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Abstract

We consider a stylized model for investment into renewable power plants under long-term
uncertainty. We model risk-averse agents facing heterogeneous weather conditions and a common
noise including uncertainty on demand trends, future fuel prices and the average national weather
conditions. The objective of each agent is to maximize multistage profit by controlling investment
in discrete time steps. We analyze this model in a noncooperative game setting with N players,
where the interaction among agents occurs through the spot price mechanism. Our model extends
to a mean field game with common noise when the number of agents is infinite. We prove that the
N -player game admits a Nash equilibrium. Moreover, we prove that under proper assumptions,
any sequence of Nash equilibria to the N-player game converges to the unique solution of the MFG
game. Finally, our numerical experiments highlight the impact of the risk aversion parameter and
emphasize the difference between our model which captures heterogeneity and representative agent
models.

Keywords: Stochastic control, Mean field games, Nash equilibrium, Renewable energy,
Electricity markets

AMS subject classifications: 91A50, 49N80, 91A16, 91A80, 91A07

1 Introduction

1.1 Context and objectives

The achievement of carbon neutrality by 2050 requires significant and prompt reduc-
tions of emissions in the energy sector (Pörtner et al., 2022). Energy-related emissions
contribute to nearly 75% of global greenhouse gas emissions (Friedlingstein et al., 2022).
Decarbonization of the electricity sector offers a promising solution, given the considerable
cost reductions of variable renewable energy (VRE) sources over the last decade, which
have rendered them a competitive alternative to fossil fuel power plants. Furthermore,
the electrification of heating and transportation sectors could further reduce greenhouse
gas emissions related to energy by replacing the use of fossil fuels with electricity. Conse-
quently, most energy transition scenarios rely on heavy investments in low-carbon assets,
including renewable power plants, such as onshore and offshore wind turbines, solar pan-
els, and biomass, to attain the necessary emissions reductions (IEA, 2022). Understanding
whether market rules and regulatory arrangements in the energy sector allow to follow such
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scaling up of renewable investments is therefore a key issue for policy makers today (Fabra,
2021).

Prospective models investigating investment in the energy sector – and more specifically
in renewable power plants – should strive to include some essential features. Since the
liberalization of the electricity sector, investment decisions are made by private risk-averse
players, and are subject to a significant amount of uncertainty (Ostrovnaya et al., 2020).
Future evolution of electricity markets is uncertain, regarding in particular future levels
of electricity demand, evolution of power mix and market design, technology costs, fuel
costs, or public policy. With increasing renewable penetration and subsequent decline
in VRE unit revenues due to the cannibalization effect (López Prol and Schill, 2021),
the impact of uncertainties related to weather and demand variability is also becoming
increasingly important to understand and to account for (Staffell and Pfenninger, 2018).
Such variability includes different time scales, going from very short-term volatility (hourly
scale) to inter-annual variability (López Prol and Schill, 2021). All uncertainties translate
into electricity price risk, and variable and uncertain profits, thus impacting the decisions
of risk-averse investors.

Moreover, such investors are numerous and may have different characteristics, such as
their geographical location, their level of risk aversion or their technology preferences. It
is therefore important to allow for the representation of many competing heterogeneous
agents who may share common features (such as national weather conditions) (Anwar
et al., 2022). In particular, the question of whether renewable support systems such as
feed-in tariffs and feed-in premiums should be geographically differentiated in order to
avoid a higher concentration of renewable energy technologies in most productive areas
(such as sunny or windy areas) has been raised (Butler and Neuhoff, 2008). Indeed, such
geographical concentration could lead to congestion, increased costs in the longer term and
decreased energy supply security.

Long investment horizons (several decades) require consideration of multiple investment
decision periods to account for transformation pathways (Fraunholz et al., 2023). It is also
essential to develop tractable models with effective numerical tools to analyze and use the
results.

Finally, one could expect to have theoretical guarantees on the properties of the model
output, such as whether the trajectory conforms to a Nash equilibrium, although it may be
not required by some authors interested in studying systems out of equilibrium. This last
feature distinguishes simulation models from optimization models. Our goal in this work is
to incorporate many of these desirable features into a new model investigating investment
in renewable power plants.

Three main approaches have been used to develop prospective models for the evolution
of the energy sector.

First, equilibrium models are optimization models where the individual profit maxi-
mization problems of the different market players are solved simultaneously to obtain a
Nash equilibrium (Ehrenmann and Smeers, 2011). Equilibrium models generally allow to
represent different categories of uncertainties through a scenario-based approach. While
such models can theoretically include various agents with heterogeneous characteristics
and multistage investment decisions, their numerical complexity strongly limits the actual
number of agents which can be considered (Mays et al., 2019). Equilibrium models are
also mostly two-stage, thus not representing transformation pathways.

Second, agent-based modeling (ABMs) represent a new and widely used approach in
the energy sector. ABMs provide a bottom-up description of a complex, evolving system
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in which agents interact through a prescribed set of rules (Farmer and Foley, 2009). They
allow the representation of heterogeneous agents and a very high degree of realism in de-
scribing market structure and real-world aspects such as asymmetric information, collective
learning, or market power (Weidlich and Veit, 2008; Tesfatsion, 2018). However, mimicking
real-world behavior and realistic markets with a high level of detail quickly leads to numer-
ically intensive simulations and less transparent modeling. Moreover, ABMs are simulation
models, not optimization models. Therefore, they do not provide theoretical guarantees for
characterizing the model output, for example proving that it is a Nash equilibrium from
which no agent has an interest to deviate.

Lastly, a more recent approach coming from the applied mathematics community is
mean field games (MFGs), which were introduced in Lasry and Lions (2007). They are
stochastic games where an infinite number of agents interact symmetrically through the
average density of the players. MFG models therefore include by design a continuum of
agents, and the mathematical framework also allows to derive strong theoretical guaran-
tees, such as the existence of a Nash equilibrium. However, such complex mathematical
framework may require sacrificing model realism or interpretability, and the MFG litera-
ture lacks effective numerical tools to analyze the model outputs in more complex settings
than the linear quadratic setting.

Our goal is to provide a middle way approach trying to include as many of previously
listed features as possible to model investment into renewable power plants by heteroge-
neous agents under long-term uncertainty and risk aversion. Our approach relies on the
MFG framework, thus allowing by essence the representation of numerous heterogeneous
agents and deriving theoretical guarantees regarding existence of a Nash equilibrium and
convergence of the N -player game towards the limiting MFG. On the other hand, we strive
to provide a realistic and interpretable model, where many sources of uncertainties are
included, where the specificity of renewables variability is captured, and which is numeri-
cally tractable. Before explaining in detail our original contributions to the topic, we shall
first give the state of the art with the previously introduced three approaches, both on the
modeling viewpoint and the mathematical analysis viewpoint.

1.2 State of the art in energy economics and MFGs

Equilibrium models were firstly developed in response to the need to adapt traditional cost
minimization problems taking the perspective of a social planner to the new competitive
investment environment, with rising uncertainties and overwhelming risk (Ehrenmann and
Smeers, 2011). While the theoretical framework for such models is introduced with an
arbitrary number of agents, numerical experiments are often made with very few players,
for example two players in Mays et al. (2019) and Abada et al. (2017) and three players in
Ehrenmann and Smeers (2011). All such papers also consider a two-stage setting, and while
Ehrenmann and Smeers (2011) highlights that extending this to a multistage setting is not
conceptually difficult, this would result in a exponential increase (in the number of stages)
of computational effort. Ambrosius et al. (2020) explore the interaction between different
electricity market designs and risk aversion in a stochastic multi-level equilibrium model.
To circumvent the problem mentioned above of computational complexity of representing
multiple agents, the authors make the quite demanding assumption that financial markets
are complete, thus simplifying the equilibrium decisions into welfare-maximizing decisions.
The same hypothesis is made in Munoz et al. (2017) and Möbius et al. (2021). However,
this assumption does not hold in real electricity markets, where there are for example no
long-term contracts to cope with risk management over several years (Abada et al., 2017;
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de Maere d’Aertrycke et al., 2017).
As mentioned above, ABMs allow for greater level of detail in the modeling of wholesale

electricity markets than equilibrium models, and can include heterogeneous agents (Tes-
fatsion, 2018). Such models have been used to investigate the interdependencies between
risk aversion and market design. They studied more specifically the effects of uncoordi-
nated changes in market design in a multi-country model (Fraunholz et al., 2023), the
impact of imperfect information and firms’ heterogeneous attributes (Anwar et al., 2022),
and the effect of investors’ risk aversion on the performance of support schemes (Fagiani
et al., 2013). Many sources of uncertainty can be included in such models, such as load
growth (Botterud et al., 2007; Kell et al., 2019; Anwar et al., 2022), inter-annual weather
variability (Petitet et al., 2017; Fraunholz et al., 2023), fuel prices (Fagiani et al., 2013;
Kell et al., 2019; Chen et al., 2018) and carbon prices (Kell et al., 2019; Chen et al., 2018).
Uncertainties are usually represented through scenario trees or Monte-Carlo simulations.
However, as stated previously, ABMs are not optimization models and therefore do not
provide any theoretical insights on the simulated trajectory.

MFG models have been developed and applied to the energy sector. Alasseur et al.
(2020) explored how to optimally control a storage device in a noncooperative game setting
where nodes compete through the electricity price. The trade-offs between higher and
more stable revenues from fossil fuel thermal power plants and the negative externalities
of a carbon tax for electricity producers were studied in Carmona et al. (2021). Two
papers should be emphasized as they consider settings close to the one developed in this
paper. Bonnans et al. (2021a) analyze a model with risk-averse agents optimizing a linear
discrete-time dynamical system and interacting through a price which depends on the
aggregate demand and through a congestion function. This paper mostly focuses on proving
existence of a solution in a general theoretical setting. Aïd et al. (2020) introduce a
game where renewable and conventional producers compete through optimal entry and
exit times. Their optimal stopping MFG setting allows to understand the dynamics of
investment and divestment in an uncertain context, where conventional producers face
uncertain costs represented through a Cox-Ingersoll-Ross process and renewable producers
face intermittent output characterized by a slow climatic variation through a Jacobi process.

MFG also provides a theoretical framework for deriving existence and convergence
results. Many results regarding existence of solutions to mean field games have been devel-
oped over the last decade. Carmona and Delarue (2013) develop a probabilistic approach
to the MFG problem. They derive a specific form of the stochastic maximum principle, and
use fixed point arguments in the space of flows of probability to conclude to the existence
of the value function. Their result is improved in Carmona et al. (2016) to further include
common noise. The other main approach to constructing equilibria in MFG recasts the
fixed point problem in terms of a forward-backward stochastic partial differential equation
or a forward-backward conditional McKean-Vlasov equation, and relies on a monotonicity
condition to prove existence (Cardaliaguet et al., 2019).

The convergence problem is one of the current research questions in MFG. It asks
whether the N -player equilibria converge to a solution of the MFG. While it has been
shown in various settings that MFG solutions provide approximate Nash equilibria to the
N -player game (Carmona and Delarue, 2013), the convergence problem is significantly
harder. Convergence has been known in some very specific settings, for example in the
linear-quadratic setting (Bardi, 2012), or for ergodic MFG (Bardi and Feleqi, 2016). Con-
vergence results depend on the type of controls considered for the N -player game, whether
we consider open-loop or closed-loop controls. With open-loop controls, players choose
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their control as an adapted process on some given filtered probability space. The conver-
gence for open-loop MFG has been extensively studied in Lacker (2016). In closed-loop
controls, players choose control as a feedback function of the state of the system. The
convergence problem was solved in this setting relying on the master equation framework.
However, this requires a sufficiently smooth solution to the value function (Cardaliaguet
et al., 2019). These shortcomings were addressed in Lacker and Flem (2021), which relies
on the probabilistic approach developed in Lacker (2016) and on the notion of weak MFG
solutions to prove that all closed-loop approximative equilibria converge to a weak mean
field equilibrium.

1.3 Contributions of this work

We develop a stylized MFG model to study and understand investment in renewable en-
ergy under long-term uncertainty regarding evolution of wholesale electricity markets. We
consider heterogeneous risk-averse agents investing in renewable capacity in discrete time
steps (corresponding to 5-year time steps), while being exposed to a common long-term
uncertainty and to the variability of renewable production at the hourly scale. The rest of
the power mix is assumed to evolve exogeneously, as we expect that more stringent climate
regulations will dictate evolution in fossil-fuel capacities (such as gas), rather than market-
based interactions. A representative agent indexed by i controls her investment strategy(
qit
)

1≤t≤T−1
, and minimizes the following objective, knowing other agents’ strategy q−i:

J i(qi, q−i) = E

[
T−1∑
t=1

Lβ(t, Qit, q
i
t,m

N,i
t , Dt, Dt−1,Yt) +QiT e

−rT g(mN,i
T , DT−1, (Yt)T≤t≤T ′)

]
,

where the running cost Lβ has the following general form

Lβ(t, Qit, q
i
t,m

N,i
t , Dt, Dt−1,Yt) = e−rt

(
Qitf

β(t,mN,i
t , Dt, Dt−1,Yt) + ctq

i
t + c̃(qit)

2
)
.

Running cost Lβ captures the (negative) agent’s profit Qitfβ(t,mN,i
t , Dt, Dt−1,Yt), and

the convex investment costs ctqit + c̃(qit)
2, see Section 2.3 for details. Qit represents agent

i’s total invested capacity weighted by the agent’s average capacity factor Γi. Γi represents
whether agent i faces on average better or worse weather conditions than the national
average, and allows to capture heterogeneity among agents. Profit at time t depends
on agent i’s total invested capacity Qit, and on the electricity spot price, which itself
depends on aggregate renewable production mN,i

t . This is where interaction with the other
agents takes place. Profit is specified as the sum of hourly profits and relies on historical
weather and demand data, thus capturing the daily and seasonal patterns characterizing
weather and demand variability and impacting electricity prices. The model allows to
capture many types of uncertainties through the presence of common noise. The first
kind of uncertainty Dt corresponds to evolution of market trends. It includes uncertainty
on future levels of demand and the correlated uncertain evolution of power mix (e.g.,
evolution in gas capacity), as well as uncertainty on fuel prices. Our model also includes
uncertainty on annual weather scenario Yt, as we emphasized previously the essential role
inter-annual variability plays in power systems with a large renewable share. Running cost
Lβ includes in mapping fβ a convex combination between the random profit at time t
and the conditional expected shortfall for the same profit, determined by uncertain market
trends Dt and uncertain weather scenario Yt, thus capturing agents’ risk aversion. Finally,
the objective is multi-stage, allowing to explore the impact of transformation pathways.
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The main contribution of this paper is to provide a modeling framework trying to rec-
oncile the different advantages of the previously mentioned approaches (ABM, equilibrium
models, MFG). Our model, while stylized, includes many essential features for a realistic
description of electricity markets. Long-term uncertainties, inter-annual weather variability
and agents’ risk aversion are represented, while the multi-stage objective captures transfor-
mation pathways. The MFG framework allows to model explicitly a large number of agents
while avoiding any numerical complexity. In particular, the MFG framework allows to cap-
ture heterogeneity among agents. The specific though sufficiently general formulation of
the representative agent’s problem avoids usual shortfalls of MFG models by offering in-
terpretability of the model output, and effective numerical implementation. On the other
hand, the MFG framework allows the derivation of strong theoretical guarantees in our
specific setting characterizing the output of the model. In particular, we prove that the
N -player game admits at least one equilibrium solution, which we characterize through
a closed-form solution. We then introduce the corresponding MFG game and prove that
under proper assumptions, this limiting game admits a unique solution, also characterized
by a closed-form expression. Finally, we prove that any sequence of Nash equilibria to
the N -player game converges to the unique solution of the MFG game. A second con-
tribution consists in using our model to derive practical insights. In particular, we show
that our results derived in the MFG framework with heterogeneity regarding geographical
localization cannot be reproduced with a representative agent’s model. This highlights the
importance of explicitly modeling heterogeneity in energy prospective models. We develop
a toy model applied to the specific case of France electricity market. Our numerical ex-
periments highlight the importance of the risk aversion parameter and the analysis of the
spread of invested capacity across agents, allowed by the explicit modeling of heterogeneity.

We want to emphasize the specificity of our contributions in comparison to the two
papers Aïd et al. (2020) and Bonnans et al. (2021a) mentioned in Section 1.2 as having
settings close to the one considered in this paper. While Aïd et al. (2020) also consider long-
term evolution of electricity markets under uncertainty and large renewable penetration,
they differ in many aspects from our setting. First, from a modeling perspective, they
only consider renewable uncertain output through a slow climate variability, but they fail
to consider the weather variability (especially inter-annual). They do not include risk
aversion, and they do not account for common noise, while many sources of uncertainty
are shared across agents (for example, evolution of demand). From a numerical perspective,
their choice of a continuous setting with relaxed solutions of optimal stopping MFG makes
numerical implementation harder, and the model less interpretable for practitioners. While
Bonnans et al. (2021a) consider a similar discrete time setting with risk averse agents
interacting through a price function depending on their average density, their setting differs
fundamentally from our work in different ways. First, they focus on generic risk measures,
and include an additional congestion term, preventing them from finding a closed form
solution for the optimal control. They focus on idiosyncratic noise and do not include
common noise. Finally, their generic theoretical setting only allows them to derive an
existence result, and no result on uniqueness or convergence.

1.4 Notations

We set the investment time grid T := {1, . . . , T − 1}. In practice, T corresponds to the
usual prospective time horizon of 2050. The interval [t; t+ 1] corresponds to 5 years in
the model. We set H the number of hours in a unit time interval [t; t + 1). We denote
H = {0, . . . ,H−1} the set of hours included in time interval [t; t+1). We write T ′ > T for
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the time after which all invested capacities at time T are decommissioned, and we denote
T̃ := {1, . . . , T ′}. For any t ∈ T and any vector (x0, . . . , xt) we denote

x[t] = (x0, . . . , xt).

Let N := {1, . . . , N} the set of agents and we denote N−i := N\{i}, for i ∈ N . For any
vector x := (x1, . . . , xN ), we denote

x−i = (x1, . . . , xi−1, xi+1, . . . , xN ).

We define the positive part function as (x)+ = x for non-negative x and zero otherwise.

Control Consider a given filtration F and let A be a set of F-progressively adapted
controls (qt). We define the `2 norm as

‖q‖2 :=

(
E

[
T−1∑
t=1

q2
t

])1/2

.

and the `∞ norm as

‖q‖∞ := ess sup
t,ω

qt(ω).

We denote AC the set of controls q ∈ A such that

‖q‖22 < C.

Probability measures Let X be a subset of Rd andM0(X ) denote the set of probability
measures on X . Given p ∈ [1,∞), we define the set of finite p-th order moment measures

Mp(X ) :=

{
m ∈M0 (X ) ,

∫
X
|x|pdm(x) < +∞

}
,

that we endow with the Kantorovitch-Rubinstein distance (Villani, 2009, p.94), defined by

d1(µ, ν) := sup
ψ∈1−Lip

∫
X
ψ(x)d(µ− ν)(x), (1)

for any µ and ν ∈ M1(X ). As usually, a function ϕ is C − Lip if ϕ is Lipschitz with a
Lipschitz constant smaller than C.

Remark 1.1. Note that if X1 and X2 are random variables on the probability space
(Ω,F ,P) such that the law of Xi is mi, then

d1(m1,m2) ≤ E [|X1 −X2|] ,

because, for any 1-Lipschitz map ψ : X → R,∫
X
ψ(x)d (m1 −m2) (x) = E [ψ (X1)− ψ (X2)] ≤ E [|X1 −X2|] .

Remark 1.2. Consider E a compact subspace of a metric space, where we denote K =
supx∈E ‖x‖. For all N ≥ 1, α ∈ E and µ ∈M0(E), the metric d1 satisfies

d1

(
µ,
N − 1

N
µ+

1

N
δα

)
≤ 2K

N
.
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2 The investment model

We consider a stylized model for investment. In this section, we introduce exhaustively
the different modeling assumptions related to agents’ dynamics and to electricity markets.
The cost minimization problem solved by each agent is introduced in Section 2.4.

2.1 Agent’s dynamics

In order to model the state dynamics, we consider a complete probability space (Ω,F ,P)
on which we define a common noise B0. We define

B0
t = (Dt,Yt) , Yt =

(
Γt,h, D̃t,h

)
h∈H
∈ [0, 1]H × RH :

For the sake of simplicity, we will assume in this section that Dt corresponds to average de-
mand during time interval [t; t+ 1). More uncertainties are included in Dt in the numerical
experiments in Section 3.5, allowing for greater realism without modifying the theoretical
results obtained in Section 3. Yt corresponds to the random variable representing the
weather and centered demand scenario during time interval [t; t+ 1). It includes informa-
tion on average national hourly capacity factor Γt,h, and centered demand D̃t,h around the
average value Dt, for all hours h ∈ H. Capacity factor corresponds to the dimensionless
ratio of actual electrical energy output over a given period of time to the theoretical maxi-
mum electrical energy output over that period. Variable Yt therefore captures interannual
weather variability.

We also considerN independent identically distributed (i.i.d) random variables Γi which
are independent of B0 and which follow law λΓ. Γi corresponds to the typical capacity
factor for agent i, so that for a given hour h, agent i faces a final capacity factor of Γi×Γt,h.
Γi > 1 (resp. Γi < 1) implies that agent i faces better (resp. worse) weather conditions
than the national average.

We denote FN = (FNt )t∈T the filtration defined by FNt := σ((Γi), D[t−1],Y[t−1], i ∈ N ).
Because Dt−1 and Yt−1 depend on average and hourly data on the interval [t−1, t), observe
that FNt represents indeed the information available at time t for decisions. We make the
reasonable assumption that all agents are aware of the geographical conditions of other
agents (the variables Γi), and that such conditions do not evolve over time.

We make some assumptions on the common noise.

Assumption 2.1. The stochastic process (Dt)t∈T is a Markov process, with law λD.

Assumption 2.2. The random variables (Yt)t∈T̃ are independent and identically dis-
tributed with common distribution λY , and (Yt)t∈T̃ is independent from (Dt)t∈T .

Assumption 2.3. We assume that all stochastic processes are defined on a discrete support.
We denote D, Y, G discrete sets such that, p.s., Dt ∈ D for all t ∈ T , Yt ∈ Y for all t ∈ T̃ ,
and Γi ∈ G for all i ∈ N , and assume that G ⊂

[
Γmin; Γmax

]
with Γmin > 0.

Assumption 2.3 is a technical assumption for the proofs; note that in applied settings,
it is not really a restriction.

Each agent i ∈ N chooses strategy qi = (qit)t∈T , where qit corresponds to invested
capacity at time t. A random variable FN0 -adapted Γi defines agent i’s capacity factor, as
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described above. Agent i’s state Qi := (Qit)t∈T̃ verifies the following equation:

Qi0 = 0,

Qit = (1− ν)Qit−1 + Γiqit, ∀t ∈ T ,
Qit = (1− ν)Qit−1, ∀T ≤ t ≤ T ′,

(2)

where ν > 0 represents the depreciation of the installed capacities with time. Qit corre-
sponds to installed capacity, weighted by the agent’s capacity factor. We note that after
time T − 1, state dynamics are uncontrolled: agents do not plan investments after time
T −1, but due to installations’ long lifetime, it is necessary to account for profits stemming
from the installed capacities after time T − 1 in order to avoid boundary effects.

A strategy qi is deemed admissible if it belongs to the set AN which consists of the
FN -progressively adapted non-negative real-valued processes (qt)t∈T satisfying ‖q‖22 <∞.

Lemma 2.4. For any control qi ∈ AN , the state dynamics (2) are well-posed, and Qi ∈
AN . Moreover, if there exists C > 0 such that qi ∈ AN

C , then there exists C ′ > 0 such that
Qi ∈ AN

C′.

Proof. See Section 5.1.

An admissible strategy for all players q =
(
qi
)
i∈N is such that qi ∈ AN for all i ∈ N .

For an admissible strategy q, the coupled state processes Q := (Qi)i∈N are governed by the
equations (2). We introduce the random empirical measure of the positions of all agents
by

mN
t =

1

N

∑
i′∈N

δ
Qi
′
t
. (3)

For all i ∈ N , we denote similarly the random empirical measure of the positions of all
agents excluding agent i by

mN,i
t =

1

N − 1

∑
i′∈N i

δ
Qi
′
t
, (4)

and
mN,i =

(
mN,i

1 , . . . ,mN,i
T−1

)
.

2.2 Market mechanisms

In this section, we detail some modeling assumptions regarding the electricity market from
which agents’ profits are stemming.

Assumption 2.5. We make a price-taking assumption, according to which the ith agent
does not consider her impact on market price. This assumption is justified in a setting
where the number of agents N is large. It is often made in a context of perfect competition,
when each agent’s influence on the price is negligible. Moreover, in our setting, the impact
of this assumption is very limited. This will justified in more detail in Section 3.1, in
particular Proposition 3.4.
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Residual demand. The hourly residual demand corresponds to the demand left to sat-
isfy after accounting for renewable production, and it is defined by the following mapping
R : H×M2(R+)×D × Y → R by

R(h,mt, Dt,Yt) =

(
Dt + D̃t,h − Γt,h

∫
xdmt(x)

)
+

. (5)

The hourly residual demand considered by agent i in her optimization problem reads as
R(h,mN,i

t , Dt,Yt) by the price-taking assumption. Note that average installed capacity
is considered in the definition of residual demand instead of absolute installed capacity.
Justification of this modeling assumption is given in Remark 2.8 in Section 2.3.

Electricity price. We define an aggregate supply function for conventional producers
(coal, gas, nuclear, hydroelectricity) F (t, P ) : R+ → R+ corresponding to the offered
capacity for a given price P at time t. It is obtained by summing all available capacities
by increasing marginal cost. Dependence in t indicates that the supply function evolves
over time, as the rest of the electricity mix is assumed to change exogeneously.

Assumption 2.6. For all t ∈ T̃ , we define an aggregate supply function P ∈ [0;∞] →
F (t, P ) ∈ [0;∞] which is smooth and strictly increasing in P . We assume that there exists
LF > 0 such that for all t ∈ T̃ , F (t, .) is LF -Lipschitz. This implies that F (t, .) admits
an inverse function which is smooth and strictly increasing. Moreover, we assume that
F−1(t, .) is also LF -Lipschitz for all t ∈ T̃ .

In a simplified representation of electricity markets, the electricity price on the spot
market is obtained by a cost minimization problem where the solution is provided by the
merit-order dispatching rule (see (Cretì and Fontini, 2019, Chapter 8)). According to this
rule, the dispatching of power is ordered from the least variable cost power plant to those
with higher variable costs. Therefore, the electricity price corresponds to the intersection
between the residual demand and the supply function.

Definition 2.7. The price mapping is defined following the merit-order rule, by the fol-
lowing mapping: φ : T̃ × H ×M2(R+)×D × Y → R such that :

φ(t, h,mt, Dt,Yt) := F−1(t, R(h,mt, Dt,Yt)) ∧ P̄ ≥ 0. (6)

where P̄ is the price cap.

Note that the price mapping is defined at the hourly scale and is bounded.
A regulator impacts agents’ profit through a deterministic process (αt)t∈T̃ ∈ R. This

corresponds for example to feed-in premium or feed-in tariffs (Ambec and Crampes, 2019).
We assume that αt is bounded.

2.3 Costs and objective function

Investment costs. They are defined as a convex function of the invested capacity q:

Ct(q) = ctq + c̃q2. (7)

The quadratic component c̃q2 captures the fact that marginal investment costs for a given
agent are increasing. We assume that the parameters ct and c̃ are positive.

10



Producer profit. We define the negative unit profit over time interval [t, t+ 1) by

f(t,mt, Dt,Yt) = −
∑
h∈H

(φ(t, h,mt, Dt,Yt) + αt)Γt,h. (8)

Therefore, agent i earns −Qitf(t,mt, Dt,Yt) total 5-year profits.

Producer’s cost function. Each producer has the same discount rate r ≥ 0 capturing
the value of time. The running cost of the producer L : T ×R+×R+×M2(R+)×D×Y → R
is then defined by

L(t, Qt, qt,mt, Dt,Yt) = e−rt
(
Qtf(t,mt, Dt,Yt) + ctqt + c̃q2

t

)
. (9)

The first part of the running cost corresponds to the negative producer profit. The second
part of the running cost corresponds to the investment costs.
The terminal cost of the producer is defined by the mapping g :M2(R+)×D×YT ′−T+1 → R

g(mT , DT−1, (Yt)T≤t≤T ′) =
T ′∑
t=T

e−r(t−T )(1− ν)t−T f

(
t,mT

(
.

(1− ν)t−T

)
, DT−1,Yt

)
.(10)

This terminal cost corresponds to the sum of negative discounted unit profits over time
interval [T ;T ′], and allows to avoid a discontinuity at the terminal date T − 1. We make
the assumption that average demand after time T stays equal to its value over interval
[T ;T ′]. This assumption can be justified as there are very few forecasts for the evolution
of electricity demand after 2050.

Remark 2.8. In an initial game where total installed capacity is considered instead of
average installed capacity in the definition of residual demand (5), the quadratic component
in investment costs in (7) initially scales as N such as investment costs write as Ct(q) =
ctq +Nc̃q2. In this initial game, the running cost then writes as

Lreal(t, Qit, q
i
t, (N − 1)mN,i

t , Dt,Yt) = e−rt
(
Qitf(t, (N − 1)mN,i

t , Dt,Yt) + ctq
i
t + c̃N(qit)

2
)
.

A change of variable qit ←
qit
N in the above yields

Lreal(t, Qit, q
i
t, (N − 1)mN,i

t , Dt,Yt) = e−rt

(
Qit
N
f(t,mN,i

t , Dt,Yt) + ct
qit
N

+Nc̃

(
qit
N

)2
)

=
1

N
L(t, Qit, q

i
t,m

N,i
t , Dt,Yt).

We obtain an equivalence up to a scaling factor between the original running cost, and the
new running cost defined in (9), with investment costs as introduced in (7). The same holds
for the terminal cost (10). This justifies the assumption of considering average installed
capacity instead of aggregated installed capacity: as it will be seen in Section 3.2, modeling
with average capacity allows for MFG arguments.

2.4 Agent minimization problem

Following Rockafellar and Uryasev (1999), we use the following definition of the expected
shortfall ESα of a random variable X:

ESα(X) = inf
x∈R

E
[
x+

(X − x)+

α

]
. (11)
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Note that expected shortfall was initially named as the conditional value-at-risk in the
literature (Rockafellar and Uryasev, 1999). However, this definition made it confusing to
consider additional conditioning, leading to the less ambiguous denomination of expected
shortfall.

In our case, X corresponds to negative profits (ie, X ≤ 0). Therefore, the ESα corre-
sponds to the conditional expectation of negative profits below the amount VaRα, where
VaRα is the lowest amount such that, with probability 1 − α , the negative profits will
not exceed this amount. The ESα therefore identifies the worst (100α) percent of profit
outcomes for an agent. Typical values for α are 0.05. The choice of ESα instead of VaRα

allows to use a coherent risk measure.
For any admissible strategy q−i ∈

∏
i∈N i

AN , and for a control qi ∈ AN the multistage

cost of agent i is given by

J i(qi, q−i) := E

[
β

T−1∑
t=1

L(t, Qit, q
i
t,m

N,i
t , Dt,Yt)

]

+ E

[
(1− β)

T−1∑
t=1

ESα
(
L(t, Qit, q

i
t,m

N,i
t , Dt,Yt) | FNt , qit, Qit

)]
+ E

[
QiT e

−rT g(mN,i
T , DT−1, (Yt)T≤t≤T ′)

]
.

(12)

for β ∈ (0, 1). The first part of the objective corresponds to a risk-neutral assessment of
expected cost. The second part of the objective corresponds to a sum of conditional ESα.
This part of the objective corresponds to a time-consistent risk measure. Using a convex
combination of expectation and of ESα is a common modeling assumption when evaluating
the feasibility of an investment (see Munoz et al. (2017); Mays et al. (2019); Möbius et al.
(2021); Fraunholz et al. (2023))

Deriving the expected shortfall. We derive in the following preliminary discussion a
new form for the objective (12). We have

ESα
(
L(t, Qit, q

i
t,m

N,i
t , Dt,Yt) | FNt , qit, Qit

)
= e−rtQitESαFNt

(
f(t,mN,i

t , Dt,Yt)
)

+ e−rt
(
ctq

i
t + c̃(qit)

2
)
,

(13)

where we denoteESαFNt

(
f(t,mN,i

t , Dt,Yt)
)

= infx∈R E
[
x+

(f(t,mN,it ,Dt,Yt)−x)+

α | FNt
]
. Note

that since D is Markovian, and since Yt is independent from Y[t−1] and from Dt−1, we have

ESαFNt

(
f(t,mN,i

t , Dt,Yt)
)

= inf
x∈R

E

[
x+

(f(t,mN,i
t , Dt,Yt)− x)+

α
| Dt−1

]
.

One should note that the expectation in the expected shortfall does not include the
random variable mN,i

t , which is fixed given Q−it . Consequently, we will write

ESαFNt

(
f(t,mN,i

t , Dt,Yt)
)

= ESαDt−1

(
f(t,mN,i

t , ., .)
)
.

where we used the notation . to avoid confusions.
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We define the following mapping:

fβ(t,m,D,D′,Y ) = βf(t,m,D,Y ) + (1− β)ESαD′ (f(t,m, ., .)) , (14)

and corresponding running cost

Lβ(t, Q, q,m,D,D′,Y ) = e−rt
(
Qfβ(t,m,D,D′,Y ) + ctq + c̃q2

)
. (15)

With (12) and (13), we finally obtain the following simplified multistage cost:

J i(qi, q−i) = E

[
T−1∑
t=1

Lβ(t, Qit, q
i
t,m

N,i
t , Dt, Dt−1,Yt) +QiT e

−rT g(mN,i
T , DT−1, (Yt)T≤t≤T ′)

]
.

(16)

3 Theoretical results

3.1 N-player game

This section focuses on the N -player game. We consider that players have access to open-
loop controls. This implies that their controls are only specified as Ft-adapted processes,
and do not depend on the state of the system. A detailed discussion on the difference
between closed-loop and open-loop controls can be found in Carmona and Delarue (2018).

In the following, we will consider Nash equilibriums, with the following definition.

Definition 3.1. We say that q∗ =
(
q1,∗, . . . , qN,∗

)
is a Nash equilibrium for the N -player

game if for any i ∈ N , for any q ∈ AN :

J i(q, q−i,∗) ≥ J i(qi,∗, q−i,∗).

Existence of optimum for the producer problem We consider a given strategy
q−i ∈

∏
i∈N i

AN with associated state dynamics Q−i given by the equations (2) for i ∈ N−i.

The control problem of agent i is obtained by solving

inf
qi∈AN

J i(qi, q−i), (PN )

where J i was defined in (16). We will prove that Problem (PN ) admits a unique minimizer,
and that this unique minimizer can be characterized through a closed-form expression.

Proposition 3.2. Let q−i ∈
∏
i∈N i

AN and mN,i the associated empirical measure defined

in (4). The function J i(., q−i) admits a unique minimizer denoted by qi,∗ ∈ AN given by:

qi,∗t =
1

2c̃
(Ht)+ , ∀t ∈ T , (17)

with

Ht = −E

[
T−1∑
t′=t

xt
′−tΓifβ(t′,mN,i

t′ , Dt′ , Dt′−1,Yt′) + xT−tΓig(mN,i
T , DT−1, (Yt)T≤t≤T ′) | FNt

]
− ct,

and x = e−r(1− ν).
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Proof. See Section 5.2.

Corollary 3.3. Let q∗ ∈ AN the unique minimizer of Problem (PN ). There exist constants
C,C ′ > 0 independent of N such that q∗ ∈ AN

C , and Q
∗ ∈ AN

C′.

Proof. The proof directly stems from the boundedness of mapping fβ in Lemma A.2, and
from the closed-form expression of q∗ in (17). It is clear that the constant C does not
depend on N . Lemma 2.4 proves that there exists C ′ > 0 such that Q∗ ∈ AN

C′ .

We will now justify in more detail why the price-taking Assumption 2.5. Consider the
alternative optimization problem

inf
qi∈AN

J̄ i(qi, q), (QN )

where

J̄ i(qi, q) = E

[
T−1∑
t=0

Lβ(t, Qit, q
i
t,m

N
t , Dt, Dt−1,Yt) +QiT e

−rT g(mN
T , DT−1, (Yt)T≤t≤T ′)

]
.

This optimization problem depends on the empirical measure (3) of the positions of all
agents, without excluding agent i. Therefore, the price-taking assumption for the N -
player game is removed. It cannot be solved through a closed-form solution as was done in
Proposition 3.2. However, Proposition 3.4 shows that any ε-solution to Problem (QN ) can
be approximated by the optimal solution of Problem (PN ) with a rate 1

N . This further
justifies Assumption 2.5 for large number N of players.

Proposition 3.4. Let q−i ∈
∏
i∈N i A

N
C . Let q

i,∗ be the unique optimal solution of Problem
(PN ). Let ε > 0, and q̄i be an ε-solution of Problem (QN ). Then, the following holds:

• There exists a constant C independent from N such that q̄i ∈ AC and qi,∗ ∈ AC .

• There exists a constant κ > 0 (independent on N and ε) such that∥∥q̄i − qi,∗∥∥
2
≤ 1

N

(
e−rT c̃

)−1
κ+

(
e−rT c̃

)− 1
2 ε

1
2 .

Proof. See Section 5.3.

Existence of Nash equilibrium for the N-player game We state a result for which
the proof is similar to the one in Theorem 3.8 introduced later in Section 3.2.

Proposition 3.5. There exists at least one Nash equilibrium for the N -player game.

Proof. The proof is completely similar to the proof of Theorem 3.8. Details are left to the
reader.

3.2 Limiting game

In this section, we introduce a limiting mean field game. We introduce another random
variable Γ, independent of (B0

t )t∈T . Similarly as for the N -player game, this variable
represents the typical capacity factor, and its distribution represents the distribution of
the capacity factor over the distribution of agents.

We denote F = (Ft)t∈T the filtration defined by Ft := σ(Γ, D[t−1],Y[t−1]) and FBt :=
σ(D[t−1],Y[t−1]) the filtration associated to the common noise.
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As in Lacker and Zariphopoulou (2019), there are two separate sources of randomness
in this limiting model. The first is due to the random processes Dt and Yt, while the second
source is static and comes from the random variable Γ, which represents the distribution
of the capacity factor across the continuum of agents. The agents can be thought of as
a continuum, each assigned an independently and identically distributed capacity factor
vector at the outset, and they interact after these assignments are made. Note that this
is the extension of the N -player game, where parameter Γi was fixed for each player and
known by all agents, and the equilibrium strategy of player i depended on the distribution
mN,i of the finite set of other players.

For any control q, we denote Qq := (Qqt )t∈T the state process corresponding to q, driven
by the following dynamics:

Qq0 = 0,

Qqt = (1− ν)Qqt−1 + Γqt, ∀t ∈ T ,
Qqt = (1− ν)Qqt−1, ∀T ≤ t ≤ T ′,

(18)

and

mq
t = L(Qqt | FBt ), ∀t ∈ T , (19)

where L(. | FBt ) denotes the conditional law given FBt .
In this newly introduced limiting game, the probability measure L(Qqt | FBt ) can be seen

as representing the distribution of the states, depending on the distribution of parameter
Γ. This explains why random parameter Γ is not part of the conditioning. We adopt the
MFG approach of depicting a single representative agent as a random sample from the
population, instead of explicitely modeling the continuum of agents.

A strategy q is deemed admissible if it belongs to the set A which consists of the F-
progressively adapted non-negative real-valued processes (qt)t∈T satisfying ‖q‖2 < ∞. It
is easy to see that when q ∈ A, mq

t has finite second moment a.s., ie mq
t ∈ M2(R+) a.s..

Therefore, mq
t ∈ L(Ω,Ft,P,M2(R+)), i.e., mq

t is an Ft-adapted random variable taking
values inM2(R+).

Problem definition. The limiting game with common noise (MFG) is defined as fol-
lows. Find a control q̂ ∈ A such that, given mq̂ :=

(
mq̂
t

)
t∈T

, q̂ is an optimal control for

the stochastic control problem with state process (18) and cost

Jmfg(q,mq̂) = E

[
T−1∑
t=1

Lβ(t, Qqt , qt,m
q̂
t , Dt, Dt−1,Yt) +QqT e

−rT g(mq̂
T , DT−1, (Yt)T≤t≤T ′)

]
.

We write

inf
q∈A
Jmfg(q,mq̂). (P)

Alternatively, we can view Problem (MFG) as a fixed point problem as follows: given
a strategy q̂ ∈ A, find an optimal control q for the stochastic control problem with state
process (18) and cost (P) where mq̂ is defined as in Equation (19). Then q̂ is a solution of
Problem (MFG) if and only if it is a fixed point of the following map:

q̂ := (q̂t)t∈T → Qq̂ = Qq(q̂)→ mq̂ := (mq̂
t )t∈T → q := argminq∈A Jmfg(q,mq̂) (20)
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We will define the map (20) formally later in (22). Our main result in this section is to
show existence and uniqueness of a solution to Problem (MFG).

We first suppose we are given a vector of random probability measures. We prove in
the following proposition that the standard control problem admits a unique minimizer,
and we give a closed form expression for this minimizer.

Proposition 3.6. Let mq := (mq
t )t∈T with mq

t ∈ L(Ω,Ft,P,M2(R+)) be a vector of
random probability measures taking values in M2(R+). The function Jmfg(.,mq) admits
a unique minimizer denoted by q∗ ∈ A given by:

q∗t =
1

2c̃
(Ht)+ , ∀t ∈ T (21)

with

Ht = −E

[
T−1∑
t′=t

Γxt
′−tfβ(t′,mq

t′ , Dt′ , Dt′−1,Yt′) + xT−tΓg(mq
T , DT−1, (Yt)T≤t≤T ′) | Ft

]
− ct,

and x = e−r (1− ν).

Proof. The proof is exactly the same as the one for the N -player Nash game, see Section
5.2.

Corollary 3.7. Let q∗ ∈ A the unique minimizer of Problem (P). There exists C > 0
such that q∗ ∈ AC , and C ′ > 0 such that Q∗ ∈ AC′.

Proof. The proof is the same as the proof for Corollary 3.3.

3.2.1 Existence of a MFG solution

We begin by proving existence of a solution. We adopt an approach relying on Schauder’s
fixed point theorem. It should be emphasized that our proof is allowed by the fact that we
consider a discrete-time problem, and Proposition 3.6 gives a closed-form solution of the
optimization problem. We also strongly rely on the fact that the price process is bounded
and the support of all random variables is discrete, therefore working on compact convex
sets. This allows simpler proofs than in classical continuous-time setting with common
noise like in Carmona et al. (2016).

We define the map Ψ : A → A as follows; given q̂ ∈ A, we define Qq̂ to be the state
process corresponding to q̂ as defined by (18), and mq̂ the (random) conditional probability
measure given by (19). We then solve Problem (P), and we set

Ψ(q̂) = q. (22)

By Proposition 3.6, Problem (P) admits a unique minimizer, so the map Ψ is well-defined.
Furthermore, a fixed point of Ψ clearly gives a solution of Problem (MFG).

Theorem 3.8. There exists a solution to Problem (MFG).

Proof. See Section 5.4.

We now state a Lemma necessary for Theorem 3.13.
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Lemma 3.9. We denote

Ce = max

[
sup

q s.t. Ψ(q)=q
‖q‖∞ , sup

N
sup

q s.t. ΨN (q)=q

‖q‖∞

]
,

and

C ′e = max

[
sup

q s.t. Ψ(q)=q
‖Q(q)‖∞ , sup

N
sup

q s.t. ΨN (q)=q

‖Q(q)‖∞

]
.

Then Ce and C ′e are finite.

Proof. The proof follows from the proof of Corollary 3.7 (the bound does not only hold in
`2 norm but also in `∞ norm). The bound is independent of N .

Remark 3.10. Our MFG problem is not equivalent to a game with a representative player
with fixed parameter Γ̄ and corresponding equilibrium state QΓ̄. Indeed, one can note
that the optimal control defined in (21) depends linearly in parameter Γ, therefore writ-
ing in a simplified form qt = Γq1

t + q0
t . Similarly, by the state equation, we can write

Qt = Γ2Q1
t + ΓQ0

t . If problem (MFG) was equivalent to a representative agent game, the
equivalence of the optimal controls would require that E [Q] = QΓ̄. This would yield that
E
[
Γ2
]
Q1 + E [Γ]Q0 = Γ̄2Q1 + Γ̄Q0. In full generality on Q0 and Q1, such an equality

can hold only when E
[
Γ2
]

= Γ̄2 = E [Γ]2, i.e. Γ is constant, discarding interesting settings
with heterogeneous players. This will be further discussed in the numerical experiments in
Section 3.5.

3.2.2 Uniqueness

To prove uniqueness, previous papers often use a monotonicity condition. See Cardaliaguet
et al. (2019); Ahuja (2016). We introduce the following assumptions needed in this section.
The first assumption denotes the fact that the function F−1(t, .) is strictly increasing and
bounded from below by a linear function. This is a very reasonable assumption based on
the fact that F−1(t, .) is increasing smoothly.

Assumption 3.11. Let t ∈ T̃ , and C ′e > 0 as defined in Lemma 3.9. Let 0 < Q̄1 < Q̄2 ≤
C ′e. There exists C(23) > 0 such that

F−1(t, Q̄2)− F−1(t, Q̄1) ≥ C(23)(Q̄2 − Q̄1). (23)

The next assumption is needed to obtain a strict lower bound in the proof of Theorem
3.13.

Assumption 3.12. Let C ′e > 0 as defined in Lemma 3.9. There exists ε > 0 such that,
for all t ∈ T̃ , for all Yt ∈ Y,

Hεt =
{
h ∈ H | ∀D ∈ D,Γt,hC ′e ≤ D + D̃t,h ≤ F (t, P̄ )− ε, Γt,h > ε

}
satisfies Hεt 6= ∅.

Assumption 3.12 justifies that for all possible weather annual scenarios, there exists a
subset of hours where average national renewable production is nonzero, renewables are
not sufficient to cover all demand, and demand does not reach market price cap. This
assumption is very realistic based on historical data and projections.

We can now state the following.
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Theorem 3.13. Under Assumptions 3.11 and 3.12, the solution to Problem (MFG) is
unique.

Proof. See Section 5.5.

3.3 Algorithm to find the MFG equilibrium

Common algorithms to derive an MFG equilibrium include Fictitious play (Cardaliaguet
and Hadikhanloo, 2017). Algorithm 1 describes the process. Following Bonnans et al.
(2021b), we use the Frank-Wolfe learning rate of 2

k+2 which demonstrates sharper conver-
gence results. Note that in Algorithm 1, notations mk

t no longer refer to the solution to
the Nash equilibrium, but to the consecutive iterations of the algorithm.

Algorithm 1 Fictitious play
Input: number of time steps T − 1, initial policy m0

for k = 0, . . . ,K do
Compute qk+1 ∈ arg maxq Jmfg(q,mk)

Compute mqk+1

t = L(Qq
k+1

t | Ft), ∀t = 1, . . . , T − 1

Update mk+1
t = 1

k+2m
qk+1

t + k+1
k+2m

k
t

end for
Return: mK , qK

Remark 3.14. Proposition 3.6 gives a recursive form for the solution of the control prob-
lem, which facilitates the calculus in the algorithm.

3.4 Convergence of the N-player game

This section focuses on proving that when N tends to infinity, any sequence of Nash
equilibria to the N -player game converges to the unique solution of the MFG problem.
The following section is greatly inspired from Lacker (2016), where the author studies
convergence of open-loop N -player game to the corresponding MFG.

Definition 3.15. We will now write an MFG solution as a tuple (Ω,F,P, D,Y ,Γ,m, q,Q),
where (Ω, (Ft)t∈T ,P) is a complete filtered probability space supporting (D,Y ,Γ,m, q,Q).
This MFG solution satisfies:

• D := (Dt)t∈T and Y := (Yt)t∈T̃ are Ft-adapted processes following respectively the
laws λD and λ⊗T

′

Y .

• Γ is a random variable with law λΓ.

• Γ and D,Y are independent.

• qt is an Ft-adapted process such that q ∈ A.

• (q,Γ, Q) satisfy the state equation (18).

• m is the conditional law of Q given FB: mt = L(Qt | FBt ).

• For all q′ ∈ A, we have

E
[
J (q′,m)

]
≥ E [J (q,m)] .
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From Lemma 3.9, we know that if q is an MFG solution, ‖q‖∞ ≤ Ce and ‖Q‖∞ ≤ C ′e.
From now on, we will denote E =

[
0,max

[
Ce, C

′
e

]]
the compact convex subspace of R.

Given an MFG solution (Ω,F ,P, D,Y ,m,Γ, q,Q), we may view D,Y ,Γ,m, q,Q as a
random element of the canonical space

Ω := (D)T−1 × (Y)T
′ × G × (M2(E))T−1 × ET−1 × ET−1.

Note that Ω is a metric space, as product of metric spaces.
An MFG solution thus induces a probability measure on Ω, which itself we would like

to call a MFG solution. Following Lacker (2016), we give the following equivalent definition
for an MFG solution.

Definition 3.16. If P ∈ M0(Ω) satisfies P = P ◦ (D,Y ,Γ,m, q,Q)−1 for some MFG
solution (Ω,F ,P, D,Y ,Γ,m, q,Q), then we refer to P as the MFG solution.

From now on, we let D,Y ,Γ,m, q,Q denote the identity maps on (D)T−1, (Y)T
′ , G,

(M2(E))T−1, ET−1, and ET−1 respectively. We define the objective functional

Λ(D,Y ,Γ,m, q,Q) :=
T−1∑
t=1

Lβ(t, Qqt , qt,mt, Dt, Dt−1,Yt) +QqT e
−rT g(mT , DT−1, (Yt)T≤t≤T ′),

and we define the reward associated to an element P ∈M0(Ω) by

J(P ) := EP [Λ(D,Y ,Γ,m, q,Q)] .

We will now define some subsets of M0(Ω). Let M0(Ω′) denote the set of ρ ∈ Ω′ :=
(D)T−1 × (Y)T

′ × G × (M2(E))T−1 satisfying ρ ◦ (D,Y ,Γ)−1 = λD ⊗ λ⊗T
′

Y ⊗ λΓ.
For any ρ ∈M0(Ω′), the class RA(ρ) is the set of admissible joint laws for the optimal

control problem associated to ρ. Specifically, it is the set of probability measures P on Ω
satisfying:

1. P ◦ (D,Y ,Γ,m)−1 = ρ,

2. EP
[
T−1∑
t=1

q2
t

]
<∞,

3. P ◦ (D,Y ,Γ,m, q,Q)−1 ∈M0(Ω) denotes the joint law of the solution and the inputs
to (18) (ie, the canonical processes Γ, q,Q satisfy the state equation (18)).

Define the set of optimal controls corresponding to ρ by

RA∗(ρ) := arg min
P∈RA(ρ)

J(P ).

By Proposition 3.6, we know thatRA∗(ρ) is reduced to a singleton (we are simply changing
the probability space that we consider).

The first lemma gives a characterization of an MFG solution.

Lemma 3.17. Let P ∈ M0(Ω), and define ρ := P ◦ (D,Y ,Γ,m)−1. If P satisfies the
following conditions:

1. ρ is inM0(Ω′),

2. P ∈ RA(ρ),
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3. m = P (Q ∈ . | D,Y ). That is, m is a version of the conditional law of Q given D,Y ,
4. P ∈ RA∗(ρ),

then P is an MFG solution.

Proof. It is obvious and simply follows from Definitions 3.15 and 3.16.

We now state some useful results following Lacker (2016).

Lemma 3.18. The map J :M(Ω)→ R is continuous.

Proof. The map Λ is bounded and continuous on Ω. This directly yields the continuity of
J onM(Ω) (for the topology defined by the weak convergence).

We will define the N -player environment:

EN :=
(
Ω, (FNt )t,P, D,Y , (Γi)i∈1,...,N

)
.

We will now consider a sequence of Nash equilibria. By Proposition 3.5, we know that there
exists at least one Nash equilibrium for theN -player game. For eachN , let q1,N , . . . , qN,N ∈
AN
C denote such a Nash equilibrium. We let

PN :=
1

N

N∑
i=1

P ◦
(
D,Y ,Γi,mN,i, qi,N , Qi,N

[
qi,N

])−1
. (24)

Remark 3.19. Averaging over i = 1, . . . , N gets round the problem that the strategies
q1,N , . . . , qN,N are not necessarily exchangeable. To interpret the definition of PN , note (as
suggested in Lacker (2016)) that we may write

PN = P ◦ (D,Y ,ΓUN ,N ,mUN ,N , qUN ,N , QUN ,N )−1,

where UN is a random variable independent of the rest, uniformly distributed among {1, . . . , N}.

We can now prove the following lemma.

Lemma 3.20. The sequence (PN )N∈N ∈M0(Ω) is relatively compact.

Proof. Ω is a compact metric space, since the random variables D, Y and Γ have respective
finite support D, Y and G. It follows from (Parthasarathy, 1967, Theorem 6.4) thatM0(Ω)
is also a compact metric space. Therefore, the sequence (PN )N∈N ∈ M0(Ω) is relatively
compact.

By Lemma 3.20, we have that every subsequence PNk contains a further subsequence
such that this subsequence converges weakly to a limit point P ∈M0(Ω).

Lemma 3.21. Each limit point P of any converging subsequence of (PN )N∈N is an MFG
solution.

Proof. See Section 5.6.

Proposition 3.22. The sequence (PN )N∈N converges to a unique limit solution which is
the solution to the (MFG) problem.

Proof. Lemma 3.21 and Lemma 3.17 prove that the limit point P is an MFG solution.
Therefore, we have proven that each subsequence of PN contains a further subsequence
converging weakly to P where P is an MFG solution. By Proposition 3.6, we know that
Problem (MFG) admits a unique solution. Therefore, we conclude that (PN )N∈N converges
weakly to P where P is the unique MFG solution.
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3.5 Extension to the case of multiple clusters

While the results derived in the previous subsections hold for the case where a single type of
producers is considered, an interesting application of the model includes the representation
of multiple clusters (e.g., producers of wind and solar). Our results of the existence of a
Nash equilibrium for the N -player game and for the MFG game can easily be extended
to the case of multiple clusters. The extension of the uniqueness result is left for future
research. However, we observed empirically in our simulations that uniqueness seems to
hold in the case of multiple clusters.

4 Numerical simulations

The objective of this section is to provide a toy example inspired by the French electricity
sector to illustrate our model, rather than utilizing it for generating practical predictions.
These predictions will instead be the focus of forthcoming research.

The main energy sources that we consider are gas, coal, nuclear and intermittent re-
newables, consisting of solar, onshore and offshore wind, and run-of-river. Initial capacities
of renewables are taken to be equal to 10GW, 18GW, 0 GW and 10 GW respectively.
We therefore consider an economy consisting of only these sources of electricity, without
considering other sources of flexibility such batteries, electrolysers or imports. This allows
us to derive a practical toy model.

In our model, investment decisions in solar and onshore wind are taken endogenously,
while the rest of the power mix is assumed to evolve following exogenous trends. This will
be further described in Section 4.1.

4.1 Setting and data gathering

Electricity and mix projections. We use RTE’s (French transmission network oper-
ator) latest study "Futurs Energétiques" (RTE, 2022) to obtain forecasts of evolution of
electricity demand. Three main scenarios are considered: a "Sobriety" scenario, a "Ref-
erence" scenario, and a "Reindustrialization" scenario. Final electricity demand in 2050
amounts to a range between 555 TWh and 750 TWh according to the scenarios. This takes
into account foreseeable change in the demand profile up to 2050, including an increased
demand for electric vehicles and for heating.

All capacities but onshore wind and solar capacities are assumed to evolve exogenously,
following scenario N1 of the "Futurs Energétiques"’s study. This study provides a vari-
ation around the central N1 scenario to consider adjustment of the mix to the demand
scenario (e.g., offshore capacities are considered lower in the "Sobriety" scenario than in
the "Reference" scenario, as demand is lower).

We rely on such assumptions to create the aggregate supply function F (t, .). Note
that as exogenous power mix is taken to evolve over time following RTE’s given scenario,
the corresponding supply function also evolves in a deterministic manner over time. We
build this supply function as a piecewise affine function, according to the merit-order
rule. Cutoff points follow available capacity, while the slope of the function is determined
by each technology’s variable cost. We consider a variable cost for gas of 23.2 e/MWh,
following IEA’s projections for 2040 (IEA, 2022). We model different gas power plants with
varying efficiency between 0.4 (for open-cycle gas turbines) and 0.58 (for combined-cycle
gas turbines), to capture the heterogeneity of gas supply across France.
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Because of maintenance constraints, nuclear capacity is not available for all hours. We
consider a corresponding capacity factor of 0.9.

Finally, we assume a market price cap of 10000 e/MWh.

Demand and fuel prices uncertainty. We use a Markovian model for demand un-
certainty, with a transition matrix between the different demand scenarios introduced be-
forehand. Specifically, we consider that when on the "Reference" scenario, there is a 1

2
probability of staying on that trajectory, and a 1

4 trajectory of shifting trajectory to either
the lower or higher demand scenario. When on an extreme scenario (either "Sobriety" or
"Reindustrialization"), there is a 3

4 of staying on that trajectory, and a 1
4 probability of

shifting to the "Reference" scenario trajectory. We do not consider transition from the "So-
briety" to the "Reindustrialization" scenario, as such transitions would be very unrealistic.
While a very simplistic modeling of uncertainty, this model allows to explore the impact of
demand uncertainty on investment decisions. Moreover, the jump from one trajectory to
another may represent either political decisions (e.g., rapid reindustrialization), or society
shifts (e.g., decrease of consumption). Moreover, parametrizing such an uncertainty is a
difficult task.

We model fuel prices uncertainties by considering that variable gas price is a random
uniform variable with mean of 23.2 e/MWh (as stated before) and spread of 10e/MWh.

Inter-annual variability of hourly profiles. As emphasized, our model relies on an
hourly time scale to calculate profits for producers, in order to capture the variability
of demand and intermittent renewables. This is captured in the random variable Yt.
Hourly capacity for offshore wind, onshore wind and solar PV were prepared using the
renewables.ninja website 1, which provides the hourly capacity factor profiles of solar and
wind power from 1990 to 2019 at the geographical scale of French counties, following the
methods elaborated by Pfenninger and Staffell (2016). The hourly electricity demand
profile was provided by RTE.

Estimating demand heat sensitivity is a very challenging task. Therefore, we choose
not to capture this in the model, and we focus on the inter-annual variability of renewable
capacity factors. The average correlation between demand and weather is still captured
through the average electricity profile.

Variability of capacity factor. We test different distributions for the capacity factor,
with a range of [0.5; 1.5]. In particular, we consider a distribution made of two Diracs at
0.7 and 1.3, with equal (p = 1

2) or assymetric probability (p = 1
4 and p = 3

4 , and p = 3
4 and

p = 1
4). We also consider Beta Binomial distributions with law

f(x+ (y − x)
k

n
| a, b) :=

(
n

k

)
B(k + a, n− k + b)

B(a, b)
, ∀0 ≤ k ≤ n,

with x = 0.5, y = 1.5 and n = 12. We explore different combinations of parameters a and b
(namely, a = 0.5 and b = 0.5, a = 0.15 and b = 0.3 and a = 0.3 and b = 0.15). In addition,
we also model representative agent model by taking singletons as distributions. We consider
different singletons distributions, spanning the whole range of the other distributions, with
a step of 0.05 for the value of the capacity factor for different singleton distributions.

1https://www.renewables.ninja/
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Risk aversion parameter. Since there is no literature specifying realistic values for
investors’ decisions, we considered in an ad hoc way risk aversion parameter β ranging
from 0.5 to 1 in our experiments. We will focus on specific values of 0.5 and 0.9 in the
coming analysis. The expected shortfall level is fixed at 0.05, following classical values
found in literature (Mays et al., 2019; Ambrosius et al., 2020).

Costs, discount rate and depreciation rate. Cost evolution assumptions are taken
from RTE (2022). Ground solar panels costs are assumed to fall from 750 e/MW in 2020
to 550e/MW in 2050. Onshore wind turbines costs are assumed to fall from 1300 e/MW
in 2020 to 900 e/MW.

Parameter c̃ is calibrated as follows. As stated in Remark 2.8, when total capacity
is considered, the quadratic component in investment costs scales as N , so that Ct(q) =
ctq + Nc̃q2. For a classical power plant size, we assume that the two components are
equivalent: ctq ∼ Nc̃q2. Assuming an average installation rate of 10 GW per time step of
5 years (RTE, 2022) and an average cost of C = 12000 e/GW, this yields

Nc̃ =
C

10/N
.

Therefore, c̃ ∼ 12000 for wind turbines. We obtain similarly that c̃ ∼ 5500 for solar panels.
Following RTE (2022), we consider that solar and wind power plants have an average

lifetime of 30 years, corresponding to 6 time stamps of 5 years. We model lifetime as a
geometric random variable, with average of 30 years. The devaluation rate ν is therefore
taken equal to 1

6 = 0.16. Following Aïd et al. (2020), we take a yearly discount rate of
r = 8.6%. The RTE study also specifies such range of values when private investors’
decisions are considered (a normative approach would on the other hand rely on a lower
discount rate).

4.2 Interpretation.

We perform 100 iterations of the algorithm as described in Section 3.3, and we monitor
the gain increase from switching to the best response for renewable producers, by summing
gain increase for solar producers and onshore wind producers. It can be seen in Figure 1
that this quantity converges to zero.
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Figure 1: Evolution of gain increase over algorithm iterations.

In the following, the average installed capacity refers to the quantity Q
Γ with notations

from Section 2, while the average installed capacity with capacity factor refers to the
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quantity Q. The former relates to actual investment decisions, while the latter relates
to the average production (product of investment decision and capacity factor). It is the
latter which impacts the electricity spot price.

When not specified, evolution of installed capacities in figures is taken by simulating
the "Reference" demand scenario trajectory.

The impact of the choice of distribution for the capacity factor is illustrated in Figure
2. When an assymetric distribution is considered, we obtain a larger average installed
capacity when the asymmetry is biased towards lower capacity factors. Indeed, since a
similar invested capacity leads to lower production because of smaller capacity factor,
there is more room for investment. Figure ?? highlights the need to correctly specify the
distribution of the heterogeneity among agents when using such a prospective model.
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Figure 2: Impact of capacity factor distribution for three different distributions: a sym-
metric two Dirac distributions, and two asymmetric two Dirac distributions. Left: average
installed capacity in solar panels. Right: average installed capacity in onshore wind tur-
bines.

The impact of the risk aversion parameter is illustrated in Figure 3. A lower risk
parameter β corresponds to higher risk aversion. When risk aversion increases, invested
capacity decreases by up to 6 %. Such a result is aligned with the literature (Fraunholz
et al., 2023; Möbius et al., 2021).
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Figure 3: Impact of risk aversion parameter β for two different values of 0.5 and 0.9.

Figure 4 shows the impact of the heterogeneity in terms of distribution of the in-
stalled capacity. We observe that as time goes by and average installed renewable capacity
increases, the spread of installed capacity increases across the continuum of agents with dif-
ferent capacity factors. This illustrates the cannibalization effect, and how such effect can
impact differently heterogeneous producers (e.g., in terms of geographical localizations).
This points out that a result of private risk-averse agents taking investment decisions may
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be a higher concentration of renewable energy technologies in the most productive areas,
which could lead to congestion, increased costs and decreased energy supply security, be-
cause of increased production correlation. Such an insight also highlights the interest for
practitioners to work with models designed to handle heterogeneity, as a representative
agent model would not allow to analyze such an impact.
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Figure 4: Evolution of the distribution of installed capacity across the considered time
range. The x-axis represents the value for the solar panel capacity, while the y-axis repre-
sents the probability with which this value is attained. The probability corresponds to the
distribution for the capacity factor parameter.

Finally, we explore whether the results of the model with heterogeneity can be repro-
duced with a representative agent model. Remark 3.10 already highlighted that from a
theoretical point of view, there exists many capacity factor distributions for which the
output of the model cannot be reproduced with a representative agent model. In the
following, we compare the average installed capacity and the average installed capacity
with capacity factor for different distributions. Specifically, we consider a beta binomial
distribution with parameter a = 0.3 and b = 0.15. We compare in Figure 5 the model
results for this distribution with the results obtained for the two singleton distributions
closest in terms of average installed capacity weighted by the capacity factor (this is this
average statistics that determines the value of optimal control for the Nash equilibrium),
and the ones obtained with the two singleton distributions closest in terms of average in-
stalled capacity. The relative difference with respect to the beta binomial distribution is
represented. Singleton distributions with capacity factor of 1.3 and 1.25 are the closest to
the solar panel capacity weighted by capacity factor, within a 2 % difference. However,
the same singleton distributions yield a solar panel capacity which differs by almost 10
% from the capacity for the beta binomial distribution. The same can be said when we
try to select the singleton distributions yielding the closest results to the beta binomial
distribution in terms of capacity: in that case, the selected singleton distributions yield a
capacity weighted by capacity factor which differs by almost 10% from the beta binomial
distribution. This indicates that a singleton distribution cannot approximate similarly
well both the average capacity and the average capacity weighted by the capacity factor.
Therefore, the same Nash equilibrium cannot be reached by a singleton distribution. Once
again, this prompts practitioners to use models handling explicitely heterogeneity, and to
pay attention to the use of representative agent’s model in settings where the heterogenous

25



parameter may impact the results.
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Figure 5: Comparison of model outcomes for different capacity factor distributions. Left:
average capacity weighted by the capacity factor. This is the quantity that impacts the spot
price and therefore agents’ profits. Right: average capacity. This is the quantity actually
invested by agents, and derived from the average capacity weighted by the capacity factor.

5 Proofs

5.1 Proof of Lemma 2.4

From the initial condition Qi0 = 0, we have by direct induction that E
[
(Qit)

2
]
<∞ for all

t ∈ T , and that Qit is Ft-adapted.

Let qi ∈ AN
C and let t ∈ T . We have Qit =

t∑
t′=0

(1 − ν)t−t
′
qit′ . Therefore, by Cauchy-

Schwarz inequality,

E
[
(Qit)

2
]
≤ 1

ν

t∑
t′=0

E
[
(qit′)

2
]
≤ 1

ν
C.

Therefore, there exists C ′ > 0 such that Qi ∈ AN
C′ .

5.2 Proof of Proposition 3.2

We first prove that J i(qi, .) is strongly convex. The linearity of the dynamics (2) and the
quadratic/convex functions in the definition (15) of Lβ(t, Q, q,m,D,D′,Y ) give us that

J i(λq1 + (1− λ)q2, q−i) = λJ i(q1, q−i) + (1− λ)J i(q2, q−i)

+ E

[
T−1∑
t=1

e−rtc̃
((
λq1

t + (1− λ)q2
t

)2 − λ(q1
t )

2 − (1− λ)(q2
t )

2
)]

≤ λJ i(q1, q−i) + (1− λ)J i(q2, q−i)− e−rT c̃λ(1− λ)
∥∥q1 − q2

∥∥2

2
.

We now define qi,∗ and Ht as given in Equation (17). Let ∆q ∈ A such that for all t ∈ T ,
∆qt takes arbitrary values in

[
− qi,∗t ,+∞

)
, and define an admissible control q̄i ∈ A such

that

q̄it = qi,∗t + ∆qt.
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Let us compute ∆J i(qi,∗, q−i) = J i(q̄i, q−i)− J i(qi,∗, q−i). Denote

∆t′ = t′ − t, and x = e−r(1− ν).

We have that

∆J i(qi,∗, q−i)

=
T−1∑
t=1

e−rtE

∑
t′≥t

x∆t′Γifβ(t′,mN,i
t′ , Dt′ , Dt′−1,Yt′)∆qt + ∆qtct + c̃

((
q̄it
)2 − (qi,∗t )2

)
+
T−1∑
t=1

e−rtE
[
x∆TΓi∆qtg(mN,i

T , DT−1, (Yt)T≤t≤T ′)
]

=

T−1∑
t=1

e−rtE

∆qtE

∑
t′≥t

x∆t′Γifβ(t′,mN,i
t′ , Dt′ , Dt′−1,Yt′) + ct | FNt

+ c̃

((
q̄it
)2 − (qi,∗t )2

)
+
T−1∑
t=1

e−rtE
[
∆qtE

[
x∆TΓig(mN,i

T , DT−1, (Yt)T≤t≤T ′) | FNt
]]

=
T−1∑
t=1

e−rtE
[
−∆qtHt + c̃

((
q̄it
)2 − (qi,∗t )2

)]
,

where the third equality comes from definition of Ht.

Let us analyse the sign of the quantity −∆qtHt + c̃

((
q̄it
)2 − (qi,∗t )2

)
inside of the ex-

pectation. If qi,∗t = 0, then Ht ≤ 0 and ∆qt ≥ 0: −∆qtHt + c̃

((
q̄it
)2 − (qi,∗t )2

)
=

−∆qtHt+ c̃
((
q̄it
)2) ≥ 0. Otherwise, Ht = 2c̃qi,∗t and then −∆qtHt+ c̃

((
q̄it
)2 − (qi,∗t )2

)
=

c̃(∆qt)
2 ≥ 0. Therefore, we obtain that for all admissible control qi,∗ + ∆q, we have

∆J i(qi,∗, q−i) ≥ e−rT c̃ E

[
T−1∑
t=1

(∆qt)
2

]
≥ 0. (25)

This proves that qi,∗ is a global minimum.
Moreover, we proved previously that J i(qi, .) is strongly convex. As A is a convex set,

we conclude that qi,∗ is actually the unique global minimum.

5.3 Proof of Proposition 3.4

The proof of the first point directly follows from Lemma A.3. Indeed, since q̄ is an ε-
solution, we have:

J̄ i
(
q̂i, q

)
≤ inf

qi∈A
J̄ i
(
qi, q

)
+ ε.

Therefore, there exists a constant C1 > 0 independent of N such that q̄i ∈ AC1 . We
also have by Corollary 3.3 that qi,∗ belongs to AC . We obtain the result by taking C =
max [C1, C].

The proof of the second point relies on (Bonnans and Shapiro, 2013, Proposition 4.32).
Let us introduce some notations.
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We denote mN,qi

t the random empirical measures where player i uses control qi,1. Note
that this is different from notation mN,i

t which denotes the empirical measure where player
i was omitted.

We also write

∆J i(qi) := J i(qi, q−i)− J̄ i(qi, q)

= E

[
T−1∑
t=1

e−rtQit

(
fβ(t,mN,i

t , Dt, Dt−1,Yt)− fβ(t,mN,qi

t , Dt, Dt−1,Yt)
)

+QiT e
−rT

(
g(mN,i

T , DT−1, (Yt)T≤t≤T ′)− g(mN,qi

T , DT−1, (Yt)T≤t≤T ′)
)]

.

Following the above reference, we will prove i) that the second order growth condition holds
for function qi → J i(qi, q−i) on a given neighborhood S of the optimal solution q∗ and ii)
that the difference function ∆J i(q) is Lipschitz-continuous on AN ∩ S.
We first prove i). Using (25) in the proof of Proposition 3.2, we obtain that for all qi ∈ AN ,

J i(qi, q−i)− J i(qi,∗, q−i) ≥ e−rT c̃
∥∥qi − qi,∗∥∥2

2
.

This proves that the second order growth condition holds.
We will now prove ii). We consider qi,1, qi,2 ∈ AN . We introduce the following notations:

∆Qt = Qi,1t −Q
i,2
t ,

∆fβ(t,mN,i
t ,mN,qi,j

t ) = fβ(t,mN,i
t , Dt, Dt−1,Yt)− fβ(t,mN

t , Dt, Dt−1,Yt),

∆g(mN,i
T ,mN,qi,j

T ) = g(mN,i
T , DT−1, (Yt)T≤t≤T ′)− g(mN,qi,j

T , DT−1, (Yt)T≤t≤T ′).

Note that

(Qi,1t −Q
i,2
t )fβ(t,mN,i

t , Dt, Dt−1,Yt)−Qi,1t fβ(t,mN,qi,1

t , Dt, Dt−1,Yt) +Qi,2t f
β(t,mN,qi,2

t , Dt, Dt−1,Yt)

= ∆Qt∆f
β(t,mN,i

t ,mN,qi,1

t ) +Qi,2t ∆fβ(t,mN,qi,2

t ,mN,qi,1

t ).

Therefore, we have

∆J i(qi,1)−∆J i(qi,2) = E

[
T−1∑
t=1

e−rt∆Qt∆f
β(t,mN,i

t ,mN,qi,1

t ) + e−rtQi,2t ∆fβ(t,mN,qi,2

t ,mN,qi,1

t )

]
+ E

[
e−rT∆QT∆g(mN,i

T ,mN,qi,1

T ) + e−rTQi,2T ∆g(t,mN,qi,2

T ,mN,qi,1

T )
]
.

We have∣∣∆J i(qi,1)−∆J i(qi,2)
∣∣2

≤ 4

[
(T − 1)

T−1∑
t=1

e−2rtE
[∣∣∣∆Qt∆fβ(t,mN,i

t ,mN,qi,1

t )
∣∣∣]2

+ e−2rtE
[∣∣∣Qi,2t ∆fβ(t,mN,qi,2

t ,mN,qi,1

t )
∣∣∣]2

+ e−2rTE
[∣∣∣∆QT∆g(mN,i

T ,mN,qi,1

T )
∣∣∣]2

+ e−2rTE
[∣∣∣Qi,2T ∆g(t,mN,qi,2

T ,mN,qi,1

T )
∣∣∣]2
]

≤ 4

[
(T − 1)

T−1∑
t=1

e−2rtE
[
∆Q2

t

]
E
[
∆fβ(t,mN,i

t ,mN,qi,1

t )2
]

+ e−2rtE
[
(Qi,2t )2

]
E
[
∆fβ(t,mN,qi,2

t ,mN,qi,1

t )2
]

+ e−2rTE
[
∆Q2

T

]
E
[
∆g(mN,i

T ,mN,qi,1

T )2
]

+ e−2rTE
[
(Qi,2T )2

]
E
[
∆g(t,mN,qi,2

T ,mN,qi,1

T )2
] ]
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by applying Cauchy-Schwarz inequality successively.
Now, we have by Lemma A.5 that

E
[
∆fβ(t,mN,i

t ,mN,qi,1

t )2 | Ft
]
≤ L2

fE
[
d1(mN,i

t ,mN,qi,1

t )2 | Ft
]
.

We also have that, since Q−i ∈
∏
i∈N i A

N
C , by using Jensen’s inequality,

E
[
d1(mN,i

t ,mN,qi,1

t )2 | Ft
]
≤ 4C

N2
. (26)

By combining the two previous inequalities, we obtain that

E
[
∆fβ(t,mN,i

t ,mN,qi,1

t )2 | Ft
]
≤

4L2
fC

N2
.

We also have that

E
[
d1(mN,qi,2

t ,mN,qi,1

t )2 | Ft
]
≤ 1

N2
E
[(
Qi,1t −Q

i,2
t

)2
| Ft

]
,

and therefore

E
[
∆fβ(t,mN,qi,2

t ,mN,qi,1

t )2 | Ft
]
≤
L2
f

N2
E
[(
Qi,1t −Q

i,2
t

)2
| Ft

]
.

since the only difference between the two empirical measures is the value of the state of
player i.

Similarly, by Lemma A.6, and by using the same bound (26),

E
[
∆g(mN,i

T ,mN,qi,1

T )2 | FT−1

]
≤ L2

gE
[
d1(mN,i

T ,mN,qi,1

T )2 | FT−1

]
≤

4L2
gC

N2
,

and

E
[
∆g(mN,qi,2

T ,mN,qi,1

T )2 | FT−1

]
≤
L2
g

N2
E
[(
Qi,1T −Q

i,2
T

)2
| FT−1

]
.

With L2 = 20C(T − 1)
(
L2
f + L2

g

)
, we finally obtain that

∣∣∆J i(qi,1)−∆J i(qi,2)
∣∣2 ≤ L2

N2

(
T−1∑
t=1

E
[
∆Q2

t

])
.

Therefore, ∣∣∆J i(qi,1)−∆J i(qi,2)
∣∣ ≤ L

N
‖∆Q‖2 .

Moreover, the state dynamics give that

‖∆Q‖2 ≤
√
T 2

2
‖∆q‖2 .
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We finally conclude that the function q → ∆J (q) is Lipschitz-continuous on AC , with
constant κ

N where

κ =
LT√

2
.

Proposition 4.32 of Bonnans and Shapiro (2013) therefore gives us that if q̄ is an ε-solution
of Problem (QN ), then we have that∥∥q̄ − qi,∗∥∥

2
≤ 1

N

(
e−rT c̃

)−1
κ+

(
e−rT c̃

)− 1
2 ε

1
2 .

5.4 Proof of Theorem 3.8

Step 1. By Proposition 3.6, there exists C > 0 such that the minimizer of (P) belongs to
AC . Therefore, the map Ψ maps AC into itself. Moreover, by Assumption 2.3, the support
of filtration F is discrete. Therefore, A is of finite dimension, and by Riesz theorem, AC

is compact. Moreover, it is also convex.
Step 2. We now check that Ψ is continuous on AC . Let q̂1, q̂2 ∈ AC . Denote Q1 and Q2 the
associated installed capacities, mq1 and mq2 the associated random vectors of probability
measures, and q1 = Ψ(q̂1) and q2 = Ψ(q̂2). We also denote

∆fβ(t,mq̂1

t ,m
q̂2

t ) = fβ(t,mq̂1

t , Dt, Dt−1,Yt)− fβ(t,mq̂2

t , Dt, Dt−1,Yt),

and

∆g(mq1

T ,m
q̂2

T ) = g(mq̂1

T , DT−1, (Yt)T≤t≤T ′)− g(mq̂2

T , DT−1, (Yt)T≤t≤T ′).

We write x = e−r(1− ν). Then∥∥q1 − q2
∥∥2

2

≤ 1

(2c̃)2

T−1∑
t=1

E
[
|H1

t −H2
t |2
]

≤ 1

(2c̃)2

T−1∑
t=1

E

E
(T−1∑

t′=t

xt
′−tΓ∆fβ(t′,mq̂1

t′ ,m
q̂2

t′ ) + xT−tΓ∆g(mq̂1

T ,m
q̂2

T )

)2

| Ft


≤ 1

2c̃2

T−1∑
t=1

E

[
E

[
(T − t)

T−1∑
t′=t

x2(t′−t)Γ2∆fβ(t′,mq̂1

t′ ,m
q̂2

t′ )2 + x2(T−t)Γ2∆g(mq̂1

T ,m
q̂2

T )2 | Ft

]]

where we used the definition of q in (21), Jensen’s inequality on line 2, and Cauchy-Schwarz
inequality on line 3. We note that after conditioning on Ft′ , mq1

t′ and mq2

t′ are deterministic
probability measures. Therefore, by Lemma A.5,

E
[
∆fβ(t′,mq̂1

t′ ,m
q̂2

t′ )2 | Ft′
]
≤ L2

fE
[
d1

(
mq̂1

t′ ,m
q̂2

t′

)2
| Ft′

]
.

From Remark 1.1, it readily follows that

d1

(
mq̂1

t′ ,m
q̂2

t′

)
= sup

ψ 1−Lip
E
[
ψ(Q̂1

t′)− ψ(Q̂2
t′) | FBt′

]
≤ E

[∣∣∣Q̂1
t′ − Q̂2

t′

∣∣∣ | FBt′ ] .
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Therefore,

E
[
∆fβ(t′,mq̂1

t′ ,m
q̂2

t′ )2 | Ft′
]
≤ L2

fE
[
E
[∣∣∣Q̂1

t′ − Q̂2
t′

∣∣∣ | FBt′ ]2
| Ft′

]
≤ L2

fE
[(
Q̂1
t′ − Q̂2

t′

)2
| FBt′

]
,

where we used Jensen inequality. Thus, for t′ ≥ t,

E
[
Γ2∆fβ(t′,mq̂1

t′ ,m
q̂2

t′ )2 | Ft
]

= E
[
Γ2E

[
∆fβ(t′,mq̂1

t′ ,m
q̂2

t′ )2 | Ft′
]
| Ft

]
≤ L2

∆f
E
[
E
[(
Q̂1
t′ − Q̂2

t′

)2
| FBt′

]
| Ft

]
,

(27)

with L2
∆f

:= (Γmax)2L2
f . Similarly, with Lemma A.6 and Remark 1.1, we obtain that

E
[
Γ2∆g(mq̂1

T ,m
q̂2

T )2 | FT−1

]
≤ (Γmax)2L2

gE
[
d1

(
mq̂1

T ,m
q̂2

T

)2
| FT−1

]
≤ (Γmax)2L2

gE
[(
Q̂1
T − Q̂2

T

)2
| FBT−1

]
≤ L2

∆g
E
[
(Q̂1

T−1 − Q̂2
T−1)2 | FBT−1

]
,

with L2
∆g

= (Γmax)2L2
g(1− ν)2. We used similarly Cauchy-Schwarz inequality and the fact

that since the state dynamics are uncontrolled after time T , mq1

t′ and mq2

t′ are deterministic
probability measures for all t′ ≥ T after conditioning on FT−1. Therefore,

E
[
Γ2∆g(mq̂1

T ,m
q̂2

T )2 | Ft
]
≤ L2

∆g
E
[
E
[(
Q̂1
T−1 − Q̂2

T−1

)2
| FBT−1

]
| Ft

]
. (28)

The combination of (27) and (28) gives the existence of constant L = 1
2c̃2

(
(T − 1)L2

∆f
+ L2

∆g

)
such that

∥∥q1 − q2
∥∥2

2
≤ L

T−1∑
t=1

T−1∑
t′=t

E
[(
Q̂1
t′ − Q̂2

t′

)2
]

≤ L(T − 1)E

[
T−1∑
t=1

(
Q̂1
t − Q̂2

t

)2
]
.

With the state dynamics, we finally have obtain that there exists a constant L > 0 such
that ∥∥q1 − q2

∥∥2

2
≤ L

∥∥q̂1 − q̂2
∥∥2

2
.

We conclude that the map Ψ is continuous in q.
Step 3. We finally conclude by using Schauder’s fixed point theorem on the map Ψ which
is continuous on the compact convex set AC .
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5.5 Proof of Theorem 3.13

Let q1, q2 ∈ AC two fixed points of the map Ψ. By Lemma 3.9, we have that almost surely,
for all t ∈ T ,

∫
xdmq1

t (x) ≤ C ′e, where mq1 and mq2 are the associated random vectors of
probability measures. The same holds for mq2 . As previously, we denote

∆fβ(t,mq1

t ,m
q2

t ) = fβ(t,mq1

t , Dt, Dt−1,Yt)− fβ(t,mq2

t , Dt, Dt−1,Yt),

and

∆g(mq1

T ,m
q2

T ) = g(mq1

T , DT−1, (Yt)T≤t≤T ′)− g(mq2

T , DT−1, (Yt)T≤t≤T ′).

As stated previously, fixed points of Ψ are minimizers of (??), therefore

Jmfg(q1,mq1) ≤ Jmfg(q2,mq1),

and

Jmfg(q2,mq2) ≤ Jmfg(q1,mq2).

By summing the two previous inequalities, we get(
Jmfg(q1,mq1)− Jmfg(q1,mq2)

)
−
(
Jmfg(q2,mq1)− Jmfg(q2,mq2)

)
≤ 0.

This implies

E

[
T−1∑
t=1

e−rt
(
Q1
t −Q2

t

)
∆fβ(t,mq1

t ,m
q2

t ) +
(
Q1
T −Q2

T

)
e−rT∆g(mq1

T ,m
q2

T )

]
≤ 0. (29)

Conditioned on FBt , mq1

t and mq2

t are deterministic probability measures. By Lemma A.7,

E
[(
Q1
t −Q2

t

)
∆fβ(t,mq1

t ,m
q2

t )
]

= E
[
E
[(
Q1
t −Q2

t

)
∆fβ(t,mq1

t ,m
q2

t ) | FBt
]]

= E
[
E
[
∆fβ(t,mq1

t ,m
q2

t )E
[(
Q1
t −Q2

t

)
| FBt

]
| FBt

]]
≥ Kε

(40)E
[(
E
[
Q1
t | FBt

]
− E

[
Q2
t | FBt

])2]
. (30)

By Lemma A.8, we obtain similarly that

E
[(
Q1
T −Q2

T

)
∆g(mq1

T ,m
q2

T ) | Ft
]
≥ Kε

(43)E
[(
E
[
Q1
T | FBT

]
− E

[
Q2
T | FBT

])2]
. (31)

Therefore, we obtain by combining (29), (30) and (31)

0 ≥ KE

[
T∑
t=1

e−rt
(
E
[
Q1
t | FBt

]
− E

[
Q2
t | FBt

])2]

where K = min
[
Kε

(40),K
ε
(43)

]
. This implies that for all t ∈ T ,

E
[
Q1
t | FBt

]
= E

[
Q2
t | FBt

]
.

We will now prove that the equality actually holds for the probability measure in addition
to the expectation. By Proposition 3.6, for a given vector of random probability measures
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m, there exists a unique minimizer q∗ ∈ A. We have shown that if q1, q2 are two fixed
points of the mapping Ψ, we have that for all t ∈ T∫

xdmq1

t (x) =

∫
xdmq2

t (x).

Therefore, since the mapping Jmfg(.,mq) only depends on the quantity
∫
xdmq

t (x), we
can conclude that the minimizers q1,∗ and q2,∗ are also equal. This concludes that if q1, q2

are two Nash equilibria, we have that

q1 = q2.

5.6 Proof of Lemma 3.21

Proof. We abuse notation somewhat by assuming that PN → P , with the understanding
that this is along a subsequence. We now check that P satisfies the four conditions of
Lemma 3.17. Define ρ := P ◦ (D,Y ,Γ,m)−1. By definition of PN in (24), we have that

PN ◦ (D,Y ,Γ)−1 =
1

N

N∑
i=1

P ◦
(
D,Y ,Γi

)−1
= λD ⊗ λ⊗T

′

Y ⊗ λΓ.

Therefore, PN ◦(D,Y ,Γ)−1 satisfies the required law. Since PN converges in distribution to
P , we directly obtain that ρ ◦ (D,Y ,Γ) also satisfies the required law. Therefore, ρ ∈M.
Since Γi and D,Y are independent under P for each i, it follows that Γ and D,Y are
independent under PN for each N . Thus Γ, D and Y are independent under P .

We know that since
(
q1,N , . . . , qN,N

)
is a Nash equilibrium, we have by Corollary 3.3

that

sup
N

1

N
EP

[
N∑
i=1

T−1∑
t=1

(qi,Nt )2

]
≤ C.

Moreover, all processes qi,N are uniformly bounded in N . Therefore, by taking the limit
in the previous equation, we get that

EP
[
T−1∑
t=1

(qt)
2

]
≤ C.

Moreover, since
(
Γi, qi, Qi

)
verifies the state equation under P, the canonical processes

(D,Y ,Γ,m, q,D) also verify the state equation under each PN . Since all processes are
uniformly bounded in N , we directly obtain that the state equation also holds under the
limit P .

We now check the third condition: Consider Φ : ET−1 → R and Ψ : DT−1 × YT ′ → R
two bounded and Lipschitz continuous mappings with corresponding Lipschitz constants
LΦ and LΨ. Note that by Remark 1.2 and by definition of E, we have

d1(mN −mN,i) ≤ 2C ′e
N

, a.s..
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Therefore,∣∣∣∣∣EP

[
Ψ(D,Y )

1

N

N∑
i=1

∫
E

Φd(mN −mN,i)

]∣∣∣∣∣ ≤ EP

[
|Ψ(D,Y )| 1

N

N∑
i=1

LΦd1(mN ,mN,i)

]

≤ EP

[
|Ψ(D,Y | LΦ

N

N∑
i=1

2C ′e
N

]

≤ 2C ′eLΦ

N
EP [|Ψ(D,Y )|]→ 0.

We finally obtain that

EP [Ψ(D,Y )Φ(Q)] = lim
N→∞

EP

[
Ψ(D,Y )

1

N

N∑
i=1

Φ(Qi)

]

= lim
N→∞

EP
[
Ψ(D,Y )

∫
E

ΦdmN

]
= lim

N→∞
EP

[
Ψ(D,Y )

1

N

N∑
i=1

∫
E

ΦdmN,i

]

= EP
[
Ψ(D,Y )

∫
K

Φdm)

]
.

Finally, from the density of Lipschitz functions in the space of bounded uniformly contin-
uous functions, we obtain that for all Φ : ET−1 → R and Ψ : DT−1 × YT ′ → R bounded
and uniformly continuous mappings,

EP [Ψ(D,Y )Φ(Q)] = EP
[
Ψ(D,Y )

∫
K

Φdm

]
.

Therefore, we conclude that conditioned on the common noise, the law of Q under P is m.
We now check the final condition, which requires to prove that P is optimal, ie that

P ∈ RA∗(ρ), and so that for all P̃ ∈ RA(ρ), J(P̃ ) ≥ J(P ). Let P̃ ∈ RA(ρ). We have
P̃ ◦ (D,Y ,Γ,m)−1 = ρ. Moreover, there exists q̃ ∈ A such that P̃ ◦ (D,Y ,Γ,m, q,Q)−1

denotes the joint law of the solution and the inputs to state equation (18) associated to
control q̃. Denote Qq̃ the associated state process.
For 1 ≤ k ≤ N , let

P̃N,k := P ◦ (D,Y ,Γk,mN,k, q̃, Qq̃)−1.

By definition of the PN and their weak convergence towards P , and since

P̃N,k ◦ (D,Y ,Γk)−1 = P ◦ (D,Y ,Γk)−1,

we obtain that

lim
N→∞

1

N

N∑
k=1

P̃N,k = P̃ .

It is fairly straightforward to verify that J is linear. The continuity of J of Lemma 3.18
implies

lim
N→∞

1

N

N∑
k=1

J(P̃N,k) = lim
N→∞

J(
1

N

N∑
k=1

P̃N,k) = J(P̃ ).
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By Lemma 3.18, we have that

J(P ) = lim
N→∞

J(PN ) = lim
N→∞

1

N

N∑
k=1

J k(qk, q−k).

Moreover, by definition of P̃N,k, we obtain that

EP
[
Λ(D,Y ,Γk,mN,k, q̃, Qq̃)

]
= J(P̃N,k).

Finally, since all PN are Nash equilibria, we have

J(P ) = lim
N→∞

1

N

N∑
k=1

J k(qk, q−k)

≤ lim
N→∞

1

N

N∑
k=1

J k(q̃, q−k)

≤ lim
N→∞

1

N

N∑
k=1

EP
[
Γ(D,Y ,Γk,mN,k, q̃, Qq̃)

]
≤ lim

N→∞

1

N

N∑
k=1

J(P̃N,k) = J(P̃ ).

This finally proves that P ∈ RA∗(ρ).

Conclusion

We developed in this paper a new modeling framework which allows to study the long-term
evolution of investment into renewable resources under uncertainty and risk aversion. We
contribute to bridging the gap between the equilibrium models and agent-based models, and
the mathematical approach of mean field games, by using the MFG framework to derive
strong theoretical guarantees for games with large number of players, while striving to
introduce a simple and interpretable model with closed-form solutions. We prove that both
the N -player game and the corresponding MFG game admit an equilibrium solution, which
we characterize through a closed-form solution. We also prove that any sequence of Nash
equilibria to the N -player game converges to the unique solution of the MFG game. We
develop a toy model applied to the specific case of France electricity market. Our numerical
experiments highlight the importance of the risk aversion parameter and the analysis of
invested capacity spread, allowed by the explicit modeling of heterogeneity. We show
that our results derived in the MFG framework with heterogeneity regarding geographical
localization cannot be reproduced with a representative agent’s model. This highlights
the importance of explicitly modeling heterogeneity in energy prospective models. This
paper paves the way for future research into the impact of agents’ heterogeneity on the
prospective evolution of energy markets.

This paper constitutes a first step and calls for future research and improvements. In
particular, the representation of the price mechanism could be improved from the current
static representation through the merit-order curve to a more evolved representation cap-
turing dynamic effects caused by storage and demand flexibility. Another future line of
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research could strive to include more long-term uncertainties in the macro scenarios. Fi-
nally, some work could be done to modify the scope of the model by adding other types of
producers, such as storage producers, in order to come closer to partial equilibrium models
of the whole electricity market.
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A Technical lemmas

This section is concerned with proving some technical lemmas on the structure of our
problem.

A.1 Some properties of the Expected Shortfall

Lemma A.1. Let A,B be two random variables on (Ω,F ,P), and let F ′ be a sub-σ-field
of F . Then

|ESαF ′(A)−ESαF ′(B)| ≤ E [|A−B| | F ′]
α

, (32)

ESαF ′(A)−ESαF ′(B) ≥ 1

α
inf
x∈R

E
[
(A− x)+ − (B − x)+ | F ′

]
. (33)

Proof. The sketch of proof of (32) follows (Agarwal et al., 2019, p.14). To prove (33) we
use Definition (11) to write:

ESαF ′(A)−ESαF ′(B) = inf
x∈R

E
[
x+

(A− x)+

α
| F ′

]
+ sup
x∈R

E
[
−x− (B − x)+

α
| F ′

]
≥ inf

x∈R

{
E
[
x+

(A− x)+

α
| F ′

]
+ E

[
−x− (B − x)+

α
| F ′

]}
=

1

α
inf
x∈R

E
[
(A− x)+ − (B − x)+ | F ′

]
,

where we used the fact that inf
x∈X

f(x) + sup
x∈X

g(x) ≥ inf
x∈X

f(x) + g(x) on line 2.

A.2 Lemmas for the N-player game

The following lemma uses the fact that the market price is bounded to derive some bounds
on the coefficients in the cost function.

Lemma A.2. There exists K > 0 such that for all m ∈ M2(R+), for all D,D′ ∈ D, and
for all Y ∈ Y,

|fβ(t,m,D,D′,Y )| ≤ K. (34)

Proof. Definition of function f in Equation (8) and the fact that the price mapping is
bounded directly yields that function f is bounded. Moreover, definition of expected
shortfall (11) gives that ESαDt−1

(
f(t,mN,i

t , ., .)
)
is also bounded. Finally, by definition of

function fβ in Equation (14), we obtain that there exists K > 0 satisfying (34).

The following lemma is an estimate of the second-order moment of all suboptimal
controls.

Lemma A.3. Let q ∈
∏
i∈N

A and C1 > 0. There exists C2 > 0 independent from N such

that for any i ∈ N ,

• if q̂i satisfies
J i
(
q̂i, q−i

)
≤ inf

qi∈A
J i
(
qi, q−i

)
+ C1, (35)

then q̂i ∈ AC2.
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• if q̂i satisfies
J̄ i
(
q̂i, q

)
≤ inf

qi∈A
J̄ i
(
qi, q

)
+ C1,

then q̂i ∈ AC2.

Proof. We will prove the first point, as the second point directly follows from the same
proof. Let i ∈ N and let q̂i satisfy (35). Then

J i
(
q̂i, q−i

)
≤ J i

(
0, q−i

)
+ C1 = C1. (36)

We need now to bound J i
(
q̂i, q−i

)
from below. Lemma A.2 directly gives us that there

exists a constant K > 0 such that for all m ∈M2(R+), for all Dt, Dt−1 ∈ D, for all Yt ∈ Y,

fβ(t,m,Dt, Dt−1,Yt) ≥ −K.

Therefore, combining this previous result with the fact that qit ≥ 0 a.s., and that ct > 0,
we have that

Lβ(t, Qit, q
i
t,m,Dt, Dt−1,Yt) ≥ e−rt

(
−QitK + c̃qit)

2
)

a.s..

Therefore, we obtain by combining the definition of the state equation and Young’s in-
equality that

J i
(
q̂i, q−i

)
≥ E

[
T−1∑
t=1

(
c̃|qit|2 −QitK

)
−QiTK

]

≥ E

T−1∑
t=1

c̃|qit|2 − 2K
∑
t′≤t

qit′


≥ E

[
T−1∑
t=1

(
c̃|qit|2 − 2

T−1∑
t=1

KT√
c̃

√
c̃qit

)]

≥ E

[
T−1∑
t=1

c̃|qit|2 −
T−1∑
t=1

(2KT )2

2c̃
−
T−1∑
t=1

c̃|qit|2

2

]

≥ c̃

2
E

[
T−1∑
t=1

|qit|2
]
−K ′.

(37)

By combining (36) and (37), we finally obtain that E

[
T−1∑
t=1

|qit|2
]
≤ 2

c̃ (C1 +K ′) =: C2 as

announced.

We now move to some lemmas corresponding to the limiting game. We first prove that
the different mappings are Lipschitz with respect to the Kantorovitch-Rubinstein distance.

Lemma A.4. Let m1,m2 ∈M2(R+), D ∈ D and Y ∈ Y. Then

|R(h,m1, D,Y )−R(h,m2, D,Y )| ≤ d1(m1,m2),

and

|φ(t, h,m1, D,Y )− φ(t, h,m2, D,Y )| ≤ LFd1(m1,m2).
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Proof. By definition (5) of R,

|R(h,m1, D,Y )−R(h,m2, D,Y )|

=

∣∣∣∣(D + D̃ − Γh

∫
xdm1(x)

)
+

−
(
D + D̃ − Γh

∫
xdm2(x)

)
+

∣∣∣∣
≤
∣∣∣∣Γh ∫ xd(m1 −m2)(x)

∣∣∣∣
≤ d1(m1,m2)

where we used the fact that Γh ∈ [0, 1] and the definition of the distance d1 in (1).
By definition (6) of φ,

|φ(t, h,m1, D,Y )− φ(t, h,m2, D,Y )|
=
∣∣F−1(t, R(h,m1, D,Y )) ∧ P̄ − F−1(t, R(h,m2, D,Y )) ∧ P̄

∣∣
≤
∣∣F−1(t, R(h,m1, D,Y ))− F−1(t, R(h,m2, D,Y ))

∣∣
≤ LF |R(h,m1, D,Y )−R(h,m2, D,Y )|
≤ LFd1(m1,m2),

where line 4 comes from Assumption 2.6.

Lemma A.5. Let m1,m2 ∈M2(R+), D,D′ ∈ D and Y ∈ Y. Then there exists a constant
Lf > 0 such that∣∣∣fβ(t,m1, D,D

′,Y )− fβ(t,m2, D,D
′,Y )

∣∣∣ ≤ Lfd1(m1,m2).

Proof. The proof directly follows from Lemma A.4. We write

∆f(m1,m2, D,Y ) := f(t,m1, D,Y )− f(t,m2, D,Y ),

∆φ(h,m1,m2, D,Y ) := φ(t, h,m1, D,Y )− φ(t, h,m2, D,Y ),

∆ESαD′(m1,m2) := ESαD′ (f(t,m1, ., .))−ESαD′ (f(t,m2, ., .)) .

Note that by definition of f in (8),

∆f(m1,m2, D,Y ) = −
∑
h∈H

Γt,h∆φ(h,m1,m2, D,Y ),

Lemma A.4 gives:

|∆f(m1,m2, D,Y )| ≤
∑
h∈H
|Γt,h∆φ(m1,m2, D,Y )|

≤ LFHd1(m1,m2),

(38)

using that Γt,h ∈ [0, 1]. Moreover, (32) from Lemma A.1 combined with Lemma A.4 gives
that

∆ESαD′(m1,m2) ≤ 1

α
E
[
|∆f(m1,m2, D,Y )| | D′

]
≤ 1

α
LFHd1(m1,m2).

(39)
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Combining (38) and (39), we get∣∣∣fβ(t,m1, D,D
′,Y )− fβ(t,m2, D,D

′,Y )
∣∣∣ = |β (∆f(m1,m2, D,Y )) + (1− β) (∆ESαD′(m1,m2))|

≤ β |∆f(m1,m2, D,Y )|+ (1− β) |∆ESαD′(m1,m2)|

≤ 1

α
LFHd1(m1,m2),

where we used the fact that α ≤ 1. We then write Lf = 1
αLFH.

Lemma A.6. Let m1
T ,m

2
T ∈M2(R+), DT−1 ∈ D and (Yt)T≤t≤T ′ ∈ YT

′−T+1. Then there
exists a constant Lg > 0 such that∣∣g(m1

T , DT−1, (Yt)T≤t≤T ′)− g(m2
T , DT−1, (Yt)T≤t≤T ′)

∣∣ ≤ Lgd1(m1
T ,m

2
T ).

Proof. Lemma A.5 also holds for mapping f (this corresponds to the case where β = 1).
Therefore, Definition (10) of mapping g combined with Lemma A.5 gives∣∣g(m1

T , DT−1, (Yt)T≤t≤T ′)− g(m2
T , DT−1, (Yt)T≤t≤T ′)

∣∣
≤ Lf

T ′∑
t=T

e−r(t−T )(1− ν)t−Td1

(
m1
T

(
.

(1− ν)t−T

)
,m2

T

(
.

(1− ν)t−T

))

≤ Lf
T ′∑
t=T

e−r(t−T )(1− ν)2(t−T )d1(m1
T ,m

2
T ).

The result follows by writing Lg = Lf (T ′ − T + 1).

The next lemma introduces a monotonicity condition similar in spirit to the ones in-
troduced in Cardaliaguet et al. (2019) or Ahuja (2016).

Lemma A.7. Assume Assumption 3.12 and Assumption 3.11 hold, and fix ε > 0 as defined
in Assumption 3.12. Let t ∈ T . There exists Kε

(40) > 0 such that for all Y ∈ Y, for all
D,D′ ∈ D, for all m1,m2 ∈M2(R+) such that 0 ≤

∫
xdm1 <

∫
xdm2 ≤ C ′e, we have

fβ(t,m1, D,D′,Y )− fβ(t,m2, D,D′,Y ) ≤ Kε
(40)

∫
xd(m1 −m2) ≤ 0. (40)

Proof. Note that since
∫
xdm1 <

∫
xdm2,

F−1(t, R(h,m1, D,Y )) ≥ F−1(t, R(h,m2, D,Y )),

for all D ∈ D and Y ∈ Y.
By Assumption 3.12, for all Y ∈ Y,

Hεt 6= ∅.
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Then, for all D ∈ D and Y ∈ Y,

f(t,m1, D,Y )− f(t,m2, D,Y )

= −
∑
h∈H

Γt,h
(
F−1(t, R(h,m1, D,Y )) ∧ P̄ − F−1(t, R(h,m2, D,Y )) ∧ P̄

)
≤
∑
h∈Hεt

Γt,h
(
F−1(t, R(h,m2, D,Y ))− F−1(t, R(h,m1, D,Y ))

)
≤
∑
h∈Hεt

Γt,hC(23)
(
R(h,m2, D,Y )−R(t,m1, D,Y )

)
≤
∑
h∈Hεt

Γ2
t,hC(23)

∫
xd(m1 −m2)

≤ |Hεt |C(23)ε
2

∫
xd(m1 −m2) ≤ 0 (41)

where third line comes from Assumption 3.11, and the rest follows from the definition of
the subset Hεt . Moreover, (33) from Lemma A.1 gives that

ESαD′(f(t,m2, ., .))−ESαD′(f(t,m1, ., .))

≥ 1

α
inf
x∈R

E
[
(f(t,m2, D,Y )− x)+ − (f(t,m1, D,Y )− x)+ | D′

]
≥ 0 (42)

using (41) for the last inequality. Combining (41) and (42), we get that for all D,D′ ∈ D
and for all Y ∈ Y,

fβ(t,m1, D,D′,Y )− fβ(t,m2, D,D′,Y )

= β
(
f(t,m1, D,Y )− f(t,m2, D,Y )

)
+ (1− β)

(
ESαD′(f(t,m1, ., .))−ESαD′(f(t,m2, ., .))

)
≤ β |Hεt |C(23)ε

2

∫
xd(m1 −m2).

We obtain the announced result with Kε
(40) = β |Hεt |C(23)ε

2.

Lemma A.8. Assume Assumption 3.12 and Assumption 3.11 hold, and fix ε > 0 as defined
in Assumption 3.12. Then there exists Kε

(43) > 0 such that for all Y ∈ Y, for all D,D′ ∈ D,
for all m1,m2 ∈M2(R+) such that 0 ≤

∫
xdm1 <

∫
xdm2 ≤ C ′e,

g(m1, D, (Yt)T≤t≤T ′)− g(m2, D, (Yt)T≤t≤T ′) ≤ Kε
(43)

∫
xd(m1 −m2). (43)

Proof. We mimic the proof of Lemma A.7 with β = 1, which gives, in view of the definition
(10) of g,

g(m1, D, (Yt)T≤t≤T ′)− g(m2, D, (Yt)T≤t≤T ′)

≤
T ′∑
t=T

e−r(t−T )(1− ν)t−T |Hεt |C(23)ε
2

∫
(1− ν)t−Txd(m1 −m2).

We conclude by defining Kε
(43) = C(23)ε

2
∑T ′

t=T |Hεt | > 0.
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