrate different modalities.The authors aim at preventing
sensor failures during a classification task, as interference of
a noisy channel can be gated off when the corresponding
fusion weight is suppressed. A late fusion approach is adopted,
where low-dimensional features extracted through uni-modal
convolutional branches are integrated. Fusing the different
modalities consists of multiplying the uni-modal features with
the corresponding fusion weights. Such fusion weights are
learned through a further extraction process, which is applied
on each uni-modal low-dimensional feature.

However, as noted by Shim et al. [31], similar gating archi-
tectures can lead to inconsistency in the sensor fusion weights.
NetGated may develop unstable fusion weights, which do not
well reflect the relevance of the corresponding modalities in
the specific task. To overcome this issue, Shim et al. [31]
propose a series of variations to the original NetGated architec-
ture.Among the proposed extensions, there is the introduction
of auxiliary uni-sensory processing paths during training, and
of fusion weight regularisation using the losses generated by
such auxiliary branches.

We adopt a similar approach and extend it. First, we develop
a forward model which integrates different sensory inputs
and motor commands using a gating system as proposed
by [31], and that produces predictions about changes in the
visual input. Second, we introduce the possibility to modulate
the fusion weights, in fact regulating the integration of the
different inputs during a prediction step. This is achieved by
overriding the values of the multi-modal integration weights
resulting from the model training with those of additional
inputs passed to the model, when needed. Moreover, model
predictions are combined with upcoming visual inputs, and
used in sensory attenuation processes. The forward model is
characterised by the following inputs and outputs.

Inputs:

• visual input V recorded at time (t), consisting of a 32×32
pixels grayscale image captured from the left camera of
a simulated iCub robot;

• proprioceptive input P recorded at time (t), consisting of
the absolute positions of the 16 joints of the left arm and
hand (including fingers) of the iCub robot;

Fig. 1. An illustration of the implemented forward model and a screenshot
of the humanoid robot iCub.

• motor command M applied at time (t), consisting of a
16-D vector representing the target positions for the same
left arm and hand joints.

Outputs:
• the magnitude of the optical flow (OF) computed between

the visual inputs at time (t) and at time (t+1). The
resulting OF image consists of a 32× 32 pixels matrix.

In the model structure, depicted in Figure 1, each input
signal flows through a sequence of layers in the respective
uni-modal branch. The three uni-modal branches differ from
the type of processed input. The visual branch consists of
a sequence of convolutional, dropout (rate: 40%) and max-
pooling layers terminating on a feature layer of 256 neurons.
The proprioceptive and motor branches consist of sequences
of dense and dropout (rate: 40%) layers, terminating in two
feature layers of the same dimension as the visual one.

Input signals flow through different paths in the feature
layers. The path extracting the multi-modal integration weights
concatenates, first, the three uni-modal 256-D feature layers.
The concatenated tensor is reduced through a series of dense
layers to a 3-dimensional tensor, which is then processed by
a SoftMax layer. This ensures that the output activation of
the three neurons sum up to one. The resulting layer is split
into three single neurons, each representing the weight of
the corresponding modality for the multi-modal integration.
Finally, regularisation of the weight activity is performed.
Multi-modal integration weights are multiplied to the uni-
modal 256-D features extracted earlier, modulating, in fact,
the output of each uni-modal branch. At this point, weighted
multi-modal integration is performed by summing up the
incoming signals. The result of the multi-modal integration
is thus passed through a sequence of dense, reshape and
upsampling layers, until the desired shape (32, 32) of the
model output is achieved.

Importantly, the three uni-modal branches (from the input
layers to the 256-D feature layers) follow also a parallel, aux-
iliary path. In particular, each uni-modal input is mapped to an
exact copy of the model output layer (layers and connections
between them are shared with the main model). This allows
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to calculate auxiliary uni-modal losses and thus to estimate
how efficient is every single modality in generating the desired
output. Hence, the full architecture is characterised by four
outputs: the main model output and three uni-modal branch
outputs. During training, the same optical flow information is
passed to the four outputs of the model.

Model optimisation is performed through an Adam opti-
miser [18]. A loss function that combines the main model loss
with a weighted average of the auxiliary losses is adopted. In
particular, the following loss function has been implemented:

Loss = Lossmain + α ·
N∑

n=1

wn · Lossnaux (1)

where Lossmain is the loss of the main model, α is a
constant (set to 0.5 in the experiments presented here), N
is the number of modalities (i.e., visual, proprioception and
motor), w is the weight used for multi-modal integration and
Lossnaux is the auxiliary loss of the modality n. Each loss
is computed as the mean squared error between the targets
and the predicted outputs. In addition, activities of the three
multi-modal integration weights are regularised as follows:

wn = wn − β · (wn − e−(Lossnaux)
2

) (2)

where β is a constant set to 0.05 in the experiments pre-
sented here, and the exponential is passed through a sigmoid
function. These equations are adapted from [31].

A. Sensory attenuation

We propose a mechanism that combines forward model
predictions and upcoming visual inputs with the aim of
attenuating visually perceived movements.Given the visual
and proprioceptive inputs recorded at time (t) and a motor
command, the forward model generates an optical flow (OF)
prediction, i.e., an prediction of the movements to be perceived
in the upcoming visual input. The predicted and the observed
magnitudes of the OF images are then binarised applying a
threshold to these values. The binarised OF prediction is used
as a mask for the upcoming visual input, V (t+1). In particular,
pixels in V (t+ 1) whose coordinates correspond to those OF
pixels that have maximum magnitude values are attenuated.
Here, attenuation is performed simply by substituting such
pixels with those of a background image that has been stored
at the beginning of the experiment.

In the experiments presented below, we measure sensory
attenuation in an object detection task. In the experimental
setup, a set of nine objects are placed in front of the robot.
These objects are tagged with fiducial markers to ease their
detection, as illustrated in Figure 2. We measure the quality
of sensory attenuation by comparing the number of objects
detected in the observed image – where occlusions due to the
movements of the robot or of other objects may occur – with
those detected in the image where predicted changes in the
image are attenuated. Performances under different training
and test configurations are examined, as well as under different
modulations of the multi-modal integration weights.

Fig. 2. The set of objects positioned in front of the robot.

B. Design of the experiments

A series of experiments has been carried out in which we
analyse different aspects of the proposed model. First, we
trained and tested the model on different datasets, analysing
its learning performance under the different configurations.
Second, we tested the capability of the proposed system
to enhance robot perception in an object detection task (as
described in Section I-B), as well as its capability to charac-
terise self-generated movements by means of prediction errors.
Finally, we measured sensory attenuation and object detection
performance under different modulations of the multi-modal
integration weights.

Three datasets have been collected for training and testing
the model. Each sample of the datasets is characterised by
visual, proprioceptive and motor information grabbed at a time
(t), and the optical flow estimated between the visual inputs
at time (t) and (t + 1). Datasets have been collected under
three different experimental conditions simulated in the iCub
humanoid robot simulator:

• DS1: the iCub robot, alone in the scene, randomly ex-
plores the movements of its left arm, hand and fingers.

• DS2: the robot is moving as in DS1, while coloured balls
fall from the sky from random positions. A new ball is
created every 20 seconds.

• DS3: same conditions as in DS2, but with more simulated
objects (a new ball is created every second).

A set of nine static objects was also present in the scene, as
depicted in Figure 2, during all the data collection processes.
Objects were tagged with fiducial markers to ease their detec-
tion. Each dataset consisted of 25000 samples, gathered with
a sampling rate of 5 samples per second.

We designed a set of experiments combining the use of the
described sample collections either as training or test datasets,
as depicted in Table I1.

Exp.
ID

Training dataset Test dataset

1 DS1 DS1
2 DS1 DS2
3 DS1 DS3
4 DS1 (Phase 0), DS3 (Phase 1), DS1 (Phase 2),

DS1 (Phase 3), DS3 (Phase 4), DS3 (Phase 5)
DS1

5 DS1 (Phase 0), DS3 (Phase 1), DS1 (Phase 2),
DS1 (Phase 3), DS3 (Phase 4), DS3 (Phase 5)

DS3

6 Combined DS1 and DS3 DS1
7 Combined DS1 and DS3 DS3

TABLE I: Design of experiments. Legend: DS1: iCub alone
in the scene; DS2: iCub and balls falling in the scene; DS3:
iCub and many balls falling in the scene.

1When adopted as training dataset, 95% of the total 25000 samples in
the corresponding collection were used, whereas only 5% of the total 25000
samples was used if adopted as testing dataset. Datasets were shuffled
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Experiments 1, 2 and 3 have been carried out to test whether
prediction errors can be used as a means to detect changes
in sensory information that are not produced by the robot
itself. In particular, three models are trained with the same
dataset (DS1: iCub alone in the scene), however each one of
them is tested with a different test dataset (DS1 in experiment
1; DS2 in experiment 2; DS3 in experiment 3). We expect
prediction errors to be, in average, higher in exp. 2 and 3 –
where moving objects are present in the scene – than in exp.
1. This study extends the experiments presented by Bechtle
et al. [5] and Lang et al. [19] by adopting a more complex
computational model and experimental setup. In addition, a
sensory attenuation and object detection experiment has been
carried out for each of the models trained as in Table I. We test
the contribution of sensory attenuation processes in enhancing
robot perception: attenuating self-generated movements, or
those generated by other entities, allows detecting objects even
if they are occluded in the raw visual input. In experiments
4 and 5 (see Table I), the proposed forward model has
been exposed, sequentially, to sensorimotor data belonging to
different training datasets. Each of these experiments consisted
of six training phases. The training dataset was changed for
each phase. The aim of these experiments is to analyse the
re-modulation of the multi-modal integration weights of the
model during the learning process. We expect the model to
adapt to such dynamic circumstances, and to re-modulate its
MIW when visual information becomes too unreliable to be
used for predicting upcoming sensory input, as occurring in
DS3. Finally, experiments 6 and 7 have been carried out using
both DS1 and DS3 as training datasets.

Each experiment has been run 10 times. A run consisted
of a 10-epochs offline training session, where batches of 32
samples were processed in each training iteration. Moreover,
in each experiment we quantify the impact of multi-modal
integration weights modulation onto the attenuation process.
In particular, we analysed the object detection performance
of each model on images of the corresponding test dataset,
under the following configurations: (i) no sensory attenuation
is carried out; (ii) sensory attenuation is performed using the
model’s prediction – i.e, using the multi-modal integration
weights resulting from the model training (MIW from now);
(iii) sensory attenuation is performed using the model’s pre-
diction resulting from manually modulating the multi-modal
integration weights. In this last configuration, six different sets
of weights have been tested, as described in Table II. Object
detection performance has been measured as the average num-
ber of objects detected in the given image dataset. The results
of the experiments are described in the following section.
Datasets, scripts for setting up the experimental environment
and source code are openly available2.

2Source code is available here: https://github.com/guidoschillaci/icub
perceptual optimisation.git. Tensorflow 2 has been used. Datasets are available
in the Zenodo platform [27].Experiments have been tested on different
platforms, including an NVidia Jetson Nano and cloud computing resources
– gently offered by the OCRE (EU-H2020 Open Clouds for Research
Environment) project. Scripts for setting up Docker environments for the
different platforms are also available at the provided links.

visual proprio motor
WS0 0.6 0.3 0.1
WS1 0.5 0.3 0.2
WS2 0.3 0.4 0.3
WS3 0.45 0.1 0.45
WS4 0.2 0.3 0.5
WS5 0.1 0.3 0.6

TABLE II: Custom multi-modal integration weights sets (WS0-
6 from now) tested in the object detection experiments.

III. RESULTS

A. Experiments 1, 2 and 3

Experiments 1, 2 and 3 have been carried out to test whether
sensory attenuation is better when objects are occluded by self-
generated changes in the visual input than when they are due
to other external moving objects (falling balls). Three models
are trained with the same dataset (DS1: iCub alone in the
scene), and tested with DS1, DS2 and DS3, respectively. The
mean validation loss for each of the 10 epochs of the 10 runs
has been compared over the experiments (see Fig. 3).

We used a one-way Welch’s Heteroscedastic F Test with
Trimmed Means and Winsorized Variances for independent
samples to test for equal means (Welch’s Test in what follows).
The Welch’s Test showed a significant difference in the valida-
tion loss across the experiments 1, 2 and 3, F (2, 145.438) =
3846.481, p < 0.0001. The post-hoc paired comparisons using
a Holm correction showed a significant difference in validation
loss between exp. 1, M = 4.69e−05, SD = 1.15e−05,
and exp. 2 (DS2, M = 8.31e−05, SD = 1.47e−05, p <
0.0001), between exp. 1 (DS1) and exp. 3 (DS3, M =
0.0003769, SD = 2.87e−05, p < 0.0001), and between exp.
2 (DS2) and exp. 3 (DS3, p < 0.0001). In line with the
theories presented in section I and the results presented by
Bechtle et al. [5] and Lang et al. [19], prediction errors were
significantly lower in exp. 1 where the iCub was alone in the
scene than exp. 2, where there were also other moving objects,
and even to a greater extent when the rate of the presence of
other moving objects increased, as occurred in exp. 3. In other
words, average prediction error was significantly lower when
the iCub was observing only its own movements.This supports
the idea that prediction errors of a multi-modal forward model
can be used as a cue for detecting activities performed by other
individuals and, ultimately, for distinguishing self-generated
sensory consequences from those generated by others.

Figure 4, shows the results of the object detection tests
for exp. 1, 2 and 3. Each sub-figure shows a series of plots
illustrating the mean number of objects detected in the original
images and in those processed after sensory attenuation for
each WS. In general, as can be seen in Figure 4, a perceptual
enhancement of the objects occurred using the MIW resulting
from the model training, as well as with the six custom multi-
modal integration weights sets (WS0-5), in comparison to
the number of objects detected where no sensory attenuation
occurred (i.e, baseline condition).
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Fig. 3. Loss (blue plots) and validation loss (orange plots) of exp. 1, 2 and
3.

In addition, an object detection statistical analysis has been
carried out, where optical flow predictions were generated
using the MIW, as well as using the WS0-5 (Table I). We
tested the contribution of the sensory attenuation processes
in enhancing the robot object perception. Specifically, we
tested if attenuating visually perceived movements, either self-
generated or generated by other entities, allows detecting
objects even if they are occluded in the raw visual input.
The quality of sensory attenuation and the object detection
performance under different configurations and multi-modal
integration weight modulations was measured and analyzed.
The mean of the total ‘object detected’ without any sensory
attenuation was used as a baseline, and the differences on the
‘objects detected’ was calculated for each experiment. Thus,
the data used for the statistical analysis was the result of
subtracting the observed mean of each of the ten epochs of the
ten total runs minus the corresponding baseline mean of each
experiment. A total of 100 mean differences were calculated
for each experimental condition, the MIW, and each one of the
six WS0-5 (Table II), in each one of the three experiments.

Fig. 4. Mean and standard deviation of objects detected in experiments 1, 2
and 3 over training epochs and applying sensory attenuation using the MIW
and W0-5 (Table II). The blue line over training epochs, represents the baseline
of objects detected, which is the mean of objects detected in the test image
dataset for each experiment. The baseline is constant, as no sensory attenuation
occurred and occlusions, due to robot movements or objects motion, may have
occurred.

In exp. 1, the Welch’s test showed a significant difference
in the objects detected between the conditions F(6, 245.343) =
9.652, p < 0.0001. The post-hoc paired comparisons using a
Holm correction showed a significant difference in the objects
detected between the MIW (M = 0.434, SD = 0.222) and
the WS5 weights set (M = 0.276, SD = 0.169). This suggests
that the dynamic MIW outperformed the WS5 weights set
(vision: 0.1, proprioception: 0.3, motor: 0.6). There were no
significant differences in the objects detected between the
MIW and the other remaining five different custom multi-

modal integration weights sets.3 Contrary to exp. 1, the
Welch’s test in exp. 2 (F (6, 245.350) = 1.524, p = 0.17), as
well as in exp. 3 (F (6, 245.677) = 0.114, p = 0.99), showed
no significant differences in the objects detected between the
conditions.

From the trends depicted in Figure 4, it seems that the
more the visual modality becomes noisy the more the model
tends to rely to a greater extent on the motor modality. This
trend could explain why, in exp. 1, a statistically significant
difference was observed in the comparison between the object
detection performance of the MIW and that of the model using
WS5. This suggests that, when the visual modality is reliable,
up-weighting the motor modality to predict the optical flow
produces a worse sensory attenuation – and thus worse object
detection – performance. Although the rest of the comparisons
were not statistically significant, promising trends can be
observed in Figure 4, where in exp. 2 and 3, the performances
of WS5 becomes closer to those of the main model, suggesting
that the MIW increased to some extent the weights assigned
to the motor modality.

Finally, two qualitative analyses on how the system mod-
ulates, during testing, the dynamic multi-modal integration
weights were performed. The first analysis used a sample
sequence of the iCub moving its arm occluding the objects
(Figure 5), and the second, using a sequence of the iCub hand
leaving the field of view of the robot camera (Figure 6). The
aim of these qualitative analyses was to elucidate how the
visual, proprioceptive, and motor weights were dynamically
adjusted as a result of an incremental occlusion of the objects
caused by a self-generated movement, as well as the opposite
situation. First, as the robot arm incrementally occluded the
objects throughout the movement, the proprioceptive and
motor modalities weights were dynamically adjusted to be
more influential for predicting the optical flow (see third
row of Figure 5). It is plausible to think that, given the
ample movement of the robot arm, proprioceptive and motor
information needed to be highly weighted to correctly predict
the OF product of self-generated movements.

Fig. 5. A sample sequence showing the dynamics of the MIW while the robot
hand is entering the field of view of the robot camera. The first row shows the
observed images v(t+ 1); the second row shows the observed OF; the third
row shows the MIW; the fourth row shows the OF predicted by the model;
finally, the fifth row shows the image resulting from the sensory attenuation.

In the second test, the iCub hand is leaving the field of view
of the camera. At the beginning of the sample sequence (see
Figure 6), the visual weights increased because the hand is

3The post-hoc paired comparisons of the MIW performance on the mean
‘objects detected’ between the six different custom multi-modal integration
weights sets were of special interest for the present work. Therefore, only the
post-hoc paired comparisons between the main model and the six different
custom weights sets are reported.
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almost out of the field of view. Then, the hand appeared again
in the field of view and as a consequence the multi-modal
weights were almost equally weighted. However, while the
hand disappeared from the visual field throughout the sample
sequence, the visual weights remained high.

Fig. 6. A sample sequence showing the dynamics of the MIW while the
robot hand is leaving the field of view of the robot camera.

B. Experiments 4 and 5

The aim of experiments 4 and 5 was to analyse the potential
re-modulation of the MIW during the learning process, chang-
ing training dataset over six phases during the experiment.

Fig. 7. Loss and validation loss of experiments 4 and 5.

Figure 7 shows the trends of the loss of the model using
MIW in exp. 4 and 5, in each one of the six training phases
with their respective training dataset (DS1, DS3, DS1, DS1,
DS3, and DS3). Additionally, in Figure 7 the validation loss is
shown for the dataset tests DS1 and DS3 used in exp. 4 and in
exp. 5, respectively. Interestingly, even when both experiments
were trained using the same sequences of datasets within
phases, in exp. 4 the validation loss outstandingly outperforms
the validation loss obtained in experiment 5. These findings
can be interpreted as the model being able to learn and dis-
sociate the visual consequences of self-generated movements
and thus accurately predict the OF of these changes in all the
test phases. In exp. 5, the validation loss curve shows that the
model was not as good in predicting the optical flow caused
by other sources than the robot. Although in phases 1, 4, and
5, the validation loss is lower than the loss during training, the
prediction error is considerably higher in these phases than in
exp. 4. Moreover, in exp. 5, the validation loss curve bumps
within phases and only showed a tendency to decrease in the

first two phases. This further supports the idea that prediction
errors of a multi-modal forward model can be used as a cue for
distinguishing self-generated sensory consequences from those
generated by others, also in dynamic contexts. As expected,
the model was able to adapt to dynamic circumstances, for
instance, to re-modulate its weights when visual information
became too unreliable to be used for predicting upcoming
sensory input, as when being trained with DS3.

Figure 8 shows the average object detection rates in exp.
4 and 5. In comparison with the baseline, an enhancement
of the robot visual perceptual capabilities when applying
predictive and sensory attenuation processes can be seen in
all the experimental conditions. Additionally, a tendency for
switching the MIW can be seen depending on the dataset used.
In both tests using the DS1 (exp. 4) and DS3 (exp. 5), the WS
with high vision weights, such as WS0 and WS1, tended to
decrease their performance in phases 1, 4, and 5, where DS3
(whose samples have noisy visual inputs) was used during
training. On the contrary, WS4 and WS5, i.e. the sets with high
proprioceptive and motor weights, tended to perform better in
those phases.

Fig. 8. Means of object detection in experiment 4 and 5 using DS1 and DS3
respectively.

As in previous experiments, a statistical analysis on the
mean object detection has been carried out. For each phase,
a total of 100 mean differences were calculated for each
experimental condition, the MIW and each WS. In exp. 4,
in its phase 0, the Welch’s Test showed a significant differ-
ence in the objects detected between experimental conditions
F(6, 244.968) = 3.039, p = 0.009. Although there were
significant differences between some of the post-hoc paired
comparisons, none of them were between the dynamic MIW
and the six WS shown in Table III. In phase 1, there were
significant differences F(6, 242.956) = 32.390, p < 0.0001.
The post-hoc paired comparisons showed that the dynamic
MIW significantly outperformed all the six WS. In phase 2,
there were also significant differences F(6, 243.565) = 31.337,
p < 0.0001. However, contrary to phase 0 and 1, in the post-
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hoc paired comparisons, the WS2 weights set (M = 0.574,
SD = 0.073) performed equally well as the dynamic MIW
(M = 0.571, SD = 0.072; p = 1.0). The same pattern of
results were observed in phase 3 (F(6, 243.508) = 26.241,
p < 0.0001), the WS2 weights set (M = 0.584, SD = 0.090)
performed equally well as the dynamic MIW (M = 0.579,
SD = 0.090; p = 1.0), but here, also the WS4 weights set
(M = 0.547, SD = 0.109; p = 0.14). Finally, in phase 4 and
5 significantly differences were found F(6, 239.687) = 40.078,
and F(6, 238.417) = 36.647, respectively. In both phases, the
post-hoc paired comparisons showed that the WS5 weights set
(phase 4: M = 0.606, SD = 0.086; phase 5: M = 0.606,
SD = 0.092) performed equally well as the dynamic MIW
(phase 4: M = 0.571, SD = 0.072; phase 5: M = 0.594,
SD = 0.071; p = 1.0).

Table III relates to exp. 4 and shows that the model re-
adapted its MIW when switching training dataset. In phase
2 and 3, the model adjusted its MIW to perform as in those
weights sets where proprioceptive and motor modalities have
more influence than the visual one. Yet, the visual modality
still has an influence in predicting on DS1. When the visual
modality becomes too noisy during training (DS3), as in
phases 4 and 5, the model seems to rely more on the motor
modality. This trend can explain why, in phase 4 and 5, the
WS5 weights set performed equally well as the dynamic MIW
to predict on DS1.

Exp 4 Ph. 0 Ph. 1 Ph. 2 Ph. 3 Ph. 4 Ph. 5
Train DS DS1 DS3 DS1 DS1 DS3 DS3

Model vs WS0 n.s *** *** ** *** ***
Model vs WS1 n.s *** ** ** *** ***
Model vs WS2 n.s *** n.s. n.s. *** ***
Model vs WS3 n.s *** *** *** *** ***
Model vs WS4 n.s ** ** n.s. *** ***
Model vs WS5 n.s ** *** *** n.s. n.s.

TABLE III: Comparisons of means of object detection with
DS1 as test set in experiment 4. (Ph.: phase)

In exp. 5, the Welch’s test showed that the difference in
the objects detected between experimental conditions in phase
0 was not statistically significant (F(6, 245.702) = 0.946,
p = 0.46). Therefore, post-hoc paired comparisons were not
performed, nor reported in Table IV. In phase 1, there were
statistically significant differences (F(6, 238.699) = 20.872,
p < 0.0001). The post-hoc paired comparisons showed that
the dynamic MIW (M = 1.399, SD = 0.473) significantly
outperformed all the WS, except for the WS5 weights set
(M = 1.43, SD = 0.482; p = 0.17). In phase 2, there were
also statistically significant differences (F(6, 245.274) = 2.804,
p < 0.0001). Although there were significant differences
between some of the post-hoc paired comparisons, none of
them were between the dynamic MIW and the custom WS
as shown in Table IV. In phase 3, the difference was not
statistically significant (F(6, 245.422) = 0.343, p = 0.91),
as in phase 0, hence post-hoc paired comparisons were not
performed. Finally, in phase 4 and 5, statistically significantly
differences where found F(6, 237.872) = 18.343, p < 0.0001,
and F(6, 235.715) = 25.749, p < 0.0001, respectively. As
in phase 1, in phase 4, the dynamic MIW (M = 1.417,
SD = 0.477) significantly outperformed all the WS, except

for WS5 weights set (M = 1.445, SD = 0.488; p = 1.0).
However, in phase 5, although the dynamic MIW (M = 1.418,
SD = 0.478) significantly outperformed all the WS, the WS5
weights set was outperformed the dynamic MIW (M = 1.453,
SD = 0.489; p = 0.01).

Exp 5 Ph. 1 Ph. 2 Ph. 4 Ph. 5
Train DS DS3 DS1 DS3 DS3

Model vs WS0 *** n.s. *** ***
Model vs WS1 *** n.s. *** ***
Model vs WS2 *** n.s. *** ***
Model vs WS3 *** n.s. *** ***
Model vs WS4 ** n.s. ** ***
Model vs WS5 n.s. n.s. n.s. **

TABLE IV: Comparisons of means of object detection with
DS4 as test set in experiment 5. (Ph.: phase)

C. Experiments 6 and 7

The aim of experiments 6 and 7 was to test if the dissocia-
tion between visual changes produced by self-generated move-
ments and changes that are externally produced in changing
contexts can occur when different datasets are combined in the
same training phase. This experimental manipulation can be
understood as being exposed to a noisy context, where abrupt
visual external changes can suddenly occur, and the occurrence
of these changes is not predictable. For the simulation of this
type of context, DS1 and DS3 were combined and randomly
presented during training. DS1 was adopted as test dataset for
exp. 6 and DS3 as test dataset for exp. 7. Figure 9 shows the
trends of the loss and the validation loss of the model under
the different experimental conditions, as depicted in Table I.
The Welch’s test showed that the difference in the validation
loss between exp. 6 and 7 was statistically significant (F(1,
79) = 209.645, p < 0.0001). As expected, the prediction error
was significantly lower when the iCub was observing its own
movements (DS1) than when there were other objects moving
in the environment (DS4), despite during training the model
was exposed to both datasets equally likely. This finding can
be interpreted as the model being able to dissociate the self-
generated visual changes from the externally visual changes
and to accurately predict the resulting optical flow of its
movements.

Fig. 9. Loss and validation loss of experiments 6 and 7.
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Fig. 10. Comparison of the object detection tests between experiments 6 and
7.

Figure 10 shows the results of the mean object detection
tests for exp. 6 and 7, depicted in Table I. As in the previous
experiments, an enhancement of the robot visual perceptual
capabilities for object detection can be seen in all the experi-
mental conditions of both experiments in comparison with the
baseline. Results of the statistical analyses of the comparisons
of object detection under the different configurations are
reported in Table V.

Exp. 6 Exp. 7

Model vs WS0 * ***
Model vs WS1 * ***
Model vs WS2 n.s ***
Model vs WS3 * ***
Model vs WS4 n.s n.s
Model vs WS5 n.s n.s

TABLE V: Comparisons exp. 6 and 7

In exp. 6, the Welch’s test showed a statistical signifi-
cant difference in the objects detected between experimental
conditions (F(6, 241.557) = 4.372, p = 0.0003). The post-
hoc paired comparisons indicate that the WS2 weights set
(M = 0.495, SD = 0.115; p = 0.51), the WS4 weights set
(M = 0.511, SD = 0.097; p = 0.91), and the WS5 weights
set (M = 0.511, SD = 0.101; p = 0.31), performed equally
well as the dynamic MIW (M = 0.534, SD = 0.071). In exp.
7, a similar pattern of results was observed4.

Therefore, in exp. 6, the dynamic MIW tended to rely
mainly on proprioceptive and motor modalities, but also
recruited the visual modality, as for the WS2 weights set.
Interestingly, in exp. 7, where DS3 was used as test dataset, the
model tended to rely on proprioceptive and motor modalities
to a greater extent, likely due to the fact that the visual
modality was not as reliable as in exp. 6. Therefore, when
the model was trained under a noisy context, where abrupt
visual external changes occurred suddenly, and the occurrence
of these changes were not predictable, the multi-modal trained
weights tended to be higher on the proprioceptive and motor
modalities. However, it is important to highlight that during
training there were also data examples that were not noisy
and only self-generated visual changes occurred, and even in

4A statistical significant difference occurred among experimental conditions
(F(6, 243.472) = 19.166, p < 0.0001), but here, only the WS4 weights set
(M = 1.388, SD = 0.285; p = 0.095), and the WS5 weights set (M =
1.436, SD = 0.292; p = 1.0), performed equally well as the dynamic MIW
(M = 1.441, SD = 0.282).

some examples non visual changes occurred (DS1). In this
examples, the model should up-weight the visual modality as
can be seen in Figure 6, which can explain why the model,
when being tested with DS1 performed equally well as the
WS2 weights set.

IV. CONCLUSIONS AND FUTURE WORKS

This work has presented a computational model for multi-
modal integration in a simulated humanoid robot. The model
allows anticipating and attenuating movements from the visual
input that are either self-generated by the robot or gener-
ated by other objects. Thanks to these processes, the visual
perceptual capabilities of the robot can be enhanced. Here,
sensory enhancement has been tested on a experiment on
object detection and object permanence: through anticipation
and attenuation processes, objects that are originally occluded
by self-generated movements or those generated by other
entities can be maintained in the field of view of the robot.
The results presented in this study are in line with the idea
that a sense of object permanence, an important capability
acquired by infants during early developmental stages, may
rely in part on predictive processes. Moreover, the prediction
errors generated by the computational model under study can
be used to characterise parts of the visual inputs as produced
by the robot itself or by other objects as demonstrated by exp.
1, 2, and 3. This is a fundamental capability for self-perception
and for self-other distinction.

An important feature of the computational model pro-
posed here is the capability to extract multi-modal integration
weights. This is the capability to learn how influential each
input modality is in the process of predicting an upcoming
visual input. We extended a model proposed by Shim et al.
[31] and Patel et al. [23], providing the possibility to manually
modulate the multi-modal integration weights, and analysing
the model’s capability to learn these features and to adapt them
to dynamic environmental circumstances.

The observed trends in the modulation of multi-modal
integration suggest different interesting venues for further
research. The current process for attenuating expected move-
ments from the visual input is based on the binarisation of the
magnitude of the optical flow. This introduces an additional
error that may bias the attenuation and object detection per-
formances – which depend on the chosen threshold. Further
work should test a more robust and comprehensive algorithm
for combining predicted and observed optical flows and for
allowing also partial attenuation. The direction of the move-
ments could also be taken into account in the predictive model.
Moreover, a better mechanism for encoding the background
images should be considered. Convolutional networks could
be used to encode the current background and context into
a short-term and working memory representation. This would
allow also extending the algorithm to support head movements,
which are likely to produce dense optical flow information
over the whole visual input. Moreover, measures to allow an
incremental learning of the model and to prevent catastrophic
forgetting issues in the dynamic context tests should be
adopted. More complex object detection scenarios could be
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also developed. Nonetheless, multi-modal integration should
be also validated on an experiment that is agnostic to the
object detection task. For instance, the comparisons between
the multi-modal integration using weights resulting from the
model training and the custom multi-modal integration weights
could be also tested on the raw prediction error of the model.
Moreover, custom multi-modal integration weights, not fixed
for the entire duration of the test sequence, should be tested.
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