A new geometric approach for sensitivity analysis in linear programming

In this paper, we present a new geometric approach for sensitivity analysis in linear programming that is computationally practical for a decision-maker to study the behavior of the optimal solution of the linear programming problem under changes in program data. First, we fix the feasible domain (fix the linear constraints). Then, we geometrically formulate a linear programming problem. Next, we give a new equivalent geometric formulation of the sensitivity analysis problem using notions of affine geometry. We write the coefficient vector of the objective function in polar coordinates and we determine all the angles for which the solution remains unchanged. Finally, the approach is presented in detail and illustrated with a numerical example.

Introduction

One of the star models of operational research is linear programming. It is a field of mathematical programming the most studied. It concerns the optimization of a mathematical program where the objective function and the functions defining the constraints are linear, see [START_REF] Stoer | Convexity and optimization in finite dimensions[END_REF][START_REF] Dantzig | Linear programming and extensions[END_REF]. Geometrically, linear programming problems are of convex programming, the linear constraints form a convex polyhedron; so, the results of the convexity are exploited. The vertices of the convex polyhedron form the basic solutions, one of them can be the optimal solution.

One of the essential parts of linear programming is sensitivity analysis, also called post-optimality analysis, because it starts from the original optimal solution, see [START_REF] Daellenbach | Introduction to operations research techniques[END_REF][START_REF] Shahin | Sensitivity analysis of linear programming in the presence of correlation among right-hand side parameters or objective function coefficients[END_REF]. Linear programming models concrete problems such as maximizing a company's profits, but changes in market data require updates for the initial problems, and the sensitivity analysis is used to illustrate the margins of the linear program parameters for which the solution of the initial problem remains stable. Another situation that requires a stability study of the optimal solution is the committed errors in the data of the problem and it will allow us to avoid restarting the procedure of resolution several times.

In this work, we give a geometric approach to study the stability of the optimal solution when we change the coefficients of two decision variables in the objective function. This approach allows us to do the stability study with the variation of the two parameters at the same time. It uses the Euclidean norm as well as the linearity of the constraint functions to formulate a new problem equivalent to sensitivity analysis problem, then this new problem is solved with a simple calculation. We fix a corner of the feasible domain and we find all the linear forms that reach their optimum value at this point. Geometrically, this consists to determine hyperplanes in R 3 , therefore the variation of the coefficients of the objective function corresponds to the rotation of the plan. First, we consider a linear maximization programming problem (1), then we give a geometric formulation of a linear programming problem. Then, we use the latter to determine an equivalent problem to sensitivity analysis problem which consists in determining an angle interval on which the vector of the objective function coefficients is allowed to rotate to determine a linear form that reached its optimal value in initial optimal solution. Then, we look to the objective function as a plan of R 3 , and the linear constraints as a convex subset of R 2 . The variation of the objective function coefficients corresponds to the rotation of the plan. This paper is structured as follow: First, we give some preliminaries in section 2. Then, we give the mathematical formulation of a sensitivity analysis problem in section 3. Next, a geometric formulation of a linear programming problem is given in section 4. After that, we give a geometric approach to sensitivity analysis in linear programming in section 5. Then, we illustrate this approach with a numerical example in section 6. Finally, a conclusion is given in section 7. 

1. Let v be a vector in R 2 . A translation of R 2 in the direction of v is a one to one application noted by T v , which associates to an element x of R 2 another element T v (x) = x + v of R 2 . 2.
Let θ be an angle between 0 and 2π. A rotation of R 2 of angle θ is a one to one application, defined by

R θ : R 2 -→ R 2 (x 1 , x 2 ) -→ R θ (x 1 , x 2 ) = Rot(θ)(x 1 , x 2 ) t ,
where Rot(θ) is the matrix associated to R θ , defined by Rot(θ) = cos(θ) -sin(θ) sin(θ) cos(θ) . Note that for any angle θ, we have

Rot(θ) t Rot(θ) = cos(θ) sin(θ) -sin(θ) cos(θ) cos(θ) -sin(θ) sin(θ) cos(θ) = 1 0 0 1 = Id 2 .
Definition 2.5. Let F 1 and F 2 be two supplementary linear subspaces of R n . Then, we call a projection on F 1 parallel to F 2 , the map P F1 which associates to x of R n the unique element P F1 (x) of F 1 such that x = P F1 (x) + z where z ∈ F 2 . Such an application is also called a projector. 

Problem formulation

Consider the following initial linear programming problem in the standard form:

     max x f (x) = c t 0 x Ax ≤ b x ≥ 0 , ( 1 
)
with

A =      a 11 a 12 a 21 a 22 . . . . . . a m1 a m2      , b =      b 1 b 2 . . . b m      , c 0 = c 0 1 c 0 2 , x = x 1 x 2 .
Where c 0 is the vector of the objective function, c 0 1 , c 0 2 are constants, x is a 2 × 1 vector of decision variables, A is a m × 2 matrix of constants, b is a m × 1 vector of constants and m is the number of linear constraints.

With the hypothesis that c 0 1 , c 0 2 are positive numbers, we will see in the following that it is an artificial hypothesis that we made only to simplify the continuation of this presentation, see the remark (4.3).

Notations 3.1. Let us define:

• The feasible region:

S := x ∈ R 2 : Ax ≤ b, x ≥ 0 .
• The vector space L of linear formes defined on R 2 , is defined by:

L R 2 := g : R 2 → R : g(x 1 , x 2 ) = c 1 x 1 + c 2 x 2 .
• ∥.∥ denotes the Euclidean norm on R 2 .

Let x 0 = (x 0 1 , x 0 2 ) t be an optimal solution of the problem [START_REF] Daellenbach | Introduction to operations research techniques[END_REF]. A sensitivity analysis problem is to find all linear forms g different from f verifying arg max

x∈S f (x) = arg max x∈S g(x), g ∈ L R 2 , ( 2 
)
where arg max

x∈S f (x) = {y ∈ S | f (y) ≥ f (x), x ∈ S} .

Geometric formulation of a linear programming problem

In this part, we will determine a problem equivalent to the linear programming problem (1). In R 3 , we find that the feasible region S is a polygon entirely contained in the vector hyperplane of equation z = 0, we can easily show that the graph of f is a vector hyperplane (linear subspace of dimension two).

Let's start by transforming the expression of the linear form f as follows:

f (x 1 , x 2 ) = c 0 1 x 1 + c 0 2 x 2 ⇔ c 0 1 x 1 + c 0 2 x 2 -f (x 1 , x 2 ) = 0 ⇔ (c 0 1 , c 0 2 , -1), (x 1 , x 2 , f (x 1 , x 2 )) = 0 ⇔ ⟨n f , (x 1 , x 2 , z)⟩ = 0, where x 1 , x 2 ∈ R, z = f (x 1 , x 2 )
and n f = (c 0 1 , c 0 2 , -1). So, the graph of the linear form f , defined by

Gf (f ) = (x 1 , x 2 , z) ∈ R 3 | z = f (x 1 , x 2 ) = (x 1 , x 2 , z) ∈ R 3 | ⟨n f , (x 1 , x 2 , z)⟩ = 0
is orthogonal to vect (n f ), the linear subspace generated by the vector n f , and therefore any vector of R 3 can be written as the sum of a vector of Gf (f ) and another vector of vect (n f ).

Now, we position ourselves on R 2 (the plane z = 0) and we consider the line d 0 defined by the intersection of Gf (f ) with the plane z = 0:

(d 0 ) : c 0 1 x 1 + c 0 2 x 2 = 0, ( 3 
)
d 0 is a linear subspace of R 2 of dimension 1 directed by the vector:

v 0 = (-c 0 2 , c 0 1 ).
Definition 4.1. The graph of the line d 0 , defined by:

D 0 = (x 1 , x 2 ) ∈ R 2 | c 0 1 x 1 + c 0 2 x 2 = 0 .
The upper half-space of R 2 deprived of (d 0 ), defined by:

D + 0 = (x 1 , x 2 ) ∈ R 2 | c 0 1 x 1 + c 0 2 x 2 > 0 .
The lower half-space of R 2 deprived of d 0 , defined by: Lemma 4.2. For all x 1 , x 2 ∈ D + 0 (respectively y 1 , y 2 ∈ D - 0 ), we have

D - 0 = (x 1 , x 2 ) ∈ R 2 | c 0 1 x 1 + c 0 2 x 2 < 0 .
f (x 1 ) x 1 -P (d0) (x 1 ) = f (x 2 ) x 2 -P (d0) (x 2 ) , ( 4 
)
and f (y 1 )

y 1 -P (d0) (y 1 ) = f (y 2 ) y 2 -P (d0) (y 2 ) . ( 5 
)
Proof. The intersection of Gf (f ) with the plane z = 0 forms a constant angle 0 ≤ λ ≤ π, see figure [START_REF] Dantzig | Linear programming and extensions[END_REF]. Then, 1. Apply a rotation R θ over the feasible region S and the vector c 0 simultaneously to obtain the problem:

     tan(λ) = f (x 1 ) ∥x 1 -P (d 0 ) (x 1 )∥ = f (x 2 ) ∥x 2 -P (d 0 ) (x 2 )∥ , x 1 , x 2 ∈ D + 0 tan(π -λ) = f (y 1 )
max x∈S (R θ (c 0 )) t R θ (x), (6) 
which is equivalent to the initial problem. Indeed, we have

(Rot(θ)c 0 ) t Rot(θ)x = c t 0 Rot(θ) t Rot(θ) = c t 0 Id 2 x = c t 0 x = f (x).
Then, an optimal solution x 0 of the problem ( 1) is also optimal to the problem (6), indeed

(Rot(θ)c 0 ) t Rot(θ)x 0 = f (x 0 ) ≥ f (x) = (Rot(θ)c 0 ) t Rot(θ)x.
After that, we pose

Rot(θ 0 )c 0 = c 0 1 , c 0 2 ≥ 0,
where θ 0 is a solution of the following linear system:

cos(θ)c 0 1 -sin(θ)c 0 2 = c 0 1 sin(θ)c 0 1 + cos(θ)c 0 2 = c 0 2 .
2. Apply a translation T v0 over S in the direction of Rot θ 0 . c 0 1 , c 0 2 t because the objective function is constant in the latter. Indeed, for all y ∈ T v0 (S), we have

f (y) = f (x + v 0 ) = f (x) + f (v 0 ) ≤ f x 0 + f (v 0 ) ≤ f x 0 + v 0 ≤ f y 0 , x ∈ S.
where

y 0 = x 0 + v 0 , and v 0 = αRot θ 0 c 0 1 , c 0 2 t ,
α is a strictly positive number sufficiently large.

Proposition 4.4. Let c 0 1 , c 0 2 ≥ 0, then the problem ( 1) is equivalent to:

max x∈S x -P (d0) (x) . ( 7 
)
Proof.

⋄ Let x 0 be an optimal solution of the problem (1), then

f (x 0 ) ≥ f (x), ∀x ∈ S, ( 8 
)
from lemma (4.2), and inequality (8), we get

f (x 0 ) ∥x 0 -P (d 0 ) (x 0 )∥ = f (x) ∥x-P(d 0 ) (x)∥ ≤ f (x 0 ) ∥x-P(d 0 ) (x)∥ , ∀x ∈ S.
Then, for all x ∈ S, we get

x 0 -P (d0) x 0 ≥ x -P (d0) (x) , (9) 
which proves that x 0 is an optimal solution of the problem (7).

⋄ Conversely, let x 0 be an optimal solution of the problem (7), then x 0 verifies the inequality (9), then

1 ∥x-P(d 0 ) (x)∥ ≥ 1 ∥x 0 -P (d 0 ) (x 0 )∥ , ∀x ∈ S.
We multiply the two sides of inequality by f (x), then we apply lemma (4.2) to the left side, and get

f x 0 x 0 -P (d0) (x 0 ) = f (x) x -P (d0) (x) ≥ f (x) x 0 -P (d0) (x 0 )
, which proves that x 0 is an optimal solution of the problem (1), 

f x 0 ≥ f (x), for all x ∈ S.

A geometric approach to sensitivity analysis in linear programming

The geometric analysis we present here consists of writing a linear programming problem in the polar coordinate system and then determining a relationship that links the coefficients of the objective function f . We already know that to any linear form g in L R 2 , we can associate a single vector (gradient of g) in R 2 and conversely. Another important fact is that we can get every corner of the feasible region S by solving a finite number of linear systems with two equations and two variables. This allows us to reformulate the problem (2) as follows:

Problem 5.1. Let x 1 , x 0 , x 2 be the successive corners (extreme points) of S, see figure [START_REF] Shahin | Sensitivity analysis of linear programming in the presence of correlation among right-hand side parameters or objective function coefficients[END_REF], where x 0 is the optimal solution of the problem (7). Find all vector lines (d) that simultaneously satisfy to the following two inequalities:

x 0 -P (d) x 0 ≥ x 1 -P (d) x 1 , (10) 
and

x 0 -P (d) x 0 ≥ x 2 -P (d) x 2 . ( 11 
)
Proposition 5.2. The problem (2) and (5.1) are equivalents.

Proof. This is a direct consequence of the proposition (4.4) and convexity of S.

Remark 5.3. The fact that the problem (5.1) is built from another problem that admits a solution, then it still admits the vector line (d 0 ) as a trivial solution.

Proposition 5.4. Let θ 1 , θ 2 ∈ [0, π], ϕ ∈ 0, π 2 , and r, r 1 , r 2 ≥ 0, and consider the following vectors x 10 and x 02 written in polar coordinate system:

x 10 := x 1 -x 0 = r 1 (cos(θ 1 ), sin(θ 1 ))

x 02 := x 0 -x 2 = r 2 (cos(θ 2 ), sin(θ 2 )) c = (c 1 , c 2 ) = r(cos(ϕ), sin(ϕ)) .
Then, the solutions of the problem (5.1) are the line vectors defined by:

(d) : r cos(ϕ)x 1 + r sin(ϕ)x 2 = 0 with θ 1 < ϕ + π 2 < θ 2 . ( 12 
)
Proof. Let x 0 be a solution of the problem (7), then from propriety (2.6), we get

   P (d) (x 1 ) -P (d) (x 0 ) = x 1 -x 0 cos(δ 1 ) P (d) (x 2 ) -P (d) (x 0 ) = x 2 -x 0 cos(δ 2 )
, where δ 1 is the angle formed by the vector x 10 with v 0 , and δ 2 is the angle formed by the vector x 02 with v 0 (the order of vectors is important). On the other hand, see figure (4), we have

|δ 1 | = |ϕ + π 2 -θ 1 | < π 2 |δ 2 | = |ϕ + π 2 -θ 2 | < π 2 .
Therefore, we get

P (d) (x 1 ) -P (d) (x 0 ) < x 1 -x 0 P (d) (x 2 ) -P (d) (x 0 ) < x 2 -x 0 .
Since, for all i = 1, 2 the quadrilateral x 0 x i P (d) (x i )P (d) (x 0 ) is irregular, the two segments P (d) (x 0 )x 0 and P (d) (x i )x i are parallels, then

P (d) (x 1 ) -x 1 < P (d) (x 0 ) -x 0 P (d) (x 2 ) -x 2 < P (d) (x 0 ) -x 0 .

Numerical example

Consider the following linear programming problem:

     max x1,x2 f (x 1 , x 2 ) = 2x 1 + 3x 2 A(x 1 , x 2 ) t ≤ b x 1 ≥ 0; x 2 ≥ 0 , ( 13 
)
where

A =     1 4 1 2 2 5 1 5 0 4 5     , b =   40 40 40   , c 0 = 2 3 , x = x 1 x 2 .
We start by solving the problem (13) using the simplex method, we obtain an optimal solution equal to x 0 = (80, 40). Then, we solve the following problem:

arg max x∈S f (x) = arg max x∈S g(x). ( 14 
)
Consider the successive corners x 1 , x 0 , x 2 of the feasible region, such that:

x 1 = (100, 0) and x 2 = (60, 50) . where ν ∈ ]-3.18 o , 33.8699 o [ corresponds to the angle of rotation of grad(f ), to arrive at grad(g), in other words the angle between grad(f ) and grad(g). So, if ν ∈ ]-3.18 o , 0 o [, the optimal value of f increases, which means the optimal value of g at x 0 is bigger than the optimal value of f at x 0 . And, if ν ∈ ]0 o , 33.8699 o [, the optimal value of f decreases.

Figure 1 :

 1 Figure 1: Projection of a segment on a line.

Propriety 2 . 6 .

 26 Consider two lines (d) and ( d) that form an angle θ. If M and N are two points that belong to (d) and Ḿ = P (d) (M ), Ń = P ( d) (N ), their orthogonal projection respectively, see the figure (1), we obtain Ḿ Ń = M N cos( θ).
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 2 Figure 2: Graphic illustration of the lemma (4.2).
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 1043 P (d 0 ) (y 1 )∥ = f (y 2 ) ∥y 2 -P (d 0 ) (y 2 )∥ , y 1 , y 2 ∈ D - If c 0 1 , c 02 are any real numbers, we can come back to the hypotheses of the problem (1) by making the following changes:

Figure 3 :

 3 Figure 3: Extreme points close to the optimal solution x 0 .

Figure 4 :

 4 Figure 4: Graphic illustration of the proposition (5.4).

  4349 o .Finally, for all r > 0 and ϕ ∈ ]26.5650 o , 63.4349 o [, the linear form: g(.) = r ⟨(cos(ϕ), sin(ϕ)), .⟩ is a solution of the problem (14). Finally, to do the sensitivity analysis, we write the coefficients of the objective function f in the polar coordinate system, as follows:c 0 = r f (cos(ϕ f ), sin(ϕ f )) ,whereϕ f = arccos 2 √ 13≈ 56.31 o and r f = √ 13, and consider the solution g which stabilizes x 0 as an optimal solution. After that, we calculate g x 0 , we getg(x 0 ) = g(80, 40) ≈ 40 √ 5r ⟨(cos(ϕ), sin(ϕ)), (cos(26.5650 o ), sin(26.5650 o ))⟩ ≈ 40 √ 5r cos(ϕ -26.5650 o ) ≈ 40 √ 5r cos(ϕ f + ν -26.5650 o ) ≈ 40 √ 5r cos(56.31 o + ν -26.5650 o ) ≈ 40 √ 5r cos(ν + 29.745 o ),

2 Preliminary Notations 2.1. Let

  A = (a ij ) be a matrix of size m 1 × m 2 , where m 1 , m 2 are any integers. We denote by A t the transposed matrix of A, defined by A t = (a ji ) .

	Definition 2.2. (Isometry of R 2 ) We call an isometry of R 2 , a linear application u ∈ L R 2 , R 2 which checks
	one of the following properties:
	a) u preserves the norm: ∀x ∈ R 2 , ∥u(x)∥ = ∥x∥,
	b) u preserves the scalar product: ∀x, y ∈ R 2 , ⟨u(x), u(y)⟩ = ⟨x, y⟩,
	c) u transforms an orthonormal basis into an orthonormal basis.
	The application u is also called orthogonal automorphism. The vector space of all the isometries (orthogonal
	automorphisms) of R 2 is denoted by O R 2 .
	Propriety 2.3. Let u 1 , u 2 be two isometries of O R 2 , then
	1. u 1 and u 2 are one to one maps.

2. u 1 • u 2 and u -1 1 are isometries. 3. The translations and rotations of R 2 are isometries. Example 2.4.

Summary.

In this work, we give a new formulation of the sensitivity analysis problem by the problem (5.1), which allowed us to study the stability of an optimal solution of a linear programming problem in dimension 2 of the variable space. This is by reducing it to the search for a single interval by a simple calculation that does not require the use of a machine. The other advantage is that we determine all the objective functions which reach their optimum value at a common point. On the other hand, the classical approach consists to do the study of stability under variation of just one coefficient, and the variation of the two coefficients leads us to two different intervals related to each other which makes the analysis difficult, see [1]. Finally, we illustrated our approach with a numerical example.