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In this paper, we investigate the strong laws of large numbers with general normalizing sequences for arbitrary dependent sequences whose partial sums satisfy certain conditions on the p-th moment. To do it, we adapt results due to Móricz concerning moment inequalities. We also give applications that were difficult to deal with previously. Our results extend and improve some well-known corresponding ones.

Introduction

Kolmogorov's strong law of large numbers [START_REF] Nikolaevitch | Sur la loi forte des grands nombres[END_REF] is one of the most important results in probability limit theorems. This result has been generalized by to obtain rates of convergence. Specifically, given a centered sequence of independent and identically distributed (i.i.d.) random variables {X k , k ≥ 1} and S n , the associated partial sum of rank n:

S n = X 1 + • • • + X n , for 1 ≤ p < 2, E|X 1 | p < ∞ if
and only if n -1/p S n -→ 0 almost surely (a.s.). It is worth noting that the last equivalence constitutes Kolmogorov's strong law of large numbers in the case p = 1 and that of Marcinkiewicz-Zygmund in the case 1 < p < 2. Many studies have been conducted concerning the rates of convergence in the Marcinkiewicz-Zygmund's strong law of large numbers, and there is a vast body of literature on this topic.

It is natural to extend the idea behind the Kolmogorov-Marcinkiewicz-Zygmund result to dependent random sequences. However, this extension imposes conditions on the p-th moment of S n . In this context, we refer to several studies such as [START_REF] Chobanyan | Strong law of large numbers under a general moment condition[END_REF][START_REF] Cohen | On strong laws of large numbers with rates[END_REF][START_REF] Cohen | Laws of large numbers with rates and the one-sided ergodic hilbert transform[END_REF][START_REF] Gál | Sur l'ordre de grandeur des fonctions sommables[END_REF][START_REF] Li | A characterization of a new type of strong law of large numbers[END_REF][START_REF] Nane | A strong law of large numbers with applications to self-similar stable processes[END_REF][START_REF] Nane | Strong laws of large numbers for arrays of random variables and stable random fields[END_REF][START_REF] Weber | Uniform Bounds under Increment Conditions[END_REF][START_REF] Weber | Dynamical systems and processes[END_REF].

Let p ≥ 1 be a constant and let {X k , k ≥ 1} ⊂ L p (X, A, µ) be a sequence of random variables. We say that {X k , k ≥ 1} satisfies the strong law of large numbers with respect 1 to a non-decreasing function ϕ : R + → R + such that ϕ(x) ↑ ∞ as x → ∞, if lim

N →∞ 1 ϕ(N ) N k=1
X k = 0 a.s.. [START_REF] Gál | Sur l'ordre de grandeur des fonctions sommables[END_REF] derived weak conditions of the form

Gál-Koksma

E n k=m+1 X k p ≤ d(m, n) for any m, n ∈ N with m < n, (1) 
for some function d : N × N → R + , to ensure that the above limit holds. Weber [START_REF] Weber | Uniform Bounds under Increment Conditions[END_REF][START_REF] Weber | Dynamical systems and processes[END_REF] recently established a strong law of large numbers for random variables satisfying increment conditions of the type considered in Gál-Koksma theorems. In this paper, we aim to establish a more general strong law of large numbers by providing conditions of the type (1) that allow us to extend Gál-Koksma and Weber's results. Our approach is based on adapting results from Móricz's work, and it enables us to obtain new results in several cases. One of the strengths of our approach is that our proof is much simpler than the existing ones.

Before presenting our main result, let us first recall the following definition. A function d(m, n) is said to be super-additive if, for any j ∈ [m, n], we have d(m, j) + d(j, n) ≤ d(m, n). It is important to note that if d(m, n) is super-additive and η(m, n) is a nondecreasing function with respect to n and a non-increasing function with respect to m, then d(m, n)η(m, n) is also super-additive. Throughout this paper, the symbol C denotes a positive constant which may vary from one appearance to another. With this definition in mind, we can now proceed to state our main theorem. Theorem 1. Let p ≥ 1. Consider a sequence of random variables {X k , k ≥ 1} ⊂ L p (X, A, µ). Let Ψ : R + → R + be a non-decreasing function satisfying Ψ(2x) ≤ CΨ(x). Assume that, there exists a constant η ≥ 0 such that the function Ψ(x) x 1+η is non-decreasing and for any m, n ∈ N with m < n, we have

E n k=m+1 X k p ≤ Ψ(d(m, n)).
(2)

1. If one of the following cases holds:

(a) η > 0, d(m, n) is a super-additive function and τ > 1; (b) η = 0, there exists α > 1 such that d 1 α (m, n) is super-additive and τ > 1; (c) η = 0, d(m, n) is super-additive, there exists σ > 0 such that n σ = O (d(0, n))
and τ > p + 1,

then we have lim N →∞ 1 (Ψ(d(0, N )) log τ (d(0, N ))) 1/p N k=1 X k = 0 a.s. and sup N ≥1 N k=1 X k (Ψ(d(0,N )) log τ (d(0,N ))) 1/p ∈ L p (µ).
2. If one of the preceding cases, namely a, b, or c without the condition that there exists

σ > 0 such that n σ = O (d(0, n)), holds and if d(0, 2n) ≤ Cd(0, n), then lim N →∞ 1 (Ψ(d(0, N )) log τ (N )) 1/p N k=1 X k = 0 a.s. and sup N ≥1 N k=1 X k (Ψ(d(0,N )) log τ (N )) 1/p ∈ L p (µ).
Theorem 1 extends the results of Weber [START_REF] Weber | Uniform Bounds under Increment Conditions[END_REF][START_REF] Weber | Dynamical systems and processes[END_REF] and, as a result, extends the wellknown Gál-Koksma theorems [START_REF] Gál | Sur l'ordre de grandeur des fonctions sommables[END_REF]. More details on this will be provided in Section 2 below. Additionally, this theorem can be used to improve upon the ideas presented in Theorem 1.1. of [START_REF] Nane | Strong laws of large numbers for arrays of random variables and stable random fields[END_REF] in a one-dimensional setting (see also Theorem 1.1. in [START_REF] Nane | A strong law of large numbers with applications to self-similar stable processes[END_REF] and Theorem 1. in [START_REF] Chobanyan | Strong law of large numbers under a general moment condition[END_REF]). The paper by Nane et al. [START_REF] Nane | Strong laws of large numbers for arrays of random variables and stable random fields[END_REF] provides strong laws of large numbers with normalizations that satisfy more conditions than ours.

The next corollary considers the scenario where only d(m, n) is present. It is a direct application of the previous theorem with η = 0 and Ψ is the identity function. X k = 0 a.s..

Corollary 1. Let p ≥ 1. Consider a sequence of random variables {X k , k ≥ 1} ⊂ L p (X, A, µ) and suppose that E n k=m+1 X k p ≤ d(m, n), for any m, n ∈ N with m < n.

If one of the preceding cases, namely a or b without the condition that there exists

σ > 0 such that n σ = O (d(0, n)), holds and if d(0, 2n) ≤ Cd(0, n), then lim N →∞ 1 (d(0, N ) log τ (N )) 1/p N k=1 X k = 0 a.s..
As an application of Theorem 1, we are able to give an example of function ϕ such that the series k≥1 X k ϕ(k) converges. In particular, we establish the following corollary. Corollary 2. Suppose that

E n k=m+1 X k p ≤ (n -m) β for any m, n ∈ N with m < n. If β = 1 and τ > p + 1, then k>1 X k (k log τ (k)) 1/p converges a.s.. If 1 < β < p and τ > 1, then k>1 X k (k β log τ (k)) 1/p converges a.s..
This paper also provides strong laws of large numbers for sequences of non-negative random variables. Two notable strands of research in this literature are: (i) the works of Etemadi [START_REF] Etemadi | On the laws of large numbers for nonnegative random variables[END_REF] and Csörgő, Tandori, and Totik [START_REF] Csörgő | On the strong law of large numbers for pairwise independent random variables[END_REF], and (ii) the Petrov-type approach, inspired by Petrov [START_REF] Vladimirovich | On the strong law of large numbers[END_REF], which has been studied by several authors such as Korchevsky [START_REF] Korchevsky | A generalization of the petrov strong law of large numbers[END_REF], Kuczmaszewska [START_REF] Kuczmaszewska | Convergence rate in the petrov slln for dependent random variables[END_REF], and Petrov [START_REF] Vladimirovich | On the strong law of large numbers for nonnegative random variables[END_REF]. Chen and Sung [START_REF] Chen | A strong law of large numbers for nonnegative random variables and applications[END_REF] established a theorem that unifies both strands. Specifically, they demonstrated that if {Y k , k ≥ 1} ⊂ L p (X, A, µ), p ≥ 1, is a sequence of non-negative random variables and (b k ) k≥1 is a non-decreasing unbounded sequence of positive numbers such that

sup n≥1 n k=1 EY k b n < ∞, ∃ δ n ≥ 0 : E n k=1 (Y k -EY k ) p ≤ n k=1 δ k and k≥1 δ k b p k < ∞, then we have lim N →∞ 1 b N N k=1 (Y k -EY k ) = 0 a.s..
This paper aims to provide additional contributions to this topic. We can prove the following theorem.

Theorem 2. Let p ≥ 1. Let {Y k , k ≥ 1} ⊂ L p (X, A, µ) be a sequence of non-negative random variables. Suppose that, for any m < n,

E n k=m+1 (Y k -EY k ) p ≤ d(m, n) and EY n ≤ Cd 1 p (0, n)d(n -1, n),
where d(m, n) is a super-additive function. Then, for any τ > p + 1, we have

lim N →∞ 1 (d(0, N ) log τ (d(0, N ))) 1/p N k=1 (Y k -EY k ) = 0 a.s..
Notice that this theorem can also be used for some sequences of non-positive random variables. For example, consider a sequence of random variables {X k , k ≥ 1} taking values in {-1, 1} such that P(X n = 1) = p n and p n ≤ Cd

1 p (0, n)d(n -1, n). Then, we have E n k=m+1 (X k -EX k ) p = E n k=m+1 (Y k -EY k ) p , where Y k = X k + 1 for any k ≥ 1.
Moreover, note that the result of the theorem remains true even if the condition

EY n ≤ Cd 1 p (0, n)d(n -1, n) is replaced by the condition sup n≥1 n k=1 EY k d 1/p (0,n) < ∞.
The rest of this paper is organized as follows. In Section 2, we compare our results with those of Gál-Koksma and Weber. In Section 3, we recall some known results that will be used in the proofs of our main theorems and then proceed to prove them. One of the main analytical tools used in the proofs is Móricz's work. In the last section, we provide several examples illustrating our main results.

Extension of Gál-Koksma's and Weber's theorems

In this section, we will show how our theorem extends the results of Gál-Koksma [START_REF] Gál | Sur l'ordre de grandeur des fonctions sommables[END_REF] and Weber [START_REF] Weber | Uniform Bounds under Increment Conditions[END_REF][START_REF] Weber | Dynamical systems and processes[END_REF]. Let {X k , k ≥ 1} be a sequence of random variables with probability space (X, A, µ) and let Ψ : R + → R + be a non-decreasing function such that Ψ(2x) ≤ CΨ(x). Assume that there exists a constant η ≥ 0 such that Ψ(x) x 1+η is non-decreasing. Let (a k ) k∈N be a sequence of positive real numbers, and define A(n) = n k=1 a k . Now, assume that the condition (2) holds with:

d(m, n) = n k=m+1 a k .
Then several theorems of Gál-Koksma and Weber can be seen as particular cases of our Theorem 1. More precisely, let ϵ > 0, and depending on the value of a k , we have the following:

Case a k > C. Applying Theorem 1, we have :

If η > 0, lim N →∞ N k=1 X k Ψ(A(N )) log 1+ϵ A(N ))
1/p = 0 a.s. (Theorem 8.4.1 [START_REF] Weber | Dynamical systems and processes[END_REF]; η > 0).

If η = 0, lim N →∞ N k=1 X k Ψ(A(N )) log p+1+ϵ (A(N ))
1/p = 0 a.s. (Theorem 8.4.1 [START_REF] Weber | Dynamical systems and processes[END_REF]; η = 0).

Case a k = 1. This case covers two theorems of [START_REF] Gál | Sur l'ordre de grandeur des fonctions sommables[END_REF]. Indeed, when a k = 1, we have

A(n)=n. Then it is clear that if η = 0, lim N →∞ 1 Ψ(N ) log p+1+ϵ (N ) 1/p N k=1 X k = 0 a.s. (Theorem 3 [9]). If η > 0, lim N →∞ 1 Ψ(N ) log 1+ϵ (N ) 1/p N k=1 X k = 0 a.s. (Theorem 5 [9]). Moreover, let s > 0 be such that p -s > 1, then if Ψ(x) = x p-s , we obtain lim N →∞ 1 N p-s log 1+ϵ (N ) 1/p N k=1 X k = 0 a.s.
which improves Theorem 7 in [START_REF] Gál | Sur l'ordre de grandeur des fonctions sommables[END_REF] in the case where η(x) = 1

x s .

Case a k = 1 k . This case allows us to establish a new result which apparently cannot be obtained by applying Weber's work. Since we have

A(n) ∼ log(n), then if η > 0, lim N →∞ 1 Ψ(log(N )) log 1+ϵ (log(N )) 1/p N k=1 X k = 0 a.s. and, since log(2n) ≤ 2 log(n) for n > 1, then if η = 0, lim N →∞ 1 Ψ(log(N )) log p+1+ϵ (N ) 1/p N k=1 X k = 0 a.s..

Proofs of the main results

Additivity and maximal inequalities

To prove the main results, we need the following lemmas.

Lemma 1. Let Ψ : R + → R + be a non-decreasing function. Suppose there exists a constant η ≥ 0 such that Ψ(x) x 1+η is non-decreasing. Then there exists a constant λ ≥ 1 such that

Ψ 1 λ (x) + Ψ 1 λ (y) ≤ Ψ 1 λ (x + y)
for all x, y ∈ R + . In particularly, if η = 0 and if there exists α > 1 such that x

1 α +y 1 α ≤ z 1 α , z ∈ R + , then Ψ 1 α (x) + Ψ 1 α (y) ≤ Ψ 1 α (z).
Proof. For all x, y ∈ R + , we have

Ψ 1 λ (x) + Ψ 1 λ (y) ≤ (x 1+η ) 1 λ Ψ(x + y) (x + y) 1+η 1 λ + (y 1+η ) 1 λ Ψ(x + y) (x + y) 1+η 1 λ ≤ x 1+η λ + y 1+η λ Ψ(x + y) (x + y) 1+η 1 λ ≤ (x + y) 1+η λ Ψ(x + y) (x + y) 1+η 1 λ = Ψ 1 λ (x + y)
where the last inequality holds if we take 1 ≤ λ ≤ 1 + η. Moreover, if η = 0 and if there exists α > 1 such that x

1 α + y 1 α ≤ z 1 α , we have Ψ 1 α (x) + Ψ 1 α (y) ≤ x 1 α Ψ(z) z 1 α + (y) 1 α Ψ(z) z 1 α ≤ x 1 α + y 1 α Ψ(z) z 1 α ≤ z 1 α Ψ(z) z 1 α = Ψ 1 α (z).
The following results are provided by Móricz. A direct consequence of Theorems 1 in [START_REF] Móricz | Moment inequalities and the strong laws of large numbers[END_REF] is the following lemma. Lemma 2. Let p ≥ 1 and let {X k , k ≥ 1} be a sequence of random variables on a probability space (X, A, P). Assume that there exist λ > 1 and a non-negative function

g : N × N -→ R + , such that for any m, n ∈ N with m < n, E n k=m+1 X k p ≤ Cg λ (m, n), where g(m, n) is a super-additive function. Then E n sup j=m+1 j k=m+1 X k p ≤ C(λ)g λ (m, n),
where C(λ) is a constant only depending on λ.

We are now dealing with the case where λ = 1. By adapting the result of Theorem 3 in [START_REF] Móricz | Moment inequalities and the strong laws of large numbers[END_REF], we obtain the following lemma. Before presenting it, let us define the following sequences. Let (λ(n)) n∈N be a positive and non-decreasing sequence, and define (Λ(n)) n∈N as follows:

Λ(1) = 1 and Λ(n) = λ(m) + Λ(m -1), n ≥ 2,
where m denotes the integer part of n+2 2 . For instance

, if λ ≡ 1, then Λ(n) = log 2 (2n) because 1 + log 2 (2(m -1)) ≤ log 2 (2n). Lemma 3. Let {X k , k ≥ 1}
be a sequence of random variables on a probability space (X, A, P). Suppose that

E |X b+n -X b | p ≤ λ p (n)g(b, b + n)
where g(m, n) is a super-additive function. Then

E sup 1≤k≤n |X b+k -X b | p ≤ Λ p (n)g(b, b + n). Proof. Let n > 1. If m ≤ k ≤ n, we have |X b+k -X b | ≤ |X b+k -X b+m | + |X b+m -X b | ≤ sup m≤k≤n |X b+k -X b+m | + |X b+m -X b | . If k < m, we have |X b+k -X b | ≤ sup 1≤k≤m-1 |X b+k -X b | . By Minkowski's inequality E sup 1≤k≤n |X b+k -X b | p 1/p ≤ (E |X b+m -X b | p ) 1/p (3) 
+ E sup 1≤k≤m-1 |X b+k -X b | p + E sup m≤k≤n |X b+k -X b+m | p 1/p .
Assuming that the conclusion of the lemma holds for k < n and for any b ≥ 0. Then, by the choice of m, we have

E sup 1≤k≤m-1 |X b+k -X b | p ≤ Λ p (m -1)g(b, b + m -1)
and thus

E sup m≤k≤n |X b+k -X b+m | p = E sup 1≤k≤n-m |X b+m+k -X b+m | p ≤ Λ p (n -m)g(b + m, b + n).
Since n -m ≤ m -1 and d(m, n) is super-additive, we have that the second term of the right-hand side of Equation ( 3) is

E sup 1≤k≤m-1 |X b+k -X b | p + E sup m≤k≤n |X b+k -X b+m | p ( 4 
)
≤ Λ p (m -1) (g(b, b + m) + g(b + m, b + n)) ≤ Λ p (m -1)g(b, b + n).
Now by assumption, the first term is

E |X b+m -X b | p ≤ λ p (m)g(b, b + m). (5) 
The proof follows directly by using ( 3), (4), and ( 5) and performing recurrence over n.

Proof of Theorem 1

Firstly, let's consider that 2 ψ(n) ≤ Cd(0, n) and

ψ(n) n ↑ ∞ as n → ∞. Since E N k=1 X k p ≤ Ψ(d(0, N )), we can derive that E N k=1 X k (Ψ(d(0, N )) log τ (d(0, N ))) 1/p p ≤ C 1 log τ (d(0, N )) ≤ C 1 n τ .
Summing over n with τ > 1, by Beppo Levi's theorem, we can clearly obtain the result of the first part of the theorem.

Secondly, we consider that d(0, n) ≤ C2 n . For any j ∈ N * , we have

{d(0, n); n ∈ N * } ∩ [2 j , 2 j+1 ] ̸ = ∅.
We denote by N j the smallest integer N such that d(0, N ) belongs to [2 j , 2 j+1 ]. In other words, we write

N j = inf{N ∈ N * : d(0, N ) ∈ [2 j , 2 j+1 ]}.
To provide proof, we write

N k=1 X k (Ψ(d(0, N )) log τ (d(0, N ))) 1/p ≤ Nj k=1 X k (Ψ(d(0, N j )) log τ (d(0, N j ))) 1/p (6) + sup Nj <N ≤Nj+1 N k=Nj +1 X k (Ψ(d(0, N j )) log τ (d(0, N j ))) 1/p .
The proof is divided into 6 steps. In Step 1, we show that the first term of the righthand side of Equation ( 6) converges to zero almost surely, which is a common step for all cases. From Step 2 to Step 4, we demonstrate that the second term converges to zero almost surely in all cases of the first part of the theorem. Step 5 is dedicated to the second part. Finally, Step 6 is performed to prove the maximal inequality.

Step 1. First, since

E n k=m+1 X k p ≤ Ψ(d(m, n)) for m < n, we observe that E Nj k=1 X k (Ψ(d(0, N j )) log τ (d(0, N j ))) 1/p p ≤ Ψ((d(0, N j )) Ψ(d(0, N j )) log τ (d(0, N j )) ≤ C 1 j τ .
With τ > 1 in all cases of the theorem, this implies that the last quantity is a term of a convergent series. By Beppo Levi's theorem

lim j→∞ Nj k=1 X k (Ψ(d(0, N j )) log τ (d(0, N j ))) 1/p = 0 a.s.. ( 7 
)
Step 2. To control the second term on the right-hand side of ( 6), we can write for any

n, m ∈ [N j , N j+1 ] with m < n, E n k=m+1 X k p ≤ Ψ(d(m, n)). (8) 
Moreover, if there exists η > 0 such that Ψ(x) x 1+η is non-decreasing, then, by Lemma 1, we have Ψ 1 λ (d(m, n)) is super-additive for some λ > 1. We can now apply Lemma 2 to obtain

E sup Nj <N ≤Nj+1 N k=Nj +1 X k (Ψ(d(0, N j )) log τ (d(0, N j ))) 1/p p ≤ Ψ(d(N j , N j+1 )) Ψ(d(0, N j )) log τ (d(0, N j )) ≤ Ψ(d(0, N j+1 )) Ψ(d(0, N j )) log τ (d(0, N j )) ≤ C 1 j τ .
The last line follows from the fact that d(0, N j ) belongs to [2 j , 2 j+1 ], d(0, N j+1 ) belongs to [2 j+1 , 2 j+2 ] and Ψ(2x) ≤ CΨ(x) for any x ∈ R + . Now, by summing over j and using the Beppo Levi's theorem, we obtain

lim j→∞ sup Nj <N ≤Nj+1 N k=Nj +1 X k (Ψ(d(0, N j )) log τ (d(0, N j ))) 1/p = 0 a.s.. (9) 
This, together with [START_REF] Csörgő | On the strong law of large numbers for pairwise independent random variables[END_REF], concludes the proof the first part of the theorem in case a.

Step 3. By Lemma 1, if there exists α > 1 such that d

1 α (m, n) is super-additive then Ψ 1 α (d(m, n))
is also super-additive. Therefore, if we follow the same procedure as in Step 2, we can conclude that

lim j→∞ sup Nj <N ≤Nj+1 N k=Nj +1 X k (Ψ(d(0, N j )) log τ (d(0, N j )))
1/p = 0 a.s.. This, together with [START_REF] Csörgő | On the strong law of large numbers for pairwise independent random variables[END_REF], concludes the proof the first part of the theorem in case b.

Step 4. We will now begin the proof in case c. Since d(m, n) is assumed to be a super-additive function, then Ψ(d(m, n)) is also super-additive. Applying now Lemma 3 to equation (8) yields,

E sup Nj <N ≤Nj+1 N k=Nj +1 X k (Ψ(d(0, N j )) log τ (d(0, N j ))) 1/p p ≤ log p (2(N j+1 -N j )) Ψ(d(N j , N j+1 )) Ψ(d(0, N j )) log τ (d(0, N j )) ≤ C log p (2(N j+1 -N j )) j τ ,
where the last inequality follows from the fact that d(0, N j ) belongs to [2 j , 2 j+1 ], d(0, N j+1 ) belongs to [2 j+1 , 2 j+2 ] and Ψ(2x) ≤ CΨ(x) for any x ∈ R + . We recall that by assumption, n σ ≤ Cd(0, n) for some σ > 0. Now, from this fact and the definition of N j , we have

(N j+1 ) σ ≤ Cd(0, N j+1 ) ≤ C2 j . Then log p (2(N j+1 -N j )) ≤ Cj p .
And, therefore

E sup Nj <N ≤Nj+1 N k=Nj +1 X k (Ψ(d(0, N j )) log τ (d(0, N j ))) 1/p p ≤ C 1 j τ -p .
Summing over j and using Beppo Levi's theorem, this gives

lim j→∞ sup Nj <N ≤Nj+1 N k=Nj +1 X k (Ψ(d(0, N j )) log τ (d(0, N j )))
1/p = 0 a.s.. This together with [START_REF] Csörgő | On the strong law of large numbers for pairwise independent random variables[END_REF] concludes the proof of the first part of the theorem in case c.

Step 5. To prove the second part of the theorem, we follow the previous steps but with some modifications. Specifically, we set N j = 2 j and replace log τ (d(0, N )) in the denominator of the previous steps with log τ (N ). Moreover, we use the inequalities d(0, 2n) ≤ 2d(0, n) and Ψ(2x) ≤ CΨ(x) to show that

Ψ(d(0,Nj+1)) Ψ(d(0,Nj )) is bounded.
Step 6. Now, we prove the strong maximal inequality. To do it, we use ( 6), and we take the supremum over j. This gives sup

N ≥1 N k=1 X k (Ψ(d(0, N )) log τ (d(0, N ))) 1/p p ≤ C sup j≥1 sup Nj <N ≤Nj+1 N k=Nj +1 X k (Ψ(d(0, N j )) log τ (d(0, N j ))) 1/p p +C sup j≥1 Nj k=1 X k (Ψ(d(0, N j )) log τ (d(0, N j ))) 1/p p .
Choosing, for instance, the case c of the first part of the theorem and integrating over µ, we can obtain sup

N ≥1 N k=1 X k (Ψ(d(0, N )) log τ (d(0, N ))) 1/p p p,µ ≤ C j≥1 log p (2(N j+1 -N j ))Ψ(d(N j , N j+1 )) Ψ(d(0, N j )) log τ (d(0, N j )) +C j≥1 Ψ(d(0, N j )) Ψ(d(0, N j )) log τ (d(0, N j ))
.

The last term is finite, as we showed above in Steps 1 and 4. If we perform the same operation on all cases, this demonstrates the strong maximal inequality and completes the proof.

Proof of Theorem 2

Let (N k ) k∈N be such that

N k = inf{N ∈ N : d(0, N ) ≥ k}. Note that k ≤ d(0, N k ) < k + 1.
Therefore, for any m < n,

d(N m , N n ) ≤ d(0, N n ) -d(0, N m ) < 2(n -m).
To simplify the notation, we define X k = Y k -EY k . We will prove the theorem in two steps. In Step 1, we will demonstrate that the theorem holds for the sequence (N k ) k∈N .

In Step 2, we will generalize this result.

Step 1. As in the proof of Theorem 1, we write,

N k i=1 X i (d(0, N k ) log τ (d(0, N k ))) 1/p ≤ N 2 j k=1 X k (d(0, N 2 j ) log τ (d(0, N 2 j ))) 1/p (10) + sup 2 j <k≤2 j+1 N k k=N 2 j +1 X k (d(0, N 2 j ) log τ (d(0, N 2 j ))) 1/p . Know we have, E N 2 j k=1 X k (d(0, N 2 j ) log τ (d(0, N 2 j ))) 1/p p ≤ d(0, N 2 j ) d(0, N 2 j ) log τ (d(0, N 2 j )) ≤ 1 log τ (2 j ) ≤ C 1 j τ .
It follows from the assumptions of the theorem that j 1 j τ < ∞. Thus, according to Beppo Levi's theorem,

lim j→∞ N 2 j k=1 X k (d(0, N 2 j ) log τ (d(0, N 2 j )))
1/p = 0 a.s.. [START_REF] Korchevsky | A generalization of the petrov strong law of large numbers[END_REF] Now, we have to control the second term on the right-hand side of [START_REF] Nikolaevitch | Sur la loi forte des grands nombres[END_REF]. To do it, we write for any n, m ∈ [2 j + 1, 2 j+1 ] with m < n,

E |S Nn -S Nm | p ≤ Cd(N m , N n ) ≤ C(n -m).
We are now in a position to apply Lemma 3, then E sup

2 j <k≤2 j+1 N k i=N 2 j +1 X i (d(0, N 2 j ) log τ (d(0, N 2 j ))) 1/p p ≤ C log p 2(2 j+1 -2 j ) (2 j+1 -2 j ) d(0, N 2 j ) log τ (d(0, N 2 j )) ≤ C log p 2 j+1 2 j 2 j log τ (2 j ) ≤ C 1 j τ -p .
When τ > p + 1, the last quantity is a term of a convergent series. By Beppo Levi's theorem lim j→∞ sup

2 j <k≤2 j+1 N k i=N 2 j +1 X i (d(0, N 2 j ) log τ (d(0, N 2 j )))
1/p = 0 a.s..

According now [START_REF] Korchevsky | A generalization of the petrov strong law of large numbers[END_REF] and [START_REF] Kuczmaszewska | Convergence rate in the petrov slln for dependent random variables[END_REF], this concludes that, for τ > p + 1,

lim k→∞ N k k=1 X k (d(0, N k ) log τ (d(0, N k )))
1/p = 0 a.s., and yields the desired result of Step 1.

Step 2. In this step we treat the general case. For this, we let N and k two integers in such a way that

N k < N ≤ N k+1 . Then N i=1 X i = N i=1 (Y i -EY i ) ≤ N k+1 i=1 Y i - N k+1 i=1 EY i + N k+1 i=N +1 EY i (13) = N k+1 i=1 X i + N k+1 i=N +1 EY i .
And, therefore

N i=1 X i (d(0, N ) log τ (d(0, N ))) 1/p ≤ N k+1 i=1 X i (d(0, N k ) log τ (d(0, N k ))) 1/p + N k+1 i=N +1 EY i (d(0, N k ) log τ (d(0, N k ))) 1/p . By Step 1, for τ > p + 1, we have lim k→∞ N k+1 i=1 X i (d(0, N k+1 ) log τ (d(0, N k+1 )))
1/p = 0 a.s..

For large enough k, there exists a constant C > 0 such that

d(0, N k+1 ) log τ (d(0, N k+1 )) d(0, N k ) log τ (d(0, N k )) ≤ (k + 2) log τ (k + 2) k log τ (k) ≤ C. Thus lim k→∞ N k+1 i=1 X i (d(0, N k ) log τ (d(0, N k ))) 1/p = 0 a.s.. ( 14 
)
Now, from the assumptions, EY i ≤ Cd andd(m, n) is super-additive, and from the definition of N k , we have

1 p (0, i)d(i -1, i)
N k+1 i=N +1 EY i (d(0, N k ) log τ (d(0, N k ))) 1/p ≤ C N k+1 i=N k +1 d 1 p (0, i)d(i -1, i) (d(0, N k ) log τ (d(0, N k ))) 1/p ≤ C d(0, N k+1 ) 1 p d(N k , N k+1 ) (d(0, N k ) log τ (d(0, N k ))) 1/p ≤ C 1 log τ p k .
This together with the equation ( 14) gives lim sup

k→∞ N i=1 X i (d(0, N ) log τ (d(0, N )))
1/p ≤ 0 a.s..

To conclude, we use the fact that N k < N ≤ N k+1 and we write

N i=1 X i ≥ N k i=1 X i - N i=N k +1 EY i
And, therefore

N i=1 X i (d(0, N ) log τ (d(0, N ))) 1/p ≥ N k i=1 X i (d(0, N k+1 ) log τ (d(0, N k+1 ))) 1/p - N i=N k +1 EY i (d(0, N k+1 ) log τ (d(0, N k+1 ))) 1/p .
Now we do as we did above to prove that lim inf

k→∞ N i=1 X i (d(0, N ) log τ (d(0, N ))) 1/p ≥ 0 a.s.. Consequently lim k→∞ N i=1 X i (d(0, N ) log τ (d(0, N )))
1/p = 0 a.s.

which proves our claim and finishes the proof of theorem.

Proof of Corollary 2

Using Abel's summation formula, we have

N k=1 X k (k β log τ (k)) 1/p = N -1 k=1 1 (k β log τ (k)) 1/p - 1 ((k + 1) β log τ (k + 1)) 1/p k j=1 X j + 1 (N β log τ (N )) 1/p N k=1 X k . ( 15 
) If β > 1, then there exists α > 1 such that (n -m) β/α is super-additive. Applying Corollary 1 with d(m, n) = (m -n) β , we have lim N →∞ 1 (N β log τ (N )) 1/p N k=1 X k = 0.
This implies that the last term of the right-hand side of (15) converges to 0 almost surely. Moreover,

E N -1 k=1 1 (k β log τ (k)) 1/p - 1 ((k + 1) β log τ (k + 1)) 1/p k j=1 X j p ≤ C N -1 k=1 1 k β+1 log τ (k) E k j=1 X j p ≤ C N -1 k=1 k β k β+1 log τ (k)
.

Since we assume that τ > 1, the last term is finite, as desired. Then, by applying Beppo Levi's theorem, we can conclude the proof for β > 1. For the case where β = 1, we can follow the same steps as before and use Corollary 1 with d(m, n) = (n -m).

Discussion and applications

Let {X k , k ≥ 1} be a sequence of random variables. It is well-known that for p ≥ 1, 

E n k=m+1 X i p ≤ (n -m) p-1 n k=m+1 E |X i | p . If {X k , k ≥ 1}
∈ R + . Then if 1 ≤ α ≤ 2, k≥1 log p (k)k α-1 E |X k | p ϕ p (k) < ∞ =⇒ lim N →∞ 1 ϕ(N ) N k=1 X k = 0 a.s.. ( 16 
)
If α > 2, k≥1 k α-1 E |X k | p ϕ p (k) < ∞ =⇒ lim N →∞ 1 ϕ(N ) N k=1 X k = 0 a.s.. Notice that, if we take      E |X k | p = 1 k , d(m, n) = (n -m) α-1 n k=m+1 E |X k | p , ϕ(n) = (d(0, n) log τ (d(0, n))) 1/p ,
then by Corollary 1, the convergence of equation ( 16) is guaranteed as long as τ > 1 + p, since there exists a positive σ such that n σ ≤ Cn α-1 n k=1 E |X k | p , where 1 < α ≤ 2. In contrast, Theorem 3 only requires a value of τ greater than p to achieve convergence. Similarly, if α > 2, Corollary 1 necessitates τ > 1 for convergence, while the previous theorem only requires τ > 0.

Proof. The proof for the first part of the theorem will be presented, and the second part can be demonstrated using the same process. From the proof of Theorem 1, specifically equation ( 6), step 1 and step 4, to obtain [START_REF] Nane | A strong law of large numbers with applications to self-similar stable processes[END_REF], it remains to show that

j≥1 2 j(α-1) 2 j k=1 E |X k | p ϕ p (2 j ) < ∞ and j≥1 j p 2 j(α-1) 2 j+1 k=2 j +1 E |X k | p ϕ p (2 j ) < ∞. ( 17 
) Since ϕ(2x) ≤ Cϕ(x), j≥1 j p 2 j(α-1) 2 j+1 k=2 j +1 E |X k | p ϕ p (2 j ) ≤ C j≥1 2 j+1 k=2 j +1 log p (k)k α-1 E |X k | p ϕ p (k) ≤ C k≥3 log p (k)k α-1 E |X k | p ϕ p (k) ,
which is finite by assumption. Now, we prove the first half of [START_REF] Nane | Strong laws of large numbers for arrays of random variables and stable random fields[END_REF]. Provided that

ϕ p (n) n α-1 log p (n) n∈N
is a strictly increasing sequence and approaches infinity as n approaches infinity, we have from the assumption of the theorem and from Kronecker's lemma that

lim n→∞ log p (n)n α-1 ϕ p (n) n k=1 E |X k | p = 0. Consequently n α-1 ϕ p (n) n k=1 E |X k | p ≤ C 1 log p (n) .
The proof ends with p > 1.

The following corollary is a direct application of the previous theorem using ϕ be defined on [A, ∞). The following result is a direct consequence of Theorem 1.5.12 and Proposition 1.5.15 in [START_REF] Nicholas H Bingham | Regular variation[END_REF] (see also Lemma p < ∞.

(n) = n α-1 log τ (n) n k=1 E |X k | p 1/p . Corollary 3. If 1 ≤ α ≤ 2, then k≥1 E |X k | p log τ -p (k) k i=1 E |X i | p < ∞ =⇒ lim N →∞ N k=1 X k N α-1 log τ (N ) N k=1 E |X k | p 1/p = 0 a.s.. If α > 2, then k≥1 E |X k | p log τ (k) k i=1 E |X i | p < ∞ =⇒ lim N →∞ N k=1 X k N α-1 log τ (N ) N k=1 E |X k | p 1/p = 0 a.s..

Application with slowly varying sequences

2.1 in [1]), lim x→∞ f (g(x)) x = lim x→∞ g(f (x)) x = 1. Let now, {X k , k ≥ 1} be an identically distributed sequence such that E (g(|X 1 | p )) < ∞.
To do it, we write

k≥2 log p (k)k α-1 E |Y k | p (k β log(k)L β (k)) p = k≥2 k α-1 E (|X k | I (|X k | p ≤ f (k))) p k βp L βp (k) = E   |X 1 | p k≥2 I (|X 1 | p ≤ f (k)) k βp-α+1 L βp (k)   .
Since β > α p , it follows from Theorem 8.7 in [START_REF] Zygmund | Trigonometric series[END_REF], that

k≥n 1 f (k) ≤ C n f (n) for any n ≥ g(A). Thus |X 1 | p k≥2 I (g(|X 1 | p ) ≤ k) k βp-α+1 L βp (k) ≤ C|X 1 | p g(|X 1 | p ) f (g(|X 1 | p ) ≤ Cg(|X 1 | p )
where the last inequality follows from the fact that f (g(x)) ∼ x. Since E [g(|X 1 | p )] < ∞, the proof is complete.

Sequence of quasi-stationary random variables.

The van der Corput lemma will come in handy later on. Let f : N → R + be a non-negative function. Let {X k , k ∈ N} be a sequence of random variables. We say that {X k , k ≥ 1} is f -quasi-stationary if for any h ∈ N, E(X k ) = 0, E(X 2 k ) < ∞ and E(X k X k+h ) ≤ f (h).

According to [START_REF] Vladimirovich | On the strong law of large numbers[END_REF] with

H = n -m -1, E n k=m+1 X k 2 ≤ C n k=m+1 E|X k | 2 + C n -m n-1 h=m+1 (n -h) n+m-h k=m+1 |E(X k X k+h )| ≤ C n k=m+1 E|X k | 2 + C n -m n-1 h=m+1 (n -h) 2 f (h) ≤ C n k=m+1 E|X k | 2 + C(n -m) n-1 h=m+1 f (h).
The following theorem is a direct consequence of Theorem 3. 

E|X k | 2 + C n-1 h=m+1 f (h) n+m-h-1 k=m g(k)E|X k | 2 .
Theorem 3 can also be applied.

1 . 1 α

 11 If one of the following cases holds: (a) there exists α > 1 such that d (m, n) is super-additive and τ > 1; (b) d(m, n) is super-additive, there exists σ > 0 such that n σ = O (d(0, n)) and τ > p + 1, 0, N ) log τ (d(0, N )))

A

  slowly varying function L(•) is a positive and measurable function on [A, ∞) for some A > 0, such that for any λ > 0, conjugate of a slowly varying function L(•) is another slowly varying function L(•) that is unique up to asymptotic equivalence. The de Bruijn conjugate satisfies two conditions: lim x→∞ L(x) L(xL(x)) = 1 and lim x→∞ L(x)L(x L(x)) = 1. Let β > α p and let f (x) = x

Theorem 4 .→∞ 1 N

 41 It is known that for a non-negative random variableY , E(Y ) < ∞ if and only if k≥1 P (Y > k) < ∞. This gives k≥1 P(|X 1 | p > f (k)) = k≥1 P(g(|X 1 | p ) > k) < ∞. Let Y k = X k I (|X k | p ≤ f (k)), then lim N β log(N )L β (N ) N k=1 Y k a.s.. Proof. Based on Theorem 3, it is enough to demonstrate that k≥2 log p (k)k α-1 E |Y k | p (k β log(k)L β (k))

Lemma 4 .

 4 (Van der Corput) Let m and n be integers such that m < n. Let (u k ) k∈N be a finite sequence which takes values in C and H a integer such that H < n -m. Then k+h • ūk ) .

Theorem 5 .X

 5 Let {X k , k ≥ 1} be a f -quasi-stationary sequence and let ϕ be a nondecreasing function. Suppose thatk≥2 log 2 (k)k k i=1 f (i) ϕ 2 (k) k = 0 a.s..It is possible to push the analysis further. Specifically, suppose that for anyh > 0, |E(X k X k+h )| ≤ g(k)f (h)E|X k | 2 ,where g is a positive function. Using the Van der Corput lemma allows us to obtain E

  is a sequence of independent random variables with EX k = 0 and E|X k | p < ∞ for some 1 ≤ p ≤ 2, then E | Although Corollary 1 is applicable in this case, the following theorem proves to be more effective in certain special cases of E |X k |

			n k=1 X k | p ≤ C p	n k=1 E |X k |	p (see von Bahr and Esseen
	[20]). In what follows we consider that the sequence {X k , k ∈ N} satisfying
	n	p	n	
	E	X i	≤ (n -m) α-1	E |X k |
	k=m+1		k=m+1	

p , for some α ∈ [1, p]. p . Theorem 3. Let p > 1 and let ϕ : R → R + be a non-decreasing function such that ϕ(2x) ≤ Cϕ(x), for any x