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Abstract

In this paper, we investigate the strong laws of large numbers with general normalizing
sequences for arbitrary dependent sequences whose partial sums satisfy certain conditions
on the p-th moment. To do it, we adapt results due to Móricz concerning moment in-
equalities. We also give applications that were difficult to deal with previously. Our
results extend and improve some well-known corresponding ones.
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1 Introduction
Kolmogorov’s strong law of large numbers [10] is one of the most important results in
probability limit theorems. This result has been generalized by Marcinkiewicz-Zygmund
[14] to obtain rates of convergence. Specifically, given a centered sequence of independent
and identically distributed (i.i.d.) random variables {Xk, k ≥ 1} and Sn, the associated
partial sum of rank n: Sn = X1 + · · · + Xn, for 1 ≤ p < 2, E|X1|p < ∞ if and only if
n−1/pSn −→ 0 almost surely (a.s.). It is worth noting that the last equivalence constitutes
Kolmogorov’s strong law of large numbers in the case p = 1 and that of Marcinkiewicz-
Zygmund in the case 1 < p < 2. Many studies have been conducted concerning the rates
of convergence in the Marcinkiewicz-Zygmund’s strong law of large numbers, and there is
a vast body of literature on this topic.

It is natural to extend the idea behind the Kolmogorov-Marcinkiewicz-Zygmund result
to dependent random sequences. However, this extension imposes conditions on the p-th
moment of Sn. In this context, we refer to several studies such as [4, 5, 6, 9, 13, 16, 17,
21, 22].

Let p ≥ 1 be a constant and let {Xk, k ≥ 1} ⊂ Lp(X, A, µ) be a sequence of random
variables. We say that {Xk, k ≥ 1} satisfies the strong law of large numbers with respect
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to a non-decreasing function ϕ : R+ → R+ such that ϕ(x) ↑ ∞ as x → ∞, if

lim
N→∞

1
ϕ(N)

N∑
k=1

Xk = 0 a.s..

Gál-Koksma [9] derived weak conditions of the form

E

∣∣∣∣∣
n∑

k=m+1
Xk

∣∣∣∣∣
p

≤ d(m, n) for any m, n ∈ N with m < n, (1)

for some function d : N × N → R+, to ensure that the above limit holds.
Weber [21, 22] recently established a strong law of large numbers for random variables

satisfying increment conditions of the type considered in Gál-Koksma theorems. In this
paper, we aim to establish a more general strong law of large numbers by providing con-
ditions of the type (1) that allow us to extend Gál-Koksma and Weber’s results. Our
approach is based on adapting results from Móricz’s work, and it enables us to obtain new
results in several cases. One of the strengths of our approach is that our proof is much
simpler than the existing ones.

Before presenting our main result, let us first recall the following definition. A function
d(m, n) is said to be super-additive if, for any j ∈ [m, n], we have d(m, j) + d(j, n) ≤
d(m, n). It is important to note that if d(m, n) is super-additive and η(m, n) is a non-
decreasing function with respect to n and a non-increasing function with respect to m,
then d(m, n)η(m, n) is also super-additive. Throughout this paper, the symbol C denotes
a positive constant which may vary from one appearance to another. With this definition
in mind, we can now proceed to state our main theorem.

Theorem 1. Let p ≥ 1. Consider a sequence of random variables {Xk, k ≥ 1} ⊂
Lp(X, A, µ). Let Ψ : R+ → R+ be a non-decreasing function satisfying Ψ(2x) ≤ CΨ(x).
Assume that, there exists a constant η ≥ 0 such that the function Ψ(x)

x1+η is non-decreasing
and for any m, n ∈ N with m < n, we have

E

∣∣∣∣∣
n∑

k=m+1
Xk

∣∣∣∣∣
p

≤ Ψ(d(m, n)). (2)

1. If one of the following cases holds:
(a) η > 0, d(m, n) is a super-additive function and τ > 1;
(b) η = 0, there exists α > 1 such that d

1
α (m, n) is super-additive and τ > 1;

(c) η = 0, d(m, n) is super-additive, there exists σ > 0 such that nσ = O (d(0, n))
and τ > p + 1,

then we have

lim
N→∞

1
(Ψ(d(0, N)) logτ (d(0, N)))1/p

N∑
k=1

Xk = 0 a.s.

and supN≥1

∣∣∣∣ ∑N

k=1
Xk

(Ψ(d(0,N)) logτ (d(0,N)))1/p

∣∣∣∣ ∈ Lp(µ).
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2. If one of the preceding cases, namely a, b, or c without the condition that there exists
σ > 0 such that nσ = O (d(0, n)), holds and if d(0, 2n) ≤ Cd(0, n), then

lim
N→∞

1
(Ψ(d(0, N)) logτ (N))1/p

N∑
k=1

Xk = 0 a.s.

and supN≥1

∣∣∣∣ ∑N

k=1
Xk

(Ψ(d(0,N)) logτ (N))1/p

∣∣∣∣ ∈ Lp(µ).

Theorem 1 extends the results of Weber [21, 22] and, as a result, extends the well-
known Gál-Koksma theorems [9]. More details on this will be provided in Section 2 below.
Additionally, this theorem can be used to improve upon the ideas presented in Theorem
1.1. of [17] in a one-dimensional setting (see also Theorem 1.1. in [16] and Theorem
1. in [4]). The paper by Nane et al. [17] provides strong laws of large numbers with
normalizations that satisfy more conditions than ours.

The next corollary considers the scenario where only d(m, n) is present. It is a direct
application of the previous theorem with η = 0 and Ψ is the identity function.

Corollary 1. Let p ≥ 1. Consider a sequence of random variables {Xk, k ≥ 1} ⊂
Lp(X, A, µ) and suppose that

E

∣∣∣∣∣
n∑

k=m+1
Xk

∣∣∣∣∣
p

≤ d(m, n), for any m, n ∈ N with m < n.

1. If one of the following cases holds:
(a) there exists α > 1 such that d

1
α (m, n) is super-additive and τ > 1;

(b) d(m, n) is super-additive, there exists σ > 0 such that nσ = O (d(0, n)) and
τ > p + 1,

then we have

lim
N→∞

1
(d(0, N) logτ (d(0, N)))1/p

N∑
k=1

Xk = 0 a.s..

2. If one of the preceding cases, namely a or b without the condition that there exists
σ > 0 such that nσ = O (d(0, n)), holds and if d(0, 2n) ≤ Cd(0, n), then

lim
N→∞

1
(d(0, N) logτ (N))1/p

N∑
k=1

Xk = 0 a.s..

As an application of Theorem 1, we are able to give an example of function ϕ such that
the series

∑
k≥1

Xk

ϕ(k) converges. In particular, we establish the following corollary.

Corollary 2. Suppose that

E

∣∣∣∣∣
n∑

k=m+1
Xk

∣∣∣∣∣
p

≤ (n − m)β for any m, n ∈ N with m < n.

If β = 1 and τ > p + 1, then∑
k>1

Xk

(k logτ (k))1/p converges a.s..

3



If 1 < β < p and τ > 1, then∑
k>1

Xk

(kβ logτ (k))1/p converges a.s..

This paper also provides strong laws of large numbers for sequences of non-negative
random variables. Two notable strands of research in this literature are: (i) the works
of Etemadi [8] and Csörgő, Tandori, and Totik [7], and (ii) the Petrov-type approach,
inspired by Petrov [18], which has been studied by several authors such as Korchevsky
[11], Kuczmaszewska [12], and Petrov [19]. Chen and Sung [3] established a theorem that
unifies both strands. Specifically, they demonstrated that if {Yk, k ≥ 1} ⊂ Lp(X, A, µ),
p ≥ 1, is a sequence of non-negative random variables and (bk)k≥1 is a non-decreasing
unbounded sequence of positive numbers such that

sup
n≥1

∑n
k=1 EYk

bn
< ∞, ∃ δn ≥ 0 : E

∣∣∣∣∣
n∑
k=1

(Yk − EYk)

∣∣∣∣∣
p

≤
n∑
k=1

δk and
∑
k≥1

δk
bpk

< ∞,

then we have

lim
N→∞

1
bN

N∑
k=1

(Yk − EYk) = 0 a.s..

This paper aims to provide additional contributions to this topic. We can prove the
following theorem.

Theorem 2. Let p ≥ 1. Let {Yk, k ≥ 1} ⊂ Lp(X, A, µ) be a sequence of non-negative
random variables. Suppose that, for any m < n,

E

∣∣∣∣∣
n∑

k=m+1
(Yk − EYk)

∣∣∣∣∣
p

≤ d(m, n) and EYn ≤ Cd
1
p (0, n)d(n − 1, n),

where d(m, n) is a super-additive function. Then, for any τ > p + 1, we have

lim
N→∞

1
(d(0, N) logτ (d(0, N)))1/p

N∑
k=1

(Yk − EYk) = 0 a.s..

Notice that this theorem can also be used for some sequences of non-positive random
variables. For example, consider a sequence of random variables {Xk, k ≥ 1} taking values
in {−1, 1} such that P(Xn = 1) = pn and pn ≤ Cd

1
p (0, n)d(n − 1, n). Then, we have

E
∣∣∑n

k=m+1 (Xk − EXk)
∣∣p = E

∣∣∑n
k=m+1 (Yk − EYk)

∣∣p, where Yk = Xk + 1 for any k ≥ 1.
Moreover, note that the result of the theorem remains true even if the condition EYn ≤

Cd
1
p (0, n)d(n − 1, n) is replaced by the condition supn≥1

∑n

k=1
EYk

d1/p(0,n) < ∞.

The rest of this paper is organized as follows. In Section 2, we compare our results
with those of Gál-Koksma and Weber. In Section 3, we recall some known results that will
be used in the proofs of our main theorems and then proceed to prove them. One of the
main analytical tools used in the proofs is Móricz’s work. In the last section, we provide
several examples illustrating our main results.
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2 Extension of Gál-Koksma’s and Weber’s theorems
In this section, we will show how our theorem extends the results of Gál-Koksma [9] and
Weber [21, 22]. Let {Xk, k ≥ 1} be a sequence of random variables with probability space
(X, A, µ) and let Ψ : R+ → R+ be a non-decreasing function such that Ψ(2x) ≤ CΨ(x).
Assume that there exists a constant η ≥ 0 such that Ψ(x)

x1+η is non-decreasing. Let (ak)k∈N
be a sequence of positive real numbers, and define A(n) =

∑n
k=1 ak. Now, assume that

the condition (2) holds with:

d(m, n) =
n∑

k=m+1
ak.

Then several theorems of Gál-Koksma and Weber can be seen as particular cases of our
Theorem 1. More precisely, let ϵ > 0, and depending on the value of ak, we have the
following:

Case ak > C. Applying Theorem 1, we have :

If η > 0,

lim
N→∞

∑N
k=1 Xk(

Ψ(A(N)) log1+ϵ A(N))
)1/p = 0 a.s. (Theorem 8.4.1 [22]; η > 0).

If η = 0,

lim
N→∞

∑N
k=1 Xk(

Ψ(A(N)) logp+1+ϵ(A(N))
)1/p = 0 a.s. (Theorem 8.4.1 [22]; η = 0).

Case ak = 1. This case covers two theorems of [9]. Indeed, when ak = 1, we have
A(n)=n. Then it is clear that if η = 0,

lim
N→∞

1(
Ψ(N) logp+1+ϵ(N)

)1/p

N∑
k=1

Xk = 0 a.s. (Theorem 3 [9]).

If η > 0,

lim
N→∞

1(
Ψ(N) log1+ϵ(N)

)1/p

N∑
k=1

Xk = 0 a.s. (Theorem 5 [9]).

Moreover, let s > 0 be such that p − s > 1, then if Ψ(x) = xp−s, we obtain

lim
N→∞

1(
Np−s log1+ϵ(N)

)1/p

N∑
k=1

Xk = 0 a.s.

which improves Theorem 7 in [9] in the case where η(x) = 1
xs .

Case ak = 1
k . This case allows us to establish a new result which apparently cannot

be obtained by applying Weber’s work. Since we have A(n) ∼ log(n), then if η > 0,

lim
N→∞

1(
Ψ(log(N)) log1+ϵ(log(N))

)1/p

N∑
k=1

Xk = 0 a.s.
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and, since log(2n) ≤ 2 log(n) for n > 1, then if η = 0,

lim
N→∞

1(
Ψ(log(N)) logp+1+ϵ(N)

)1/p

N∑
k=1

Xk = 0 a.s..

3 Proofs of the main results
3.1 Additivity and maximal inequalities
To prove the main results, we need the following lemmas.

Lemma 1. Let Ψ : R+ → R+ be a non-decreasing function. Suppose there exists a
constant η ≥ 0 such that Ψ(x)

x1+η is non-decreasing. Then there exists a constant λ ≥ 1 such
that

Ψ 1
λ (x) + Ψ 1

λ (y) ≤ Ψ 1
λ (x + y)

for all x, y ∈ R+. In particularly, if η = 0 and if there exists α > 1 such that x
1
α +y

1
α ≤ z

1
α ,

z ∈ R+, then

Ψ 1
α (x) + Ψ 1

α (y) ≤ Ψ 1
α (z).

Proof. For all x, y ∈ R+, we have

Ψ 1
λ (x) + Ψ 1

λ (y) ≤ (x1+η) 1
λ

(
Ψ(x + y)

(x + y)1+η

) 1
λ

+ (y1+η) 1
λ

(
Ψ(x + y)

(x + y)1+η

) 1
λ

≤
(

x
1+η

λ + y
1+η

λ

)( Ψ(x + y)
(x + y)1+η

) 1
λ

≤ (x + y)
1+η

λ

(
Ψ(x + y)

(x + y)1+η

) 1
λ

= Ψ 1
λ (x + y)

where the last inequality holds if we take 1 ≤ λ ≤ 1 + η. Moreover, if η = 0 and if there
exists α > 1 such that x

1
α + y

1
α ≤ z

1
α , we have

Ψ 1
α (x) + Ψ 1

α (y) ≤ x
1
α

(
Ψ(z)

z

) 1
α

+ (y) 1
α

(
Ψ(z)

z

) 1
α

≤
(

x
1
α + y

1
α

)(Ψ(z)
z

) 1
α

≤ z
1
α

(
Ψ(z)

z

) 1
α

= Ψ 1
α (z).

The following results are provided by Móricz. A direct consequence of Theorems 1 in
[15] is the following lemma.
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Lemma 2. Let p ≥ 1 and let {Xk, k ≥ 1} be a sequence of random variables on a
probability space (X, A,P). Assume that there exist λ > 1 and a non-negative function
g : N × N 7−→ R+, such that for any m, n ∈ N with m < n,

E

∣∣∣∣∣
n∑

k=m+1
Xk

∣∣∣∣∣
p

≤ Cgλ(m, n),

where g(m, n) is a super-additive function. Then

E

(
nsup

j=m+1

∣∣∣∣∣
j∑

k=m+1
Xk

∣∣∣∣∣
p)

≤ C(λ)gλ(m, n),

where C(λ) is a constant only depending on λ.

We are now dealing with the case where λ = 1. By adapting the result of Theorem
3 in [15], we obtain the following lemma. Before presenting it, let us define the following
sequences. Let (λ(n))n∈N be a positive and non-decreasing sequence, and define (Λ(n))n∈N
as follows:

Λ(1) = 1 and Λ(n) = λ(m) + Λ(m − 1), n ≥ 2,

where m denotes the integer part of n+2
2 . For instance, if λ ≡ 1, then Λ(n) = log2(2n)

because 1 + log2(2(m − 1)) ≤ log2(2n).

Lemma 3. Let {Xk, k ≥ 1} be a sequence of random variables on a probability space
(X, A,P). Suppose that

E |Xb+n − Xb|p ≤ λp(n)g(b, b + n)

where g(m, n) is a super-additive function. Then

E sup
1≤k≤n

|Xb+k − Xb|p ≤ Λp(n)g(b, b + n).

Proof. Let n > 1. If m ≤ k ≤ n, we have

|Xb+k − Xb| ≤ |Xb+k − Xb+m| + |Xb+m − Xb|
≤ sup
m≤k≤n

|Xb+k − Xb+m| + |Xb+m − Xb| .

If k < m, we have

|Xb+k − Xb| ≤ sup
1≤k≤m−1

|Xb+k − Xb| .

By Minkowski’s inequality(
E sup

1≤k≤n
|Xb+k − Xb|p

)1/p
≤ (E |Xb+m − Xb|p)

1/p (3)

+
(
E sup

1≤k≤m−1
|Xb+k − Xb|p + E sup

m≤k≤n
|Xb+k − Xb+m|p

)1/p
.
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Assuming that the conclusion of the lemma holds for k < n and for any b ≥ 0. Then, by
the choice of m, we have

E sup
1≤k≤m−1

|Xb+k − Xb|p ≤ Λp(m − 1)g(b, b + m − 1)

and thus

E sup
m≤k≤n

|Xb+k − Xb+m|p = E sup
1≤k≤n−m

|Xb+m+k − Xb+m|p

≤ Λp(n − m)g(b + m, b + n).

Since n − m ≤ m − 1 and d(m, n) is super-additive, we have that the second term of the
right-hand side of Equation (3) is

E sup
1≤k≤m−1

|Xb+k − Xb|p + E sup
m≤k≤n

|Xb+k − Xb+m|p (4)

≤ Λp(m − 1) (g(b, b + m) + g(b + m, b + n))
≤ Λp(m − 1)g(b, b + n).

Now by assumption, the first term is

E |Xb+m − Xb|p ≤ λp(m)g(b, b + m). (5)

The proof follows directly by using (3), (4), and (5) and performing recurrence over n.

3.2 Proof of Theorem 1
Firstly, let’s consider that 2ψ(n) ≤ Cd(0, n) and ψ(n)

n ↑ ∞ as n → ∞. Since E
∣∣∣∑N

k=1 Xk

∣∣∣p ≤
Ψ(d(0, N)), we can derive that

E

∣∣∣∣∣
∑N
k=1 Xk

(Ψ(d(0, N)) logτ (d(0, N)))1/p

∣∣∣∣∣
p

≤ C
1

logτ (d(0, N)) ≤ C
1

nτ
.

Summing over n with τ > 1, by Beppo Levi’s theorem, we can clearly obtain the result of
the first part of the theorem.

Secondly, we consider that d(0, n) ≤ C2n. For any j ∈ N∗, we have

{d(0, n); n ∈ N∗} ∩ [2j , 2j+1] ̸= ∅.

We denote by Nj the smallest integer N such that d(0, N) belongs to [2j , 2j+1]. In other
words, we write

Nj = inf{N ∈ N∗ : d(0, N) ∈ [2j , 2j+1]}.

To provide proof, we write∣∣∣∣∣
∑N
k=1 Xk

(Ψ(d(0, N)) logτ (d(0, N)))1/p

∣∣∣∣∣ ≤

∣∣∣∣∣
∑Nj

k=1 Xk

(Ψ(d(0, Nj)) logτ (d(0, Nj)))1/p

∣∣∣∣∣ (6)

+ sup
Nj<N≤Nj+1

∣∣∣∣∣
∑N
k=Nj+1 Xk

(Ψ(d(0, Nj)) logτ (d(0, Nj)))1/p

∣∣∣∣∣ .
8



The proof is divided into 6 steps. In Step 1, we show that the first term of the right-
hand side of Equation (6) converges to zero almost surely, which is a common step for
all cases. From Step 2 to Step 4, we demonstrate that the second term converges to zero
almost surely in all cases of the first part of the theorem. Step 5 is dedicated to the second
part. Finally, Step 6 is performed to prove the maximal inequality.

Step 1. First, since E
∣∣∑n

k=m+1 Xk

∣∣p ≤ Ψ(d(m, n)) for m < n, we observe that

E

∣∣∣∣∣
∑Nj

k=1 Xk

(Ψ(d(0, Nj)) logτ (d(0, Nj)))1/p

∣∣∣∣∣
p

≤ Ψ((d(0, Nj))
Ψ(d(0, Nj)) logτ (d(0, Nj))

≤ C
1
jτ

.

With τ > 1 in all cases of the theorem, this implies that the last quantity is a term of a
convergent series. By Beppo Levi’s theorem

lim
j→∞

∑Nj

k=1 Xk

(Ψ(d(0, Nj)) logτ (d(0, Nj)))1/p = 0 a.s.. (7)

Step 2. To control the second term on the right-hand side of (6), we can write for any
n, m ∈ [Nj , Nj+1] with m < n,

E

∣∣∣∣∣
n∑

k=m+1
Xk

∣∣∣∣∣
p

≤ Ψ(d(m, n)). (8)

Moreover, if there exists η > 0 such that Ψ(x)
x1+η is non-decreasing, then, by Lemma 1, we

have Ψ 1
λ (d(m, n)) is super-additive for some λ > 1. We can now apply Lemma 2 to obtain

E sup
Nj<N≤Nj+1

∣∣∣∣∣
∑N
k=Nj+1 Xk

(Ψ(d(0, Nj)) logτ (d(0, Nj)))1/p

∣∣∣∣∣
p

≤ Ψ(d(Nj , Nj+1))
Ψ(d(0, Nj)) logτ (d(0, Nj))

≤ Ψ(d(0, Nj+1))
Ψ(d(0, Nj)) logτ (d(0, Nj))

≤ C
1
jτ

.

The last line follows from the fact that d(0, Nj) belongs to [2j , 2j+1], d(0, Nj+1) belongs
to [2j+1, 2j+2] and Ψ(2x) ≤ CΨ(x) for any x ∈ R+. Now, by summing over j and using
the Beppo Levi’s theorem, we obtain

lim
j→∞

sup
Nj<N≤Nj+1

∣∣∣∣∣
∑N
k=Nj+1 Xk

(Ψ(d(0, Nj)) logτ (d(0, Nj)))1/p

∣∣∣∣∣ = 0 a.s.. (9)

This, together with (7), concludes the proof the first part of the theorem in case a.

Step 3. By Lemma 1, if there exists α > 1 such that d
1
α (m, n) is super-additive then

Ψ 1
α (d(m, n)) is also super-additive. Therefore, if we follow the same procedure as in Step

2, we can conclude that

lim
j→∞

sup
Nj<N≤Nj+1

∣∣∣∣∣
∑N
k=Nj+1 Xk

(Ψ(d(0, Nj)) logτ (d(0, Nj)))1/p

∣∣∣∣∣ = 0 a.s..
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This, together with (7), concludes the proof the first part of the theorem in case b.

Step 4. We will now begin the proof in case c. Since d(m, n) is assumed to be a
super-additive function, then Ψ(d(m, n)) is also super-additive. Applying now Lemma 3
to equation (8) yields,

E sup
Nj<N≤Nj+1

∣∣∣∣∣
∑N
k=Nj+1 Xk

(Ψ(d(0, Nj)) logτ (d(0, Nj)))1/p

∣∣∣∣∣
p

≤ logp (2(Nj+1 − Nj)) Ψ(d(Nj , Nj+1))
Ψ(d(0, Nj)) logτ (d(0, Nj))

≤ C
logp (2(Nj+1 − Nj))

jτ
,

where the last inequality follows from the fact that d(0, Nj) belongs to [2j , 2j+1], d(0, Nj+1)
belongs to [2j+1, 2j+2] and Ψ(2x) ≤ CΨ(x) for any x ∈ R+. We recall that by assumption,
nσ ≤ Cd(0, n) for some σ > 0. Now, from this fact and the definition of Nj , we have
(Nj+1)σ ≤ Cd(0, Nj+1) ≤ C2j . Then

logp (2(Nj+1 − Nj)) ≤ Cjp.

And, therefore

E sup
Nj<N≤Nj+1

∣∣∣∣∣
∑N
k=Nj+1 Xk

(Ψ(d(0, Nj)) logτ (d(0, Nj)))1/p

∣∣∣∣∣
p

≤ C
1

jτ−p .

Summing over j and using Beppo Levi’s theorem, this gives

lim
j→∞

sup
Nj<N≤Nj+1

∣∣∣∣∣
∑N
k=Nj+1 Xk

(Ψ(d(0, Nj)) logτ (d(0, Nj)))1/p

∣∣∣∣∣ = 0 a.s..

This together with (7) concludes the proof of the first part of the theorem in case c.

Step 5. To prove the second part of the theorem, we follow the previous steps
but with some modifications. Specifically, we set Nj = 2j and replace logτ (d(0, N)) in
the denominator of the previous steps with logτ (N). Moreover, we use the inequalities
d(0, 2n) ≤ 2d(0, n) and Ψ(2x) ≤ CΨ(x) to show that Ψ(d(0,Nj+1))

Ψ(d(0,Nj)) is bounded.

Step 6. Now, we prove the strong maximal inequality. To do it, we use (6), and we
take the supremum over j. This gives

sup
N≥1

∣∣∣∣∣
∑N
k=1 Xk

(Ψ(d(0, N)) logτ (d(0, N)))1/p

∣∣∣∣∣
p

≤ C sup
j≥1

sup
Nj<N≤Nj+1

∣∣∣∣∣
∑N
k=Nj+1 Xk

(Ψ(d(0, Nj)) logτ (d(0, Nj)))1/p

∣∣∣∣∣
p

+C sup
j≥1

∣∣∣∣∣
∑Nj

k=1 Xk

(Ψ(d(0, Nj)) logτ (d(0, Nj)))1/p

∣∣∣∣∣
p

.

Choosing, for instance, the case c of the first part of the theorem and integrating over µ,
we can obtain∣∣∣∣∣

∣∣∣∣∣sup
N≥1

∣∣∣∣∣
∑N
k=1 Xk

(Ψ(d(0, N)) logτ (d(0, N)))1/p

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
p

p,µ

≤ C
∑
j≥1

logp(2(Nj+1 − Nj))Ψ(d(Nj , Nj+1))
Ψ(d(0, Nj)) logτ (d(0, Nj))

+C
∑
j≥1

Ψ(d(0, Nj))
Ψ(d(0, Nj)) logτ (d(0, Nj))

.
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The last term is finite, as we showed above in Steps 1 and 4. If we perform the same
operation on all cases, this demonstrates the strong maximal inequality and completes the
proof.

3.3 Proof of Theorem 2
Let (Nk)k∈N be such that Nk = inf{N ∈ N : d(0, N) ≥ k}. Note that k ≤ d(0, Nk) < k+1.
Therefore, for any m < n,

d(Nm, Nn) ≤ d(0, Nn) − d(0, Nm) < 2(n − m).

To simplify the notation, we define Xk = Yk − EYk. We will prove the theorem in two
steps. In Step 1, we will demonstrate that the theorem holds for the sequence (Nk)k∈N.
In Step 2, we will generalize this result.

Step 1. As in the proof of Theorem 1, we write,∣∣∣∣∣
∑Nk

i=1 Xi

(d(0, Nk) logτ (d(0, Nk)))1/p

∣∣∣∣∣ ≤

∣∣∣∣∣
∑N2j

k=1 Xk

(d(0, N2j ) logτ (d(0, N2j )))1/p

∣∣∣∣∣ (10)

+ sup
2j<k≤2j+1

∣∣∣∣∣∣
∑Nk

k=N2j +1
Xk

(d(0, N2j ) logτ (d(0, N2j )))1/p

∣∣∣∣∣∣ .
Know we have,

E

∣∣∣∣∣
∑N2j

k=1 Xk

(d(0, N2j ) logτ (d(0, N2j )))1/p

∣∣∣∣∣
p

≤ d(0, N2j )
d(0, N2j ) logτ (d(0, N2j ))

≤ 1
logτ (2j)

≤ C
1
jτ

.

It follows from the assumptions of the theorem that
∑
j

1
jτ < ∞. Thus, according to

Beppo Levi’s theorem,

lim
j→∞

∑N2j

k=1 Xk

(d(0, N2j ) logτ (d(0, N2j )))1/p = 0 a.s.. (11)

Now, we have to control the second term on the right-hand side of (10). To do it, we write
for any n, m ∈ [2j + 1, 2j+1] with m < n,

E |SNn
− SNm

|p ≤ Cd(Nm, Nn) ≤ C(n − m).

We are now in a position to apply Lemma 3, then

E sup
2j<k≤2j+1

∣∣∣∣∣∣
∑Nk

i=N2j +1
Xi

(d(0, N2j ) logτ (d(0, N2j )))1/p

∣∣∣∣∣∣
p

≤ C
logp

(
2(2j+1 − 2j)

)
(2j+1 − 2j)

d(0, N2j ) logτ (d(0, N2j ))

≤ C
logp

(
2j+1) 2j

2j logτ (2j)

≤ C
1

jτ−p .

11



When τ > p + 1, the last quantity is a term of a convergent series. By Beppo Levi’s
theorem

lim
j→∞

sup
2j<k≤2j+1

∣∣∣∣∣∣
∑Nk

i=N2j +1
Xi

(d(0, N2j ) logτ (d(0, N2j )))1/p

∣∣∣∣∣∣ = 0 a.s.. (12)

According now (11) and (12), this concludes that, for τ > p + 1,

lim
k→∞

∑Nk

k=1 Xk

(d(0, Nk) logτ (d(0, Nk)))1/p = 0 a.s.,

and yields the desired result of Step 1.

Step 2. In this step we treat the general case. For this, we let N and k two integers
in such a way that Nk < N ≤ Nk+1. Then

N∑
i=1

Xi =
N∑
i=1

(Yi − EYi) ≤
Nk+1∑
i=1

Yi −
Nk+1∑
i=1

EYi +
Nk+1∑
i=N+1

EYi (13)

=
Nk+1∑
i=1

Xi +
Nk+1∑
i=N+1

EYi.

And, therefore∑N
i=1 Xi

(d(0, N) logτ (d(0, N)))1/p ≤
∑Nk+1
i=1 Xi

(d(0, Nk) logτ (d(0, Nk)))1/p +
∑Nk+1
i=N+1 EYi

(d(0, Nk) logτ (d(0, Nk)))1/p .

By Step 1, for τ > p + 1, we have

lim
k→∞

∑Nk+1
i=1 Xi

(d(0, Nk+1) logτ (d(0, Nk+1)))1/p = 0 a.s..

For large enough k, there exists a constant C > 0 such that

d(0, Nk+1) logτ (d(0, Nk+1))
d(0, Nk) logτ (d(0, Nk)) ≤ (k + 2) logτ (k + 2)

k logτ (k) ≤ C.

Thus

lim
k→∞

∑Nk+1
i=1 Xi

(d(0, Nk) logτ (d(0, Nk)))1/p = 0 a.s.. (14)

Now, from the assumptions, EYi ≤ Cd
1
p (0, i)d(i − 1, i) and d(m, n) is super-additive, and

from the definition of Nk, we have∑Nk+1
i=N+1 EYi

(d(0, Nk) logτ (d(0, Nk)))1/p ≤ C

∑Nk+1
i=Nk+1 d

1
p (0, i)d(i − 1, i)

(d(0, Nk) logτ (d(0, Nk)))1/p

≤ C
d(0, Nk+1)

1
p d(Nk, Nk+1)

(d(0, Nk) logτ (d(0, Nk)))1/p

≤ C
1

log
τ
p k

.

12



This together with the equation (14) gives

lim sup
k→∞

∑N
i=1 Xi

(d(0, N) logτ (d(0, N)))1/p ≤ 0 a.s..

To conclude, we use the fact that Nk < N ≤ Nk+1 and we write

N∑
i=1

Xi ≥
Nk∑
i=1

Xi −
N∑

i=Nk+1
EYi

And, therefore∑N
i=1 Xi

(d(0, N) logτ (d(0, N)))1/p ≥
∑Nk

i=1 Xi

(d(0, Nk+1) logτ (d(0, Nk+1)))1/p −
∑N
i=Nk+1 EYi

(d(0, Nk+1) logτ (d(0, Nk+1)))1/p .

Now we do as we did above to prove that

lim inf
k→∞

∑N
i=1 Xi

(d(0, N) logτ (d(0, N)))1/p ≥ 0 a.s..

Consequently

lim
k→∞

∑N
i=1 Xi

(d(0, N) logτ (d(0, N)))1/p = 0 a.s.

which proves our claim and finishes the proof of theorem.

3.4 Proof of Corollary 2
Using Abel’s summation formula, we have

N∑
k=1

Xk

(kβ logτ (k))1/p =

N−1∑
k=1

(
1

(kβ logτ (k))1/p − 1
((k + 1)β logτ (k + 1))1/p

) k∑
j=1

Xj

+ 1
(Nβ logτ (N))1/p

N∑
k=1

Xk. (15)

If β > 1, then there exists α > 1 such that (n − m)β/α is super-additive. Applying
Corollary 1 with d(m, n) = (m − n)β , we have

lim
N→∞

1
(Nβ logτ (N))1/p

N∑
k=1

Xk = 0.

13



This implies that the last term of the right-hand side of (15) converges to 0 almost surely.
Moreover,

E

∣∣∣∣∣∣
N−1∑
k=1

(
1

(kβ logτ (k))1/p − 1
((k + 1)β logτ (k + 1))1/p

) k∑
j=1

Xj

∣∣∣∣∣∣
p

≤ C

N−1∑
k=1

1
kβ+1 logτ (k)E

∣∣∣∣∣∣
k∑
j=1

Xj

∣∣∣∣∣∣
p

≤ C

N−1∑
k=1

kβ

kβ+1 logτ (k) .

Since we assume that τ > 1, the last term is finite, as desired. Then, by applying Beppo
Levi’s theorem, we can conclude the proof for β > 1. For the case where β = 1, we can
follow the same steps as before and use Corollary 1 with d(m, n) = (n − m).

4 Discussion and applications
Let {Xk, k ≥ 1} be a sequence of random variables. It is well-known that for p ≥ 1,

E

∣∣∣∣∣
n∑

k=m+1
Xi

∣∣∣∣∣
p

≤ (n − m)p−1
n∑

k=m+1
E |Xi|p .

If {Xk, k ≥ 1} is a sequence of independent random variables with EXk = 0 and E|Xk|p <
∞ for some 1 ≤ p ≤ 2, then E |

∑n
k=1 Xk|p ≤ Cp

∑n
k=1 E |Xk|p (see von Bahr and Esseen

[20]). In what follows we consider that the sequence {Xk, k ∈ N} satisfying

E

∣∣∣∣∣
n∑

k=m+1
Xi

∣∣∣∣∣
p

≤ (n − m)α−1
n∑

k=m+1
E |Xk|p ,

for some α ∈ [1, p]. Although Corollary 1 is applicable in this case, the following theorem
proves to be more effective in certain special cases of E |Xk|p.

Theorem 3. Let p > 1 and let ϕ : R → R+ be a non-decreasing function such that
ϕ(2x) ≤ Cϕ(x), for any x ∈ R+. Then if 1 ≤ α ≤ 2,

∑
k≥1

logp(k)kα−1E |Xk|p

ϕp(k) < ∞ =⇒ lim
N→∞

1
ϕ(N)

N∑
k=1

Xk = 0 a.s.. (16)

If α > 2,

∑
k≥1

kα−1E |Xk|p

ϕp(k) < ∞ =⇒ lim
N→∞

1
ϕ(N)

N∑
k=1

Xk = 0 a.s..

Notice that, if we take
E |Xk|p = 1

k ,

d(m, n) = (n − m)α−1∑n
k=m+1 E |Xk|p ,

ϕ(n) = (d(0, n) logτ (d(0, n)))1/p,

14



then by Corollary 1, the convergence of equation (16) is guaranteed as long as τ > 1 + p,
since there exists a positive σ such that nσ ≤ Cnα−1∑n

k=1 E |Xk|p, where 1 < α ≤ 2.
In contrast, Theorem 3 only requires a value of τ greater than p to achieve convergence.
Similarly, if α > 2, Corollary 1 necessitates τ > 1 for convergence, while the previous
theorem only requires τ > 0.

Proof. The proof for the first part of the theorem will be presented, and the second part
can be demonstrated using the same process. From the proof of Theorem 1, specifically
equation (6), step 1 and step 4, to obtain (16), it remains to show that

∑
j≥1

2j(α−1)∑2j

k=1 E |Xk|p

ϕp(2j) < ∞ and
∑
j≥1

jp2j(α−1)∑2j+1

k=2j+1 E |Xk|p

ϕp(2j) < ∞. (17)

Since ϕ(2x) ≤ Cϕ(x),

∑
j≥1

jp2j(α−1)∑2j+1

k=2j+1 E |Xk|p

ϕp(2j) ≤ C
∑
j≥1

2j+1∑
k=2j+1

logp(k)kα−1E |Xk|p

ϕp(k)

≤ C
∑
k≥3

logp(k)kα−1E |Xk|p

ϕp(k) ,

which is finite by assumption. Now, we prove the first half of (17). Provided that(
ϕp(n)

nα−1 logp(n)

)
n∈N

is a strictly increasing sequence and approaches infinity as n approaches
infinity, we have from the assumption of the theorem and from Kronecker’s lemma that

lim
n→∞

logp(n)nα−1

ϕp(n)

n∑
k=1

E |Xk|p = 0.

Consequently

nα−1

ϕp(n)

n∑
k=1

E |Xk|p ≤ C
1

logp(n) .

The proof ends with p > 1.

The following corollary is a direct application of the previous theorem using ϕ(n) =(
nα−1 logτ (n)

∑n
k=1 E |Xk|p

)1/p.

Corollary 3. If 1 ≤ α ≤ 2, then

∑
k≥1

E |Xk|p

logτ−p(k)
∑k
i=1 E |Xi|p

< ∞ =⇒ lim
N→∞

∑N
k=1 Xk(

Nα−1 logτ (N)
∑N
k=1 E |Xk|p

)1/p = 0 a.s..

If α > 2, then

∑
k≥1

E |Xk|p

logτ (k)
∑k
i=1 E |Xi|p

< ∞ =⇒ lim
N→∞

∑N
k=1 Xk(

Nα−1 logτ (N)
∑N
k=1 E |Xk|p

)1/p = 0 a.s..

15



4.1 Application with slowly varying sequences
A slowly varying function L(·) is a positive and measurable function on [A, ∞) for some
A > 0, such that for any λ > 0,

lim
x→∞

L(λx)
L(x) = 1.

The de Bruijn conjugate of a slowly varying function L(·) is another slowly varying function
L̃(·) that is unique up to asymptotic equivalence. The de Bruijn conjugate satisfies two
conditions:

lim
x→∞

L(x)L̃(xL(x)) = 1 and lim
x→∞

L̃(x)L(xL̃(x)) = 1.

Let β > α
p and let

f(x) =
(

x
βp−α+1

βp L
(

x
βp−α+1

βp

))βp
and g(x) =

(
x

1
βp L̃

(
x

1
βp

)) βp
βp−α+1

be defined on [A, ∞). The following result is a direct consequence of Theorem 1.5.12 and
Proposition 1.5.15 in [2] (see also Lemma 2.1 in [1]),

lim
x→∞

f(g(x))
x

= lim
x→∞

g(f(x))
x

= 1.

Let now, {Xk, k ≥ 1} be an identically distributed sequence such that E (g(|X1|p)) < ∞. It
is known that for a non-negative random variable Y , E(Y ) < ∞ if and only if

∑
k≥1 P (Y >

k) < ∞. This gives∑
k≥1

P(|X1|p > f(k)) =
∑
k≥1

P(g(|X1|p) > k) < ∞.

Theorem 4. Let Yk = XkI (|Xk|p ≤ f(k)), then

lim
N→∞

1
Nβ log(N)Lβ(N)

N∑
k=1

Yk a.s..

Proof. Based on Theorem 3, it is enough to demonstrate that∑
k≥2

logp(k)kα−1E |Yk|p

(kβ log(k)Lβ(k))p
< ∞.

To do it, we write∑
k≥2

logp(k)kα−1E |Yk|p

(kβ log(k)Lβ(k))p
=
∑
k≥2

kα−1E (|Xk| I (|Xk|p ≤ f(k)))p

kβpLβp(k)

= E

|X1|p
∑
k≥2

I (|X1|p ≤ f(k))
kβp−α+1Lβp(k)

 .

Since β > α
p , it follows from Theorem 8.7 in [23], that

∑
k≥n

1
f(k) ≤ C n

f(n) for any
n ≥ g(A). Thus

|X1|p
∑
k≥2

I (g(|X1|p) ≤ k)
kβp−α+1Lβp(k) ≤ C|X1|p g(|X1|p)

f(g(|X1|p) ≤ Cg(|X1|p)

where the last inequality follows from the fact that f(g(x)) ∼ x. Since E [g(|X1|p)] < ∞,
the proof is complete.
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4.2 Sequence of quasi-stationary random variables.
The van der Corput lemma will come in handy later on.

Lemma 4. (Van der Corput) Let m and n be integers such that m < n. Let (uk)k∈N be
a finite sequence which takes values in C and H a integer such that H < n − m. Then∣∣∣∣∣

n∑
k=m+1

uk

∣∣∣∣∣
2

≤ n − m + H

H + 1

(
n∑

k=m+1
|uk|2 + 2

H∑
h=1

(
1 − h

H + 1

) n−h∑
k=m+1

ℜ(uk+h · ūk)
)

.

(18)

Let f : N → R+ be a non-negative function. Let {Xk, k ∈ N} be a sequence of random
variables. We say that {Xk, k ≥ 1} is f−quasi-stationary if for any h ∈ N,

E(Xk) = 0, E(X2
k) < ∞ and E(XkXk+h) ≤ f(h).

According to (18) with H = n − m − 1,

E

∣∣∣∣∣
n∑

k=m+1
Xk

∣∣∣∣∣
2

≤ C

n∑
k=m+1

E|Xk|2 + C

n − m

n−1∑
h=m+1

(n − h)
n+m−h∑
k=m+1

|E(XkXk+h)|

≤ C

n∑
k=m+1

E|Xk|2 + C

n − m

n−1∑
h=m+1

(n − h)2f(h)

≤ C

n∑
k=m+1

E|Xk|2 + C(n − m)
n−1∑

h=m+1
f(h).

The following theorem is a direct consequence of Theorem 3.

Theorem 5. Let {Xk, k ≥ 1} be a f−quasi-stationary sequence and let ϕ be a non-
decreasing function. Suppose that

∑
k≥2

log2(k)k
∑k
i=1 f(i)

ϕ2(k) < ∞.

Then

lim
N→∞

1
ϕ(N)

N∑
k=1

Xk = 0 a.s..

It is possible to push the analysis further. Specifically, suppose that for any h > 0,
|E(XkXk+h)| ≤ g(k)f(h)E|Xk|2, where g is a positive function. Using the Van der Corput
lemma allows us to obtain

E

∣∣∣∣∣
n∑

k=m+1
Xk

∣∣∣∣∣
2

≤ C

n∑
k=m+1

E|Xk|2 + C

n−1∑
h=m+1

f(h)
n+m−h−1∑

k=m
g(k)E|Xk|2.

Theorem 3 can also be applied.
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