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Abstract: Domestic herbivores have been closely associated with the historical evolution and de-
velopment of agriculture systems worldwide as a complementary system for providing milk, meat,
wool, leather, and animal power. However, their major role was to enhance and maintain agricultural
soil fertility through the recycling of nutrients. In turn, cereal production increased, enabling to feed
a progressively increasing human population living in expanding urban areas. Further, digestion of
organic matter through the rumen microbiome can also be viewed as enhancing the soil microbiome
activity. In particular, when animal droppings are deposited directly in grazing areas or applied to
fields as manure, the mineralization–immobilization turnover determines the availability of nitrogen,
phosphorus, potassium, and other nutrients in the plant rhizosphere. Recently, this close coupling
between livestock production and cereal cropping systems has been disrupted as a consequence of
the tremendous use of industrial mineral fertilizers. The intensification of production within these
separate and disconnected systems has resulted in huge emissions of nitrogen (N) to the environment
and a dramatic deterioration in the quality of soil, air, and ground- and surface water. Consequently,
to reduce drastically the dependency of modern and intensified agriculture on the massive use of
N and phosphorus (P) fertilizers, we argue that a close reconnection at the local scale, of herbivore
livestock production systems with cereal-based cropping systems, would help farmers to maintain
and recover the fertility of their soils. This would result in more diverse agricultural landscapes
including, besides cereals, grasslands as well as forage and grain crops with a higher proportion
of legume species. We developed two examples showing such a beneficial reconnection through
(i) an agro-ecological scenario with profound agricultural structural changes on a European scale,
and (ii) typical Brazilian integrated crop–livestock systems (ICLS). On the whole, despite domestic
herbivores emit methane (CH4), an important greenhouse gas, they participate to nutrient recycling,
which can be viewed as a solution to maintaining long-term soil fertility in agro-ecosystems; at a
moderate stocking density, ecosystem services provided by ruminants would be greater than the
adverse effect of greenhouse gas (GHG).

Keywords: C, N, P biogeochemical cycles; crop-livestock system; grasslands; grazing; herbivores;
soil fertility

1. Introduction

World agriculture and human food systems are at the junction of two major United
Nation Sustainable Development Goals [1] as they provide resources for human subsistence
and welfare, but are also highly implicated in the perturbation of the major biogeochemical
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cycles of carbon (C), nitrogen (N), phosphorus (P), macro-nutrients such as potassium (K),
calcium (Ca), magnesium (Mg), etc., and also micro- and oligo-elements necessary for plant
growth and development. These cycles are strongly coupled with water and altogether
associated with loss in biodiversity, environmental degradation, and climate change [2,3].
Reconciling the challenge of safe food production for an increasing human population, up
to 9.5 billion in 2050, with the challenge of reducing drastically the adverse environmental
impacts requires not only the redesign of agricultural production systems in a more sus-
tainable way, but also the promotion of a transition of the whole food supply and demand
system, including human diet and waste management [4]. Several studies [5–9] explored
various scenarios of possible future global agricultural systems by changing cropping and
livestock production systems and human diets toward a healthy plant-sourced–animal-
sourced food equilibrium and concluded that a vast range of options exists for feeding
the world, without expanding the global agricultural area. These studies demonstrated
that new scenarios must be explored at the level of whole-agriculture systems, including
cropping and livestock systems and their interactions, and must be extended to a scale
large enough to avoid non-generalizable conclusions. For example, some overly restrictive
studies analyzing the conversion from conventional to organic farming systems led to the
conclusion of severe problems in food security, but they did not account for the necessary
related change in human diet with less animal-sourced protein and the corresponding
reduction in livestock production [10,11]. There is consensus that global transitioning
towards a more plant-based diet is essential for maintaining planetary boundaries [12].
Nevertheless, some studies concluded on the need to reduce drastically herbivore livestock
production because of their methane (CH4) emissions; this is contradictory with greenhouse
gas emissions resulting from ovo-lacto vegetarian diets (which require livestock production)
which are ca. 35% lower than most current omnivore diets [12]. Therefore, it is important
to have a more global approach considering the essential role that domestic herbivores
could play in agriculture sustainability through their ability to recycle and transfer mineral
nutrients across agro-ecosystems to maintain long-term soil fertility [13].

In business-as-usual scenarios, a large increase in food production by ca. 70% would
be necessary to sustain the growth of the human population from 8 billion in 2022 to the
expected 9.5 billion in 2050, as mentioned above [14,15]. Such a significant increase in agri-
cultural production cannot be achieved by merely increasing cultivated land area because
the corresponding deforestation would lead to high CO2 emissions into the atmosphere
and would accelerate dramatically the biodiversity crisis [16]. In particular, the reduction
of available water resources in arid and semi-arid countries around the world rules out the
expansion of cultivated areas in these regions. To feed an increasing world population with
the current method of farming, once food losses and food wastes have been reduced, the
only solution would be to continue to increase crop production per unit of cultivated land
area using appropriate technologies. There are two ways to achieve such an increase in
crop yield at global scale: (i) increasing the maximum yielding capacity (Ymax) of crops
through crop genetic improvement and increasing the use of inputs (i.e., fertilizer, agro-
chemicals, water) necessary to reach this attainable Ymax; and/or (ii) reducing the yield
gap that exists between the actual yielding capacity of low-productivity farming systems
and Ymax in some regions. The first way seems very limited since the Ymax progression
for the most important crop species such as wheat and rice are already plateauing and will
become more and more limited by the ongoing climate change [17,18]. Moreover, the use
of necessary inputs must be reduced drastically in order to limit the detrimental impacts of
intensive/low-diversity agriculture on the environment. The second way, the yield gap
resorption, cannot be achieved by simply following the same approach of the intensification
of agriculture based on the increased use of external inputs such as fossil energy and N and
P fertilizers without significantly amplifying the environmental impacts. In addition, in
most countries around the world, from south to north, the majority of smallholder farmers
is in an “intensification trap” because their socioeconomic and political conditions do not
allow them to access investments that are necessary for reducing their yield gap [19].
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Therefore, approaches to this global crisis through concepts that focused on a single
domain (agriculture, environment, food supply and demand, human health, etc.) or a single
subject analysis (climate change, water pollution, soil conservation, biodiversity, etc.), are
too restrictive and superficial because the multiple trade-offs occurring among the different
agro-system components are not properly taken into account. Today, agricultural systems
must be viewed as components of more complex anthropogenic systems under the concept
of “one health” [20,21] that fosters a holistic understanding of the multifunctionality of
agriculture; i.e., not only as technical processes to produce food for society, but also as a
way to provide a wide range of ecosystem services that will maintain natural resources and
the environment and facilitate human welfare [22,23]. Farming and feeding systems are
both interconnected at the nexus of food production–conservation of natural resources in
the context of climate change [24].

Through this global approach, the analysis of the role and importance of domestic
herbivores in farming and feeding systems must consider the numerous trade-offs between
the positive aspects and negative impacts of livestock grazing systems. As pointed out
at a global scale, intensive ruminant livestock systems in industrialized countries are
responsible for high emissions of greenhouse gasses to the atmosphere [25], water nitrogen
pollution (nitrate, [26]), and biodiversity erosion [27]. However, at the same time, these
systems provide recycling of mineral nutrients that maintain soil fertility in cropping
systems [28]. Intensive livestock production can be a source of diet-related diseases in
developed countries when there is an excess of animal-sourced proteins in the human
diet [29,30], but animal products are also a source of indispensable protein, vitamin B12,
and micronutrients (iron and selenium) in developing countries [31]. It is thus important
to have a balanced estimation of the role of livestock production both in agricultural
production systems and in human food supply, and demand chains in order to overcome
these contradictions that create controversy when studies focus only on a specific problem
disconnected from the whole system.

There is growing recognition that improving the environmental performance of live-
stock systems and establishing sustainable levels of animal-sourced food consumption are
essential for the sustainability of the global food system [32]. From this point of view, it is
fundamental to consider livestock production systems as composed of two components
with each one having very different and fundamental functions: (i) domestic herbivores,
and particularly ruminants, with the capacity to consume herbaceous vegetation and
subsequently accelerate the recycling of mineral nutrients to maintain soil fertility and
thereby also agricultural food production without being in direct competition with hu-
man food; and (ii) monogastric animals (pigs, poultry) being fed with grains (cereals and
grain legumes) in direct competition with the human vegetal food supply. The conversion
efficiency of plant proteins into animal proteins by monogastrics, although higher than
that of ruminants, remains relatively low, about 6–7 kg of plant protein being required
to produce 1 kg of animal protein. Consequently, monogastrics consume a much greater
quantity of human-edible protein than they produce [33] while ruminants worldwide, on
average, produce 40% more human-edible protein than they consume [34]. It would be also
interesting to note that in Asia, the agriculture heritage of the rice–fish farming represents
also a way for agriculture sustainability [35], but these systems are out of the scope of
this review.

The objectives of the present opinion paper are to analyze the ecological roles of domes-
tic herbivore livestock systems from a historical perspective and in the future adaptation of
different forms of agriculture around the world; and to assess their contribution not only for
feeding the human population and providing goods for the economy of societies, but also
for fostering resilience in agro-ecosystems [36]. This resilience is achieved through a better
coupling of the main biogeochemical cycles (C, N, P, micro- and oligo-elements, and water),
the renewal, maintenance, and enhancement of soil fertility while minimizing the use of
external fertilizers, and the capacity to sustain associated cropping systems to increase
their productivity while reducing the use of external inputs [28]. Such a goal necessitates
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investigation of the continuum between plants, soils, herbivores, agriculture systems, and
human diet to take into account the multiple trade-offs that exist among these different
aspects in a more comprehensive way [37]. This integrated approach is necessary to counter
the relatively hasty and incomplete analysis that has concluded on the need to exclude
herbivore products from the human diet under the argument that ruminants emit CH4
and contribute to the greenhouse effect. Further, this review aims to show that these CH4
emissions are in fact part of a natural biogenic carbon cycle and thus must be considered as
the “ecological way” of upcycling cellulose and converting it into human-edible products.
We have to deal with biogenic CH4 so as to benefit from all the other ecosystem services
provided by integrating domestic herbivore livestock, grassland ecosystems, and forage
production within sustainable agro-ecosystems [28].

2. Where Does Soil Fertility to Support Agricultural Production Come From?

An analysis of the sustainability of agricultural production systems cannot be made
without a clear understanding of how soil fertility, i.e., the capacity of soils to provide
available mineral nutrients to plants, is achieved and maintained in long-term trends in
natural ecosystems. Thereafter, it is possible to analyze how soil fertility was enhanced by
agricultural practices to support the increasing uptake and exportation of mineral elements
as the productivity of the agro-system grew.

In an unmanaged natural ecosystem dominated by perennial herbaceous or woody
species, the formation of new soil from the bedrock mobilizes P and K and other micro- and
oligo-elements sequestered in primary minerals, creating a reservoir of plant-available nu-
trients in soil. These geochemical reactions are grouped under the concept of “weathering”,
which corresponds to the long-term pedogenesis processes [38–41]. The annual rate of input
for each mineral element depends on local geological conditions (nature of the bedrock),
long-term climate parameters, and vegetation type [42–44]. The other sources or inputs of P,
K, and other minerals are (i) flooding, (ii) alluvial deposition, and/or (iii) atmospheric depo-
sition of dissolved elements in rainfall or as (iv) dry eolian deposition [45,46]. However, in
some places, wind erosion can cause nutrient losses and hence land degradation [47,48]. For
N, the main input was achieved by non-symbiotic N2 fixation of some soil microbes [49,50],
and also by the contribution of certain N2-fixing plant species [51,52], with the other sources
of N being atmospheric deposition associated with rainfalls. All these inputs contributed
toward enriching and maintaining N and minerals in ionic forms in soil solutions according
to an equilibrium with soil colloids that determines their availability for root absorption
and plant uptake. N, P, K, Ca, and Mg, among others, are assimilated for plant growth
and CO2 capture through photosynthesis and subsequently accumulate as a mineralomass
within the primary production of ecosystems. In these natural terrestrial ecosystems, large
herbivores species co-evolved with vegetation through their grazing and foraging activity,
leading to plant community perturbations associated to defoliation; yet their dejection led
to recycling of most of the nutrients of the mineralomass they have ingested.

Therefore, depending on the vegetation type, e.g., herbaceous or woody species, and
its interaction with herbivores (grazing behavior), this mineralomass is subjected to two
distinct ways of cycling, as presented in Figure 1:

(i) An internal cycling in the plant corresponding to translocation of some organic mineral
molecules with N, P, K, sulfur (S), and some others involved in plant metabolism from
active plant organs (leaves and fine roots) during senescence to perennial storage
organs (tap roots, trunks, rhizomes), representing a nutrient reserve for plant regrowth
after defoliation and winter or drought damage. Hence, before returning to soil as
litter, leaves have recycled at least two thirds of their N and P content [53,54]. Thus, the
C/N ratio of mature green leaves of grass species is approximately 12–17, and this ratio
increases to 24–33 for leaf litter [55,56]. In this way, perennial vegetation dominates
natural plant communities because this internal recycling is very conservative.

(ii) An external recycling through leaf and root litter deposition in soil with the
mineralization–immobilization turnover (MIT) of N, P, and other minerals in the
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rhizosphere, leading to a progressive decoupling of C from N and P and a smoothed
restitution of mineral forms of these elements to soil solutions to be either absorbed
by plants or reincorporated in new microbe bodies [57,58].
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Figure 1. Schematic representation of the role of herbivores in “boosting” N, P, K recycling
through ingestion, digestion, and excretion of organic matter, complementary to the mineralization–
immobilization turnover (MIT) in the soil.

These two recycling pathways allow the ecosystem to be very conservative for mineral
nutrient fluxes and thus for soil fertility. In such a perennial system, outputs are only limited
to (i) lixiviation and losses of the more mobile minerals to the hydrosphere, mainly for N
and S, to a lesser extent for K, Ca, Mg, and to a very small extent for P; (ii) atmospheric losses
of N due to denitrification and ammonia volatilization; and (iii) soil particulate erosion.
Hence, in many conditions, the annual input–output balance is slightly positive [41],
leading to a progressive accumulation of mineralomass in soil–vegetation systems over the
long term until a dynamic equilibrium is reached between (i) coupling of C–N–P and other
minerals through plant autotrophy (photosynthesis and mineral absorption–assimilation)
in organic matter synthesis and (ii) decoupling of C–N–P by the soil microbiome and
living organism heterotrophy [59]. As the decoupling process (mineralization of soil
organic matter) is mainly localized in the rhizosphere where soil microbes are fed by
organic compounds exudated from plant roots [60,61], the available forms of N (NO3

− and
NH4

+), P (PO4H− − and PO4H2
−), and some other minerals are rapidly recoupled with

C, either by microbe populations (bacteria and fungi) for their own biomass synthesis or
by plant roots to be absorbed and assimilated. Thus, according to this rapid MIT leading
to decoupling–recoupling of C–N–P, the residence time of available forms of nutrients in
the soil solution is relatively low. Consequently, the probability of the loss of these soluble
elements through lixiviation remains very low, as does the risk for atmospheric losses, as
long as the concentration of NO3

− and NH4
+ in the soil solution remains low, e.g., without

any mineral fertilizers generally applied to intensively cropped soils.
When herbivores consume a relatively significant proportion of the aboveground

biomass accumulated in vegetation as green leaves and stems, they reduce the internal re-
cycling of plant nutrients; however, as presented in Figure 1, the digestion of ingested plant
tissues in the rumen accelerates the C–N–P decoupling process as most of the mineralomass
ingested by animals is transferred to soil via feces deposition and urine patches with much
lower C/N ratios. Ruminants excrete as much as 70–95% of the N they consume [13,62].
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As a result, a new equilibrium can be achieved, depending on the herbivore stocking
density, with a more rapid N, P, K recycling turnover rate. In this respect, herbivores can be
viewed as playing a catalytic role in enhancing soil fertility in natural ecosystems. They
mediate net nutrient recycling directly by affecting net primary productivity and altering
the spatial distribution of plant biomass as well as the chemical composition of organic
matter that enters the MIT process. Therefore, the herbivore zoogeochemical effects on
ecosystem functioning are pivotal [63]. The emission of CH4 due to the anaerobic digestion
of cellulose in the rumen can be considered as the “ecosystem price” to pay in a natural
biogenic cycle in order to obtain this ecosystem service of increasing soil fertility. Thus,
the rumen can be considered as a “digestor” of organic matter for decoupling–recoupling
C–N–P in parallel with the soil MIT: these two sub-systems of decoupling–recoupling lead
to a more efficient N and mineral recycling at the scale of the whole agriculture system, and
the herbivores are the main trophic connection level to these processes. However, because
of this accelerated MIT, the risk for N losses within the environment increases gradually
with rising stocking density and with the proportion of the primary production ingested
by grazing animals [64]. As a consequence, the C–N–P decoupling capacity of domestic
herbivores must be adjusted to the C–N–P recoupling capacity of the ecosystem (including
carnivores in natural ecosystems). Thus, for a given local soil–climate condition, there is a
local stocking density threshold [64] above which, in agro-ecosystems, the intensification of
agricultural production would produce an excess of de-coupling and an excess of circulating
N active compounds, leading to environmental losses and detrimental impacts. By contrast,
an excessively low herbivore stocking density at local scale does not allow for a sufficient
rate of C–N–P decoupling to match the C–N–P recoupling demand from vegetation, and
the net primary production capacity is thus impaired.

3. Historical Analysis of the Role of Domestic Herbivores in Renewing Soil Fertility in
Agricultural Systems

The emergence and development of agriculture in the neolithic period along the allu-
vial valleys of the Euphrates and Nile rivers was made possible by the continual renewal of
soil fertility through regular loam deposition during annual floodings, providing mineral
resources for grain production [65,66]. The extension of agriculture in other regions of the
world, in which this very localized flooding fertilization was not possible, was achieved
by adoption of the slash-and-burn cropping system by clearing and burning areas of veg-
etation (forest, savannas, or steppes) to replenish the nutrient availability in soils and to
produce food [67,68]. These systems persist to this day in tropical forests where millions of
people still rely on this type of agriculture to survive [69]. The soil fertility in these systems
was maintained through short-term cultivation, from 1 to 3 years only, because of the rapid
decline in soil fertility, followed by a long fallow period (several decades) that enabled a
slow regeneration of natural vegetation and soil nutrient availability. As demonstrated
by Mazoyer and Roudart [65], the sustainability of these systems collapsed rapidly when
population density increased above a given threshold. This occurred because of the nec-
essary acceleration of cropping–fallow rotations and, thus, the limited replenishment of
soil nutrients that obliged human populations to expand land clearing areas, leading to
deforestation and a substantial decline in soil fertility and food production capacities. This
explains the significant deforestation in many regions of the world from 7000 to 3000 B.C.
when the world population grew from 5 to 50 million [65]. In this way, forests regressed in
more densely populated areas and were replaced by patchworks of herbaceous (savannas
and steppes) and residual woody vegetation.

In these new agro-systems, the use of a swing plough enabled the development of
biennial cropping–fallowing areas with the transfer of soil nutrients by domestic herbivores
grazing in herbaceous areas and in parts of the residual forest areas; these animals were
then kept in fallow areas overnight for excretion [65]. These systems developed in Mediter-
ranean and temperate regions from 2000 B.C. until about 1000 A.D. They were based on
interactions between three area components: (i) ager, corresponding to cropping–fallowing
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area cultivated by individual farmers; (ii) saltus, corresponding to a common pasture area
with neighbors; and (iii) silva, corresponding to surrounding forest area providing energy,
wood, and other resources for human populations (Figure 2).
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Figure 2. Representation of ancient agro-system based on biennial fallow–crop rotation in a cultivated
area (Ager) with herbivores fed by grazing in common pasture areas (Saltus) and complementary
forage resources from surrounding forests (Silva), providing mineral nutrient transfers for the renewal
of soil fertility.

The role of domestic herbivores in the transfer of soil nutrients enabled an increase
in soil fertility in ager, which led to a doubling of grain production per land area from ca.
0.5 to 1 t a−1year−1. Coupled with the increase in human labor productivity due to the
accompanying harnessed cultivation, this progress in yield allowed a single-family farm
to pass from strict autonomy to surplus production for feeding non-rural populations in
developing urban areas [65].

According to the analysis by Mazoyer and Roudart [65], the productivity of human
labor in these agro-systems, i.e., their capacity to produce food for non-rural human
populations, was directly linked to their herbivore stocking density. Hence, for a family
farm of five persons corresponding to a labor capacity of one farmer and family workers,
the land area used was on average 6–7 ha of ager, 6–7 ha of saltus, and 1 ha of silva with about
three livestock units that corresponded to the capacity to feed approximately 30 habitants
per square kilometer, a common population density at that time. In less favorable climates
(drought or more severe winter), this threshold was only 15–20 habitants/km2 [65,70].
These agro-systems faced new limitations under temperate climates because the soil fertility
transfer from saltus to ager remained relatively limited as the stocking density in saltus
should have been adjusted to the lower level of herbage production during winter. Thus, a
large saltus area was necessary to fertilize a relatively restricted ager surface. Moreover, the
transfer of soil fertility from saltus to ager through herbivore droppings with this system
remained fairly limited because only the droppings from the night were transferred. As
a consequence, this agro-system had difficulties in providing food for an increasing non-
rural population, thus leading to the severe food crisis that occurred in Europe during the
11th–14th centuries [65,71].

Progressive use of new tools for harvesting, tedding, transport, and storage of hay
enabled the valorization of excess herbage produced during favorable seasons in saltus for
feeding livestock in barns during winter; this, in turn, increased the quantity of animal
droppings used to produce manure with indoor litters and therefore also increased the
transfer of mineral nutrients for the fertilization of ager (see Figure 3). A more efficient
incorporation in the soil of these high volumes of manure was also possible with the
generalization of the use of the moldboard plow and, thus, a more sophisticated soil tillage.
Depending on the region, this system evolved more or less rapidly to a triennial rotation:
fallow–winter cereal–spring cereal. Hence, these advances led to an increase in cereal yield
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and in human labor efficiency, resulting in a dramatic increase in the capacity of agro-
systems to feed non-rural human populations. Consequently, the threshold population
density increased to 55 (in low-productivity soil and climate) and even 80 habitants.km−2

(in high-productivity soil and climate) during the late Middle Ages in Europe [65].
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During the 16th–17th centuries, the First Agricultural Revolution in Europe was based
on the suppression of fallow periods and the introduction of forage crops and artificial
meadows with legume species (clover species, sainfoin, or alfalfa) within more diverse
rotations in the ager, following the so-called Norfolk rotation system in the British Isles [72].
This made it possible to have a much higher increase in food production through more
integrated livestock–cropping systems. Finally, productivity of cereal cropping increased
rapidly from a maximum of 1 t.ha−1 to approximately 2 t.ha−1 of grain, mainly because of
the high contribution of N2 fixation by legume forage species [65]. Consequently, a large
part of saltus was integrated within ager, changing from a common status to a private land
status (see [73]), and thereby facilitating the adoption of improved agriculture practices.

This system expanded with different regional forms in West and Central Europe and
brought about a population growth from 110 million to 300 million between 1750 and
1900 [65]. Nevertheless, these agro-systems remained limited by P and K deficiencies
in soil.

This historical summary shows how the progressive integration of stocking herbivores
in agricultural production systems helped renew soil fertility in order to increase food
production and feed the growing human population. Thus, domestic herbivores were
not only used to provide protein-rich food to complement the human diet that was based
on cereal, but they contributed greatly to cereal production to feed the increasing human
population throughout prehistoric and historic periods, despite the fact that P and K were
mined and often exported to foreign markets [68,74].

In the early 20th century, this crop–livestock integration was gradually questioned in
the Second Agricultural Revolution, initiated by the Haber–Bosch process industrialized
in 1913, making it possible to synthesize ammonia directly from atmospheric N2 together
with the mining of P and K for the fertilizer industry. The generalization of the recourse to
industrial fertilizers was also associated with the swift motorization and mechanization that
occurred after the Second World War in North America and Europe and its rapid spread in
many parts of the world. In the new agricultural system, the role of domestic herbivores
for soil fertility renewal was progressively abandoned, and due to the gradual introduction
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of food exchange at a global level, farms and regions progressively specialized mainly
in cereal production systems (or vineyards, orchards, and vegetable systems) in some
favorable regions, or mainly in natural grassland-based meat and milk production systems
in less favorable areas [65]. The consequences of this change were livestock decoupled from
crops and nutrients not fluxing in circularity.

4. The Current Crisis in Industrialized Agriculture and the Need for Recoupling of
Livestock and Crop Production
4.1. Ecosystem Services of Grasslands and Forage/Herbivores Associated with Arable
Cropping Systems

Most of the negative environmental impacts of modern intensified agricultural sys-
tems are the consequence of the excessive use of energy and chemical inputs to achieve high
levels of food production. As is widely reported in several publications [75–77], the causes
of these environmental impacts are mainly linked to the simplification and homogeneity of
land use systems at both the spatial and temporal scales. Hence, introduction of temporary
grasslands and/or annual fodder crops as forage for feeding domestic herbivores is a source
of diversification of cropping systems and a way to reduce some of the negative impacts
of intensified arable cropping systems [78]. The most important effect is linked to the use
of legume-rich meadows and forage species leading to a significant decrease in the use of
external N fertilizers [79]. There is therefore a trade-off between the emission of CH4 by
herbivores and the reduction in greenhouse gas emissions linked to N fertilizer production,
transport, and field application. In addition to this main effect, other ecosystem services
must be taken into account when evaluating the role of herbivores in arable cropping sys-
tems: (i) soil C sequestration, nutrient cycling, and soil quality improvement [80]; (ii) weed
control and reduction of herbicide use [81,82]; (iii) disruption of pathogen contamination at
the temporal and spatial scale and reduction of fungicides and insecticides [83]; (iv) better
control of water infiltration, evapotranspiration, run-off, and soil erosion [84]; (v) increase
in system stability for environmental variability [85].

It is important to note here that all these ecosystem services are linked together and
that most of them are the consequence of the remarkable capacity of domestic herbivores
to convert non-edible biomass produced from grasslands and crop residues into human
edible food, and thereby to not compete directly with human food consumption, in contrast
to feed supplies for monogastric livestock [78]. A whole-system approach is therefore
necessary for evaluating the role of herbivore livestock and for optimizing the trade-off
between CH4 biogenic emissions and their role in providing a large variety of ecosystem
services. Grasslands and forage crops are important components of herbivore livestock
systems, so that the animal itself cannot be separated from its feeding system, differently
from monogastric livestock.

The diversity of grasslands contributes to diverse ecosystem services that are essential
for humans [86]. Biodiversity is positively correlated with environmental indicators such
as soil quality and prevention of erosion. Even temporary grasslands with low numbers of
species, but with favorable agricultural management (e.g., moderate stocking density), can
contribute toward reducing the risk of erosion, since vegetation cover is a main require-
ment for avoiding erosion and dense swards are generally the outcome of sound grazing
management [87,88].

Moderate stocking densities also enable dense and taller swards to be more competitive
with weeds [89]. They reported a lower number of weed species, a lower density of emerged
weed seedlings, and a smaller weed seed bank when decreasing the stocking density in
winter-grazed cover crops. Similar results were reported concerning a reduced size of the
weed seed bank in integrated crop–livestock systems (ICLSs) compared to mono-cropping
systems [90]. As a result, more diverse cropping systems, for example, using rotation
or introduction of forage species or perennial species, may require smaller amounts of
synthetic agrichemical inputs [91].

The need for a better understanding of how different grassland types in association
with cropping systems affect surface/deep hydrology and water quality is gaining impor-
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tance in the context of climate change. For instance, some authors have reported that the
soil moisture content in deep soil layers (>30 cm) in ICLSs is higher than in exclusive grain
production areas [92]. This result can be explained by the greater root production due
to forage and grazing. Thus, during drought periods, the transfer of water from deeper
soil layers to the dry surface may occur [93]. This is particularly important under future
climate change scenarios, which project changes in the seasonal distribution of rainfall,
with a greater frequency of summer droughts. Therefore, grassland when used as forage
source for feeding domestic herbivores in cropping systems may influence the provision of
relevant ecosystem services, especially those that do not have a clear market value such as
water regulation [94].

4.2. Specialized Versus Integrated Crop–Livestock Farming Systems in Europe

The transition from the traditional mixed crop–livestock systems to the industrial
fertilizer-based arable cropping systems is very well documented. In the case of France,
agricultural statistics are available from the middle of the 19th century [95,96]. As presented
in Figure 4, over a period of only 30 years, the mode of fertilization on arable land shifted
from a dominance of manure and symbiotic N2 fixation to chemical fertilizer applications.
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During the same period of agricultural “modernization”, starting with the average
diet of French people still based largely on cereals and on only about one third of animal
proteins in the beginning of the 20th century, a rapid increase in meat and milk consumption
occurred (Figure 5). Far from a spontaneous shift of consumers’ preferences that the agro-
food sector would have had to follow, the change was largely encouraged by proactive
public policies often justified with the purpose of fighting against malnutrition diseases.
However, many studies conclude that, today, the excess of animal product consumption is
the cause of severe public health concerns [97].
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Figure 5. (a) Average human diet in terms of animal and vegetal proteins in France from 1850 to 2020.
The share of animal proteins increased significantly from 1950. (b) Recommended healthy and fair
diet as proposed by the EAT-Lancet Commission [97].

Together with the generalization of the use of industrial fertilizers and the increase
in international trade of agriculture-based commodities, large regions have specialized
their agriculture either into intensive livestock breeding systems largely dependent on feed
import or into stockless cropping systems largely open to export and using no manure. The
N flows across the territorial agro-food systems of 103 agricultural regions in Europe [98]
were analyzed and classified according to a typology based on the degree of coupling
between crop and livestock farming according to Table 1 [95]:

• Intensive specialized livestock farming systems are characterized by a high livestock
density combined with a large share of imported feed to meet animal nutrition; in
these systems, livestock farming is loosely connected to crop farming.

• Specialized stockless cropping systems refer to agro-food systems where crop produc-
tion based on synthetic fertilizers is much more important in terms of material flow
than livestock farming, which contributes only minimally to cropland fertilization.

• Disconnected crop and livestock systems, crop and livestock farming both co-exist
but without strong connections in terms of manure used by cropland and local feed
products in livestock feeding.

• Mixed crop and livestock systems have a high degree of coupling between crop and
livestock farming activities because (i) manure provides a relatively high proportion of
cropland soil fertilization, and (ii) local agricultural production provides a high share
of animal nutrition. Within this category, grass-based and fodder-based systems can
be distinguished according to the dominance of grass from permanent grassland or of
fodder produced on arable land in livestock nutrition.

Furthermore, urban systems are those for which human food demand exceeds local
food production (cropland production + livestock edible production), so that the import of
food is a major structural component of the agro-food system.

The current distribution of these types of agro-food systems in Europe is shown in
Figure 6 and Table 1 together with the decision tree on which the classification is based.
Interestingly, mixed crop–livestock systems (regrouping “Fodder-based mix crop and
livestock” and “Grass-based mixed crop–livestock” in Table 1) still represent 29% of the total
European agricultural land surface, produce 20% of vegetal-based food (either domestically
consumed or exported) and 26% of animal-based food, while they are responsible for only
30% and 23% of N losses to either the atmosphere or the hydrosphere, respectively. Thus,
these systems use proportionally fewer resources than disconnected systems, but they
produce a similar relative share of food for human nutrition and generate relatively less
pollution (Table 1a).
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Table 1. Share of the different European agro-food system types to total food production, use
of resources, and pollution generation (a) in the current (2014–2019) situation and (b) in an agro-
ecological scenario at the 2050 horizon.

a. Current situation (2014–2019)

Systems
Intensive

specialized
Livestock

Specialized
Stockless
Cropping

Disconnected
Crop and
Livestock

Fodder-Based
Mix Crop and

Livestock

Grass-Based
Mixed Crop–

Livestock
Total

Total area, Mha (%) 16.4 (9%) 48.9 (26%) 65.5 (35%) 38.0 (20%) 16.9 (9%) 185.8

Vegetal prod,
GgN/yr (%) 564 (9%) 2511 (38%) 2165 (33%) 1062 (16%) 255 (4%) 6556

Animal food prod,
GgN/yr (%) 667 (30%) 287 (13%) 713 (32%) 460 (21%) 113 (5%) 2240

Synth fertilizer use,
GgN/yr (%) 1323 (11%) 4214 (34%) 4123 (34%) 1852 (15%) 756 (6%) 12,267

Losses to hydrosph,
GgN/yr (%) 1381 (17%) 1892 (24%) 2894 (36%) 1361 (17%) 484 (6%) 8012

Losses to atmosph,
GgN/yr (%) 670 (20%) 665 (19%) 1071 (31%) 749 (22%) 262 (8%) 3416

b. Agro-ecological scenario (2050)

Systems
Intensive

specialized
livestock

Specialized
stockless
cropping

Disconnected
crop and
livestock

Fodder-based
mix crop and

livestock

Grass-based
mixed

crop–livestock
Total

Total area, Mha (%) - 9.6 (5%) 7.4 (4%) 106.5 (57%) 62.4 (34%) 185.8

Vegetal food prod.,
GgN/yr (%) 53 (1%) 81 (2%) 3727 (77%) 997 (21%) 4858

Animal food prod,
GgN/yr (%) - 7 (1%) 17 (2%) 706 (63%) 387 (35%) 1117

Synth fertilizer use,
GgN/yr (%) - - - - - -

Losses to hydrosph,
GgN/yr (%) 105 (3%) 98 (3%) 1942 (56%) 1328 (38%) 3473

Losses to atmosph,
GgN/yr (%) - 16 (1%) 30 (2%) 1077 (62%) 614 (35%) 1735

Moreover, these systems, as currently operating, are not expressing all the potentialities
that fully reconnected agro-systems would be able to exploit. Two situations of intensive
specialized stockless cash crop farming systems in the French Paris Basin region have
been studied [99,100]. In both situations, agricultural statistics from the past have made it
possible to describe the traditional cropping system based on mixed crop–livestock farming
as it was until about 1955 (Figure 7a) according to the GRAFS methodology [101,102]. This
representation is in strong contrast to the current situation where the farming system has
been simplified to the point of excluding livestock farming and is now fully dependent
on external inputs of mineral fertilizers (Figure 7b). This change was accompanied by the
emergence of severe water pollution problems linked to increased N leaching. In these
regions, a few farms adopted organic farming practices based on long and diversified
crop rotations, alternating fodder and grain legumes, cereals, and other crops. These
practices, which enable independence from external sources of fertilization, were shown to
considerably reduce N water contamination. However, the lack of a local outlet for alfalfa
hay produced in these systems is a problem for the management and profitability of these
organic farms. This solution could help in substituting the use of N-P external fertilizers
for cropping systems by (i) a more important contribution of N2 symbiotic fixation due to
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use of legume species as forage source; and (ii) the recycling of N-P in a more conservative
way at the local level. The great advantage of such a substitution of mineral N by organic
N is that in this last form, N is provided with a high degree of coupling with C, allowing a
more direct use by soil microbes and then an activation of the MIT in soil (see Figure 1).
By this way, a too high NO3

− and NH4
+ accumulation in soil is avoided, reducing then

the risk for N leaching and N2O emission as compared to the situation where N fertilizer
is applied in mineral forms. So, it would be possible to maintain a sufficient overall
agriculture productivity at the local scale with reduced environmental impact as compared
to intensified and specialized systems. For achieving this recoupling between N and C,
following the demonstration by Soussana and Lemaire in 2014, it is necessary to avoid a too
high stocking density in grazed grasslands because of the excess of urine patches that do
not allow rapid recoupling by MIT [64]. For a more intensified system with higher stocking
density at the territory level, the use of manure from barns correctly enriched with straw to
reach a more uniform C/N ratio of about 10–15, should be the best way for providing N, P,
and other nutrients to crops without environment degradation [99,100].
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Figure 7. Nitrogen fluxes through the agro-system of two French regions (Plateau de Bourgogne
and Brie). (a) Traditional mixed crop–livestock farming around 1950. (b) Specialized stockless cash
crop farming typical of the 2010s. (c) Scenario of reintroduction of livestock with organic long crop
rotation [99].

Livestock production systems have been stigmatized not only because of their CH4
emission but also for their contribution to excess N and P into agro-ecosystems. However,
these problems are only observed in situations with too high specialized livestock farms
that go beyond the “environmental capacity threshold” for stocking density at the territory
level that would excess the N-C and N-P recoupling capacity by vegetation [64]. So, the
problem of eutrophication of the ecosystem in intensified agriculture regions needs a better
integration of livestock systems with cropping system at the territory and landscape scale
with a relatively homogeneous spatial repartition [76].

In an agro-ecological scenario established for Europe at the 2050 horizon [98], a full re-
connection of crop and livestock farming was imposed, by sizing livestock numbers in each
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region on local feed resources (grass and fodder crops for ruminants, and cereals in excess
of human needs, as well as waste from food industry transformation and consumption for
monogastrics). The scenario also involves the generalization of diversified crop rotations
rich in legume crops, as currently used in organic farming in the various regions of Europe,
with no synthetic fertilizer application. Human diet was also adjusted according to the
healthy and sustainable diet recommended by the EAT-Lancet Commission [97] (Figure 5b).
In this scenario, by using all the potentialities of crop and livestock reconnection, symbiotic
N2 fixation by legumes is the main source of new N apart from recycling through livestock
manure (Figure 6c). Such a scenario would clearly be able to feed the projected European
population and even to export substantial amounts of animal and vegetal food outside
Europe. It would result in much less environmental N loss (Table 1b).

4.3. Some Examples of Soil Fertility Management in Integrated Crop–Livestock Systems in Brazil

An important concern with current agricultural systems is their reliance on and inten-
sive use of chemical inputs. The first stage in a transition toward sustainable intensification
can occur by increasing the efficiency of external input use to decrease production costs and
environmental impacts [103–105]. This can be attained, for instance, by using technological
innovations such as improved plant cultivars and animal genotypes [106]. However, this
additive effect [107] is considered a fragile ecological organization process [108]. Efficiency
is important, but it is not enough to accomplish long-term solutions.

Fostering biodiversity and stimulating interactions between different system compo-
nents across multiple spatial and/or temporal scales, as reported in ICLSs [76], is part of
holistic strategies to create long-term soil fertility [103]. The creation and enhancement
of synergisms and emergent properties in ICLSs [108], due to the new complexity levels
achieved, will contribute toward reducing, or replacing, external inputs. Such complex
soil–plant–animal interactions necessitate a disruptive view of the nutrient demands of
the system, where the classic pure crop-oriented models are no longer feasible. Therefore,
a new approach to fertilization emerges, i.e., system fertilization, which considers nutrient
cycling and exports, and the zoogeochemistry of grazing livestock, such as the conversion
of plant organic nutrients into inorganic nutrients during the process of digestion [109] and
the impacts on soil biology [110,111].

System fertilization is an approach based on the conceptual framework that fertilizer
must be applied in the system phase or component that presents the lower nutrient extrac-
tion and the higher nutrient cycling capacity to maximize total system production [112].
For example, in a typical Brazilian ICLS, which alternates between a grain crop production
phase with a higher nutrient exportation and an animal production phase with lower
exportation, fertilizers should be entirely applied on pastures. System fertilization depends,
therefore, on biological nutrient cycling from the crop and pasture phase in succession to
achieve efficient nutrient use, and thereby reduce the requirement for mineral nutrient
inputs, avoid losses, and maintain long soil fertility [113].

P and K soybean requirements applied on preceding Italian ryegrass did not affect
the succeeding soybean yield and increased herbage production [114]. Fertilizers applied
during the pasture phase are kept in the system by the decoupling–recoupling processes
and then easily obtained by soybean in succession [115]. An increase in acid phosphatase
activity was reported to be correlated with an increasing soybean yield, resulting from
system fertilization and the livestock zoogeochemical effect [116]. When all nutrients (N,
P, and K) are applied during the pasture phase, N increases the P and K demand [115],
contributing to increasing the herbage accumulation rate and total herbage production,
which in turn increase the stocking rate [114]. An increase in the stocking rate may not affect
the live weight gain per animal if sound sward management targets are maintained [115],
but it increases animal production per unit area and contributes to increased dung and
urine deposition, resulting in a heavy cycling and a great source of available nutrients,
which in turn may increase soil microbial biomass [110].
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When the sequence is between crop and forage grasses, such as maize, oat, or Italian
ryegrass, the N dynamics is pivotal. N application (200 kg N.ha−1) in urea form in pastures
during winter eliminates the application of N in maize sequence [117]. Assmann et al. [112]
also demonstrated that after an application of 300 kg N.ha−1 to cool-season pasture, no
response in maize was observed to further N fertilization in the cropping phase. N system
fertilization in ICLSs has several advantages, including: (i) lower exportation of N in
cattle production, which ranges from 4% to 10% of N intake [118], leaving behind a large
proportion of N available; (ii) reduction in N losses through volatilization due to the lower
temperature during the winter pasture phase [119]; (iii) lower spacing between rows for
pasture (17 cm) compared to corn (80 cm), and, thus, the urea applied to pasture may be
less easily volatilized because of a faster uptake due to the dense root system and active
canopy growth; and (iv) faster pasture litter decomposition [120] due the low C:N ratio, so
that nutrients contained in the pasture litter are released and taken up quickly by the crop.

A vital element in this carryover effect relies on livestock grazing that “catalyze
nutrient cycling”. The MIT process for N and P by soil microbe communities and the
rate of substrate decomposition during the grazing period are sped up and benefit the
system provided the recoupling process is guaranteed by sound grazing management.
Pastures preceding grain crops and system fertilization allow N to undergo a rapidly
decoupling–recoupling process and possibly avoid losses that would otherwise occur with
fallow periods. The synchronism (timing of the release of organically bound nutrients to
coincide with crop demand) between nutrient release and plant demand is important for
sustainability. Nutrient uncoupling in real time determines the efficiency of the nutritional
resources used. In areas cultivated with pasture that received N fertilization, N-mineral
contents in the soil tend to remain above the critical level for the establishment of grain
crop [112].

Considering the complexity of ICLSs, the current fertilizer and liming recommendation
model does not take into account nutrient cycling between different crop phases of rotation
and the impact of zoogeochemistry on soil attributes (soil biology in particular). System
fertilization is an approach that relies on biological nutrient cycling between phases of
rotations to achieve a high nutrient-use efficiency, and thereby reduce mineral nutrient
input requirements, avoid losses, and maintain long-term soil fertility. This approach
is in contrast to the classic paradigm of individually driven crop fertilization where the
residual effect of fertilizers is considered derisory and therefore ignored. Conversely,
system fertilization considers all crops in the fertilization scheme with rotational carryover
(i.e., either directly from inorganic forms or indirectly from organic N mineralization) as a
key component.

Well-established ICLSs—i.e., with use of the no-till system, the presence of graz-
ing animals in well-managed pastures in soils with high nutrient levels, and soil acidity
neutralization—make it possible to achieve a well-functioning system fertilization strat-
egy [114,121], improving land use sustainability and productivity, without increasing
agriculture expansion and/or deforestation and with less dependence on external inputs.
Diversification (e.g., with leguminous species in pastures), use of organic fertilizers, and
new standard fertilization needs to be developed to improve the efficiency of and benefits
from ICLSs.

4.4. Generalization at Worldwide Level

Most of the analyses reported above are mainly based on European, North American,
and South American experiences. However, several works have also shown the interest
for ICLSs in different other regions in the world, particularly in sub-Sahara Africa for
developing local and efficient food production systems in smallholder farms [122–126]. The
introduction of legume tree species as a source of N through N2 fixation, and use of their
leaves and/or pods for feeding domestic herds and the producing organic fertilizers for
enhancing food crop production is also a highly recommended system [127,128]. In Sahelian
regions of West Africa, introduction of alfalfa crop within rice or vegetable cropping system
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has been also tested as a way not only to improve soil fertility and productivity of food
crops but also for providing forage resource for the local pastoral system and then to avoid
a too long scarcity period during the dry season and the overgrazing of vegetation [129]. In
Mediterranean countries such as in North Africa or in the Middle East, it has been shown
that recoupling livestock with a cropping system is a necessity for restoration of overgrazed
steppe vegetation and for enhancing productivity of the cereal cropping system [130]. In
a similar climatic context, the integration of cereal cropping system with sheep livestock
production in Western Australia has been considered as the mean for improving farm
productivity and farm performance [131]. In Asia, crop–animal integration, including fish–
rice systems (see [35] above), is also recommended for improving agricultural production
and addressing food security, more particularly in China and India, but also Vietnam and
Indonesia, for meeting the increasing meat demand in these regions [132,133]. For each
climatic, edaphic, ecological, and socio-economic conditions across the world, it seems that
the integration of animal herbivores within cropping systems, either the more industrialized
or the more traditional ones, appears to be the way for enhancing agro-ecosystem diversity
which is the prerequisite for reconciling the two objectives of food security and quality of
environment.

5. Lessons Learned and Future Efforts

High food productivity to feed the human population requires a high flux of available
nutrients, N, P, K, S, and other micro- and oligo-elements in soils as well as the continual
renewal of their stocks in soil to compensate for their exportation with harvested agriculture
products. To achieve the capacity of soil to provide and maintain these fluxes, intensive
agriculture production systems have relied on the massive use of external fertilizers that
inevitably lead to unwarrantable environmental emissions to surface and groundwater and
to the atmosphere. Moreover, most of these fertilizer resources are limited (mining) or are
obtained at a too-high cost in fossil energy sources and greenhouse gas emissions.

Thus, the only way to maintain a level of soil fertility high enough to satisfy food
demand at a global level is to realize an efficient recycling of mineral nutrients within
the agro-ecosystem, food system, and waste system in order to limit losses and achieve a
neutral balance with natural inputs.

In the absence of domestic herbivores to “catalyze” this nutrient recycling, the ultimate
solution would be to have a full recycling of human excreta [134] and waste [134,135].
However, such a system is difficult to establish because our systems to collect waste and
human excreta mix organic sources of nutrients with a quantity of xenobiotics, heavy
metals, toxins, and other polluting molecules. Moreover, the concentration of these waste
collection systems in large urban areas does not facilitate the transfer of this resource into
rural and agriculture areas.

Thus, the use of domestic herbivores in association with pastures integrated with
crops must regain its importance as a solution to maintaining long-term soil fertility in
agro-ecosystems. Therefore, livestock production systems must be re-integrated locally
with arable cropping systems within an integrated food production system in which
emerging synergies should be optimized to provide a more sustainable agro-ecosystem.
Furthermore, livestock stocking density must be adjusted at local or regional scale to
the degree needed to maintain soil fertility at the level required for food production.
This threshold livestock stocking capacity must be determined according to specific local
conditions—types of soil and types of arable cropping systems—which requires further
experimental, bibliographical, and modeling research activities, taking into account not
only herbivores but also monogastric production systems that are in competition with
human populations for food. Moreover, at a global level, this threshold stocking density
would involve a decrease in meat and milk consumption per capita in, e.g., Europe and
North America, while allowing for an increase in meat and milk in the diet of populations
currently affected by malnutrition.
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This re-integration of herbivore livestock production with arable cropping systems,
although very necessary from an ecological and environmental point of view, is sometimes
not fully compatible with socio-economic and political constraints that favor a high spe-
cialization of food production and distribution systems, in addition to activism against
animal production. Thus, without a clear identification of this locking and of the alternative
socioeconomic systems that will have to be promoted—from agricultural production to
food processing, distribution, and consumption systems—this necessity for integrated
herbivore–cropping systems remains a sincere hope.
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