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Abstract: An extensive investigation of the international literature is carried out regarding the passive
energy dissipation systems and more specifically the dampers that can be positioned in steel braces to
increase the absorption of seismic energy and to protect them from buckling, such as Friction (FDs),
Metallic (MDs), and Viscous dampers (VDs). This review paper systematically reviews/refers to
196 publications from the literature; it presents a brief overview of the steel braces frames and their
problems. The efficacy of all of these types of dampers has been proved, as they have been used
all around the world, and their comparison in experimental or numerical studies, applications, and
optimization shows that there is no unilateral solution, as the appropriate selection of effective retrofit
strategies takes into account parameters such as cost, duration, technical aspects, architectural needs,
etc. Finally, the aim of this review paper is to systematically present an overview of passive energy
dampers that can be installed on steel braces, summarize the advantages and the disadvantages of
each one, compare global parameters such as the relation of velocity and damper force, economic
details, and type of study, and facilitate future researchers working in the related field, for its better
understanding and development.

Keywords: steel braces; passive energy dissipation systems; friction dampers; metallic dampers;
viscous dampers

1. Introduction

In the last decades, there have been numerous catastrophic earthquakes, resulting an
increasing number of lost human lives due to building collapse and structural damage,
with the most recent one in Turkey and Syria. The occurrence of such damage during earth-
quakes demonstrates the high seismic hazards, and requires structures such as residential
buildings, lifeline structures, historical structures, and industrial structures to be designed
very carefully to be protected from earthquakes [1]. In addition, existing reinforced con-
crete (RC) framed buildings with abrupt lateral changes in the structure at specific levels
along the height, or in the plan, perform poorly with seismic loads, due to the irregular
distribution of stiffness, strength, and mass.

To search for an appropriate solution to dealing with this natural disaster it is very
important to understand the energy approach during an earthquake event. One part
of the input seismic energy is dissipated by the inherent damping of the structures, but
a large amount of energy is absorbed by the main structural system (beams, columns,
walls). A structural design approach using energy dissipation systems (dampers) is now
widely accepted and frequently applied in civil engineering, as the dampers will absorb
the majority of the seismic energy, and as a result, prevent or mitigate such damages. The
structural energy dissipation systems are divided into four major categories: passive, active,
semi-active, and hybrid systems [2–8], and all of them can be used in new or existing
buildings [9–13]. Table 1 summarizes the main information of these four categories.
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Table 1. The existing structural energy dissipation systems.

Control System Sub-Categories

Passive
3 Dampers (friction, fluid viscous, metallic . . . )
3 Base isolation
3 Tuned mass dampers

Active
3 Adaptive control
3 Active bracing
3 Active mass dampers

Semi-active
3 Semi-active dampers
3 Semi-active base isolation
3 Semi-active mass dampers

Hybrid 3 Hybrid bracing
3 Hybrid mass damping

On the other hand, the strength and stiffness of a building, as well as the lateral load-
carrying capacity could be increased by adding shear walls in the construction. These shear
walls that resist the lateral forces due to their high in-plane rigidity, may be either reinforced
concrete (RC) or steel braced frames (BFs). The additional concrete walls within the frames
of the load-bearing body offer a great increase in construction strength, but it is not always a
feasible solution due to technical and operational problems [14,15]. On the other hand, steel-
braced frames are systems constituting hinged joint or moment-resisting frames and braced
bound to these frames concentrically or eccentrically. Such systems are generally used to
supply stiffness and strength against lateral loads in low- and medium-rise buildings. The
braced frames provide energy consumption under the effect of big lateral loadings under
tensile loads but one of their disadvantages is the buckling risk [16,17].

The damped braces frames (DBs) can provide an effective way of overcoming the
vulnerability resulting from setbacks as it is an easy and not expensive retrofitting solution.
They can be categorized into the classical (e.g., cross, diagonal, and chevron) or geomet-
rically amplified arrangement or/and the insertion of supplementary energy dissipation
systems (e.g., friction, metallic yielding, viscous fluid, viscoelastic solid dampers, shape
memory alloys).

This article focuses on passive energy dissipation systems and more specifically the
dampers that can be positioned in steel braces. To achieve that goal, this review paper
systematically reviews/refers to 196 publications from the literature and it is organized as
follows: Section 2 presents a brief overview of the steel braces frames and their problems.
Section 3 introduces and summarizes the friction dampers. Regarding the literature review
of this article, 45 papers present FDs that could be added to steel braces, with the first
one published in 1981 and 32% of them published in the last decade. Section 4 introduces
and summarizes the metallic dampers, such as yielding, and lead or shape memory alloys
dampers. Regarding the literature review of MDs, the first metallic damper was studied in
the 80s, showing a smooth distribution in yielding dampers, while the increasing interest
in SMA in recent years led to more than 59% of the works being published in the last
decade. Section 5 introduces and summarizes viscous dampers such as viscoelastic solids,
and viscous fluid dampers. These dampers present less diversity in shape and form
but they have distracted the industry’s interest. In Section 6, the author presents the
general evaluation of seismic retrofitting techniques by comparing the three different
categories of passive energy dissipation systems, as there is no unilateral solution. Finally,
key concluding remarks have been pointed out in Section 7. This review paper aims
to systematically present the overview of passive energy dampers that can be installed
on steel braces and facilitate future researchers working in the related field for its better
understanding and development.
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2. Steel-Braced Frames

Steel BFs are generally used to supply stiffness and strength against lateral loads.
By adding these frames, during a seismic event, the energy is dissipated through the
steel-braced frames, which plasticize in tension and buckle in compression, while beams
and columns are generally designed to remain in the elastic zone. Many experiments and
analytical studies have been carried out to evaluate the seismic performance of steel-braced
frames [18–20]. In Europe and all around the world, seismic guidelines simplified design
criteria for DBs [21–25].

2.1. Concentrically Braced Frames

Concentrically Braced Frames (CBFs) are a class of braced frames resisting lateral loads
through a vertical concentric truss system, the axes of the members aligning concentrically
at the joints [26–30]. They are widely used for both mono- and multi-story buildings
due to their high dissipative capacity and cheapness. Figure 1 illustrates all the types
of these frames, such as diagonal bracing (Figure 1a), cross bracing (Figure 1b), chevron
(Figure 1c,d), and K-shaped bracing (Figure 1e).
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Figure 1. Concentrically Braced Frames: (a) single diagonal bracing, (b) cross bracing, (c) Λ bracing
(chevron), (d) V bracing (chevron), (e) K bracing.

2.2. Eccentric Braced Frame (EBF)

Eccentric Braced Frame (EBF) configuration is similar to the concentrically braced
frames with the exception that at least one end of each brace must be connected eccentrically
to the frame which leads to a small connecting link often known as a ductile link. This link
provides the structure’s essential ductility and energy dissipation [31–37]. The difference
between the concentric and eccentric bracing systems, as seen in Figure 2, is the presence of
transverse stiffeners in the link beam due to the shear force and the flexural moment within
it due to earthquake forces.
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2.3. Inelastic Behavior of BFs

Numerous experimental and also numerical studies on the inelastic cyclic behavior of
steel braces show that they exhibit non-symmetrical hysteretic behavior, with strength degra-
dation under compressive load and the appearance of permanent deformations [37–41]. Other
experimental studies have shown that steel braces fail after repeated loading cycles and
the effective buckling length affects their response beyond the elastoplastic characteristics
of the material [42–45]. Nip et al. [46] performed experimental tests on steel braces with
square and hollow rectangular cross-sections under repeated cycle loading, confirming
the non-symmetrical hysteretic behavior of the diagonal bars and the degradation of their
strength under compressive load after a few loading cycles.

Similar results were presented by other studies [47–49]. In order to ensure that steel
braces are a reliable seismic energy absorbing system, the engineering scientific community
around the world has been oriented towards the following tactics:

1. Addition of seismic energy absorption dampers. This solution is the most common
and is developed thoroughly in the following paragraphs (see Sections 3–5). The dampers
that can be positioned in steel braces to increase the absorption of seismic energy and to
protect them from buckling are Friction (FDs), Metallic (MDs), and Viscous dampers (VDs).

2. Increasing the rigidity of the steel braces. This solution is advantageous over the
overall increase in stiffness (over-dimensioning) of the steel braces. Experimental research
carried out by Sabouri-Ghomi and Ebadi [50–52] saw an improvement in their behavior
by adding extra stiffness (steel blades) inside the steel braces, without increasing the cross-
section. The results of their experimental study show a 19% increase in lateral forces under
repeated cyclic loading, while the hysteretic loops represent uniform and stable energy
absorption and reasonable ductility of the system.

3. Friction Dampers (FD)

The study of friction dampers in building applications has its beginning at the begin-
ning of the 1980s when Pall et al. introduce the first friction damper which works based on
the mechanism of solid friction for dissipating vibration energy [53]. According to their
first experimental results, the braces, designed to perform under tension, did not work
effectively under repeated cyclic loads. In 1982, they attached the friction pad to the cross
brace junction with four links; this damper is commonly known as Pall Friction Damper
(PFD) (Figure 3) [54–57]. Due to its ability to work both in tension and compression as
well as to protect a structure from a severe seismic hazard, the PFD has been used and
incorporated into several buildings all around the world [58–61], and many analytical,
experimental, and optimization studies were conducted [62–66]. The required stiffness of
the Library of Concordia University in Montreal is provided by 143 PFD, and this solution
(involving the dampers) reduced the total construction costs by 1.5%.
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Figure 3. Pall friction damper.

Anagnostides et al. [67–69] proposed and investigated a new type of FD that was
added to diagonal steel braces acting only in tension. The two configurations of this damper
are presented in Figure 4. The first one consists of three plates connected with high-strength
bolts applying a preload as shown in Figure 4a,b. The middle plate has slotted holes
and can slip relative to the two outer plates when the applied load exceeds the frictional
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resistance of the joint. The second one consists of twelve friction joints incorporating
frictional washers and four pin joints in the corners to accommodate the bracing members
(Figure 4c,d). These dampers act only in tension and they have been further investigated
and improved by other researchers.
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high-strength bolts (a) longitudinal section, (b) cross-section. 2. twelve friction joints incorporating
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Wu et al. [70], based on the PFD, proposed its improvement to reduce the manufactur-
ing original costs. The main difference is the shape of the inner steel plate, which has an
inverted T-shape instead of a cruciform shape (Figure 5). From their study it was found
that this improvement offers simplicity in analysis, reducing manufacturing cost and it
is easier to operate as the number of pre-tensioner screws and slide screws was reduced
(from six to four and from two to one respectively).
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Figure 5. Construction of the improved Pall friction damper proposed by Wu et al.

Papadopoulos [71,72] proposed a variant of the PFD which, in addition to the reg-
ulation of the forces developed in the steel braces and the absorption of seismic energy,
offers additional movement insurance to a desired level. This damper is illustrated in
Figure 6 and it has triple action. The ultimate ‘locking’ of the device takes place when
the tensile bars are aligned (Figure 6b). At that moment, the two diagonal steel bars are
fully activated in tension, while the compressive diagonal bars retain the capability of axial
movement. Simultaneously, the oval holes of device elements IV and V permit the kinetic
functioning of the device for large horizontal floor displacements. From the experimental
study conducted at the Laboratory of Structural Analysis & Dynamics of Structures at
the Aristotle University of Thessaloniki, the hysteresis loops confirmed the efficacy of the
device, as it can absorb seismic energy and the shape of loops to remain stable after many
charging cycles [72].

In the same concept, Titirla et al. [72–75] proposed, fabricated, and investigated (both
analytical and experimental) an innovative energy dissipation system known as CAR1,
consisting of very simple materials and which does not need to be accomplished in the
heavy industry, enabling its use in both developing and undeveloped countries (Figure 7).
This damper presents a triple ability: (i) to Control the axial forces in the steel braces, (ii) to
Absorb seismic energy, and (iii) to Retain the plastic displacements up to a desired level
due to the restraint bolt (see Figure 7).
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Figure 6. Construction of the improved Pall friction damper proposed by Papadopoulos, (a) inactive
damper, (b) activation of the damper.
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Mualla and Belev [76,77] proposed a rotational friction damper (RFD) consisting of a
central steel plate, two side steel plates, and two friction rings, which are placed between the
steel plates. The damper was tested experimentally at the Technical University of Germany
and proved that it can be capable of receiving a load equal to 5000 kN, for displacements
equal to 30 mm and 45 mm [78].

By the middle of 1991, Sumitomo friction dampers (SFD) had been incorporated in
31- and 22-story buildings in Japan [79]. This damper consists of inner wedges, outer
wedges, outer cylinders, friction pads, and cup springs [80,81]. The hysteresis loop is
similar to Coulomb’s law of dry friction and the funding shows the efficacy of this damper
in middle-rise and high-rise buildings.

Fitzgerald et al. [82], studied a slotted bolted connection (SBC) which works by sliding
a channel bracing plate over a gusset plate interconnected by high-strength bolts. The
damper is presented in the following figure. The damper can be operated with one or
two screws. It has two stages of hysteretic behavior, the first came from the deforma-
tion of the main plates while the second one contained the incorporating deformations
that develop when plates slide [83–85]. Many analytical and experimental studies were
conducted [86–90]. This damper observes two stages of operation, the first came from the
deformation of the main plates while the second one contained the incorporating defor-
mations that develop when plates slide. A variant of the SBC device that uses sliding
materials similar to the Sumitomo device, is presented by Constantinou et al. [91] for
seismic reinforcement of bridges. The differentiation of the device is that it uses a surface
of stainless steel and graphite-impregnated brass. Another SBC device was proposed by
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Stefancu et al. [92], which consists of two steel plates that can be moved and three others
that remain fixed. The plates are not in contact with each other but have a small gap
between them, and the connection is made with pre-tensioned screws.

Another type of friction damper is the Energy Dissipating Restraint (EDR) damper
studied by Ricther and Nims [93–96]. This damper consists of compression and friction
wedges, springs, internal stopping components, and the cylinder. It converts the axial
force of the spring to pressure, acting relative to the cylinder walls, thus creating the
required friction surface. The damper can automatically return to its center cylinder and
the frictional force developed is proportional to the displacement of the piston.

Zhou and Peng [97] proposed a new damper friction based on the EDR where the
springs and wedges were replaced by a sliding shaft and a friction ring. Frictional force
developed due to the radial stress resulting from the contact of the friction ring and the
inner surface of the cylinder. The frictional force increases until the fuselage slips to achieve
maximum displacement and the resulting hysteresis loop has a shape of a butterfly.

An elastic friction damper with recentering performance was developed by Kim et al. [98].
This damper is composed of polyurethane springs that provide recentering force by applying
precompression, steel wires, and permanent magnet cubes that provide energy dissipation
capability. The first results of this damper which is under further investigation confirmed
that if such an elastic friction damper is applied to a braced frame structure, it can prevent
permanent deformation and the seismic performance of the building can be improved.

4. Metallic Dampers (MD)

A metallic damper is a type of hysteretic damper made of metal that utilizes the
plastic deformation of hysteretic materials, such as mild steel, to dissipate the input seismic
energy. The application of that type of damper begins in Japan in the late 1960s and in
New Zealand in the early 1970s. Recently there has been growth in Italy and the United
States of America [99–101]. The advantages of metallic dampers compared to other types of
dampers are the stable hysteretic behavior, rate independence, resistance against ambient
temperature and reliability, and the fact that practice engineers are familiar with their
material behavior [102–105].

4.1. Yielding Dampers

Tyler in 1985 studied a rectangular seismic absorption device made of round steel bars
(Figure 8). As illustrated in Figure 8b, this rectangular device is integrated into the center
point of diagonal steel bars. Energy is dissipated through inelastic deformation of the
rectangular device assembly due to tension/compression of the diagonal steel bars [106].
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Figure 8. Premier metallic damper. (a) description of the rectangular metallic damper, (b) one story
frame with the metallic damper.

The most popular metallic damper is the ADAS (Added Damping and Stiffness)
damper studied by Whittaker [107,108] which is illustrated in Figure 9. The layout consists
of flat steel plates in a row, in which their bottoms are connected to the top of the diagonal
braces and their upper parts are connected at the ceiling level. This damper has been
applied to many buildings and warehouses in the USA, Mexico, and Japan [100,109].
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In the same concept, Tsai et al. [110] proposed the TADAS damper, with a triangular
shape, using the flexural deformation of metal plates under out-of-plane bending and
exhibiting a similar hysteretic loop to the ADAS damper. Different shapes of the metallic
plate have been proposed the in last years, such as the honeycomb damper [111] or the slit
damper [112,113]. Bagheri et al. introduced a U-shape metallic yielding damper (UMYD)
as an energy dissipation system in steel building frames and showed that it can be operated
with large displacements in the inelastic range and dissipate energy through the plastic
deformation of the steel [114,115]. Due to its stable hysteretic behavior and the ability to
transfer the inter-story shear force or axial load of a brace into the moment of the steel plate
many analytical, experimental, and optimization studies were carried out [116–124].

A new metallic-yielding pistonic (MYP) damper is presented by Ghandil et al. for
seismic control of structures [125]. A set of rectangular metallic yielding plates has been
considered as an energy-dissipating part of this damper. According to its yielding mech-
anism and its special configuration, the story high-performance in seismic protection of
structures at low-value story drifts is presented. Another damper consists of a combination
of nested pipes that could change dynamic behavior parameters such as strength, stiffness,
and damping ratio for energy absorption at different earthquake levels, and was proposed
by Cheraghi and Zahrai [126]. The results show that it can reliably dissipate energy in
different energy levels leading to ductility ratios of about 15 to 37 and equivalent viscous
damping ratios of about 36 to 50%.

Casting multiplate damper (CMPD), which is composed of a set of energy-dissipating
plates, was proposed by Chen et al., showing that a damper displays reasonably good
seismic performance with sufficient deformation and energy dissipation capacity. In
addition, the behavior of the damper could be adjusted for specific structures by changing
the number and dimension of the energy-dissipating plates [127]. A Bar-Fuse Damper (BFD)
is presented by Aghlara and Tahir for frame structures, which dissipates the energy with
the replaceable bars as sacrificial elements through the flexural and tensile mechanism [128].
Thongchom et al. [129,130] proposed a new metallic damper consisting of five plates: shear
plate, flange plate, X-stiffeners, middle plate, and boundary plates (Figure 10). The middle
plate and boundary plates do not contribute to resisting the applied load while the shear
plate, flange plate, and X-stiffeners share the shear strength.

The buckling-restrained brace (BRB) is another type of steel damper (Figure 11),
it was initially introduced by Takeda et al. in 1976 [131] and deals with the buckling
problem of tension and compression steel braces. Later the BRB was studied by several
researchers [132–134] and developed with different configurations, such as circular core
(CBRB), cross and crosswise core, and linear core [135–140]. Between the metal joint and
the concrete, a suitable coating is placed, which allows the joint to slide relative to the
concrete. This method of construction allows the system to accept axial, compressive, and
tensile forces, which are received only by the metal link located at its core construction, due
to slippage. The outer mantle of the concrete is intended to limit the free-bending length of
the metal joint [132].
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Improvement of BRB by adding prestressed steel tendons parallel to the internal core
plate was proposed by Chou et al. [141–143] to avoid residual deformations under large
seismic excitations. Furthermore, a Tube-in-Tube Damper (TTD) that keeps the advantages
of BRB (it can be easily installed such as a conventional brace) has a series of strips created by
cutting a series of slits through the wall, and it is welded to the inner hollow section in such
a way that when the brace damper is subjected to forced displacements in the direction of its
axis, the strips dissipate energy through flexural/shear yielding [144–146]. The hysteretic
behavior of BRB (different configurations and its improvement) in tension and compression
is very similar, and a substantial amount of energy is dissipated [147–153]. In the same field,
Cao et al. [154,155] proposed the use of an external bolt-connected steel-plate reinforced
concrete buckling-restrained brace frame in order to improve the seismic performance
improvement of existing RC buildings. Their deep study including experimental and
theoretical investigations shows the feasibility and the high efficiency of the novel external
retrofitting approach. The prestressed tendons reduced the residual deformation, while the
external braces enhanced the energy dissipation capacity.

4.2. Lead Dampers and SMA

A particular case of metallic devices is the extrusion dampers. The energy dissipation
is produced by the rearrangement of the crystalline red of special metals (such as lead), due
to the imposition of a deformation (extrusion), while maintaining, confined, the dissipative
nucleus of the damper. The dampers that could be added to the steel braces belong to the
category of lead extrusion dampers (LED) [156,157]. An LED consists of a thick-walled
tube, on either side of which are two pistons connected by a tie rod. The space between
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the pistons is filled with lead, which is separated from the cylinder wall by a thin layer of
lubricant kept in place by hydraulic seals around the pistons.

A new damper, called prestressed lead damper (PS-LED), proposed by Quaglini et al. [158–160],
is based solely on friction and does not exploit the extrusion of lead, such as lead dampers
proposed in the past [161–165], and reduces the costs of production (Figure 12). During
the past few years, many researchers have tried to use the material advantages of shape
memory alloys in seismic isolation, as it dissipates a significant amount of energy and can
yield repeatedly without sustaining any permanent deformation [166–172]. SMA could
be utilized for dampers with self-centering capabilities and undergo repeated hysteretic
cycles. In addition, SMA devices are relatively insensitive to temperature changes and can
sustain large loads which makes them suitable for base isolation systems, so this category
is not presented in detail in this study.
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5. Viscous Dampers (VD)
5.1. Viscous Fluid Dampers

This type of VD provides a resisting force proportional to the applied velocity, it
consists of a hollow cylinder filled with fluid, which is typically being silicone-based
(Figure 13). As the damper piston rod and piston head are stroked, fluid is forced to flow
through orifices either around or through the piston head. It was first used in the early
1980s by the military to absorb the vibrations caused by the firing of heavy weapons. The
movement of the piston head within the cylinder fluid introduces kinetic energy in the
damper, which is converted into heat due to friction that develops between the head and
the liquid.

VDs are used alone or in conjunction with other systems’ absorption of seismic energy.
There are many applications in base isolation, for example, viscous dampers have been
used as base isolation of a small assembly housing in Los Angeles [173,174] and also
on the Millennium bridge in London [175]. There is not a huge variety of VD to steel
braces, such as with FDs, but numerical studies and experimental tests on structures
with the addition of viscous seismic energy absorption dampers have been reported by
previous researchers [176–180]. Various structural models, with and without fluid dampers
manufactured by Taylor Devices Inc., were tested on the shake table at the University at
Buffalo from 1991 to 1995.
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5.2. Viscoelastic Solid Dampers

Dampers with solid viscous damping material consisting of a solid elastomeric pad,
with visco-elastic properties, between two steel plates. The dampers dissipate energy in the
form of heat, mainly due to shear deformations in the viscoelastic material. The steel plates
are attached to the structure within chevron or diagonal bracing (Figure 14). As one end of
the damper displaces concerning the other, the viscoelastic material is sheared resulting
in the development of heat which is dissipated to the environment. By their very nature,
viscoelastic solids exhibit both elasticity and viscosity.
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Figure 14. Longitudinal section of a typical Viscous fluid damper: (a) description of VDs, (b) one
story frame with VDs.

Mahmoodi [181] described the characteristics of a viscous damping damper suitable
for reducing the dynamic response of structures. Later, a standard damper with solid
viscous damping material was studied by Aiken and Kelly [80]. Another damper similar
to the previous one was studied by Constantinou and Symans [182] and is presented
in Figure 15.
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Rashid and Nicolescu [183] developed a tuned viscoelastic damper, which has high
damping performance over a wide range of excitation frequencies and can effectively
reduce vibration amplitudes. In addition, various researchers applied viscoelastic dampers
in civil engineering to control the seismic behaviors of reinforced concrete frame structures
and high-rise buildings [184–188]. In 1982, solid-material viscous dampers were incorpo-
rated into the 76-floor Columbia Center Building in Seattle, to deal with the vibrations by
wind [189].

Another damper that could be included in this type of damper is the compressed
rubber damper proposed by Sweeney and Michael [190]. It consists of four pieces of rubber
welded to a longitudinal steel rod. The pieces of elastic material are then pre-compressed
into a steel tube. The interface between the rubber and the steel pipe remains free so that it
can slide and create frictional forces in long movements.

6. Evaluating Seismic Retrofitting Techniques

A preliminary assessment of the overall deficiency of existing structures and the
appropriate selection of effective retrofit strategies are fundamental phases for seismic
protection [17,191]. The strengthening and stiffening strategy is essentially based on the
addition of shear walls, bracings, and vertical frames within the building’s bays. The effects
of adding steel bracings were experimentally and numerically tested [4,5,16–20,26–31]. In
order for steel braces to be a reliable seismic energy absorbing system, the engineering sci-
entific community around the world has been oriented towards seismic energy absorption
dampers, such as Friction (FDs), Metallic (MDs), and Viscous (VDs).

FDs provide a large energy dissipation per cycle loading and insensitivity to ambient
temperature, while the sliding interface conditions may change with time and due to their
strong nonlinear behavior, may excite higher modes, and the nonlinear analysis is required.
MDs provide a stable hysteretic behavior and insensitivity to ambient temperature, while
the replacement of the damper after the earthquake and a nonlinear analysis is required.
VDs can be activated at low displacements, and provide restoring forces, and due to their
linear behavior, a simplified modeling of the damper is required. The viscoelastic solid
dampers are limited in the deformation capacity and a debonding of VE material is possible,
while for the viscous fluid dampers, a fluid seal leakage is possible.

Another parameter which is very important is the relation between the velocity of the
excitation (earthquake or wind) and the damper force. The response of FDs and MDs is
independent of the velocity and will exert a constant force in all future excitations. This
characteristic makes the design of the connections and the steel bracings easier as the force
of the FDs and MDs is constant and fixed. Fluid VDs are velocity dependent which means
that the same damper exerts different responses in different excitation.

In terms of economic details, fabrication, installation, and repair cost, it is difficult to
express the exact cost of each damper as some of them were constructed only for research
reasons, some of them are still under research level, and for some of them the data were
inaccessible. The most economical mechanism is the friction and the yielding of metal
in dissipative devices that make the FDs and the MDs less expensive compared with the
fluid material of VDs. In addition, the cost of repair is less too, as FDs/MDs just need the
removal of a part of the damper and do not need to be shipped back to the factory, while
the whole VDs need to be shipped back. Manufacturing time has an impact on cost. The
manufacturing process of VDs is more complex than FDs or MDs, which takes up to five
months.

In order to demonstrate the effectiveness of the dampers, there are either the ex-
perimental [18,35,45,71,78,88,98,112,121,131,139,143,150,160,167,176] or the numerical re-
searches [14,42,49,73,75,80,86,127,140,142,169]. FE models play a key role in the ordinary
design process of new structures and in the assessment of existing ones. The Finite Ele-
ment Method (FEM) has become the most popular method in both research and indus-
trial numerical simulations, as it takes into consideration material laws, contact interface
conditions, and other parameters, which lead to the exact response of the strengthen-
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ing solutions and reduce the cost of the experimental test. Without wanting to promote
any software, some of the used software are Abaqus, Ansys, Comsol, Etabs, Sap2000
etc. A combination of experimental and numerical studies seems to be the ideal solu-
tion [4,74,92,115,122,127,130,150,154,159,168].

On the other hand, the efficacy of all these types of dampers has been proven as they
had been used all around the world. FDs have been incorporated into existing and new
buildings, with the most important being the Library of Concordia University in Montreal
and the Montreal Casino in Canada [57,58,60,80]. MDs have been applied to the seismic
reinforcements of the Wells Fargo Bank in San Francisco but also to many other buildings
in the USA, Mexico, and Japan [11,12,99,100,109]. VDs most important applications are
a group of houses in Los Angeles, the Millennium bridge in London, and the 76-floor
Columbia Center Building in Seattle [173–175,185,188,189,192].

Comparing the three different categories of passive energy dissipation systems into
experimental or numerical studies, applications, and optimization, it is noticed that there is
no unilateral solution, as the appropriate selection of effective retrofit strategies takes into
account parameters such as cost, duration, technical aspects, architectural needs, etc. In the
literature, multistoried buildings are analyzed with the installation of FDs, MDs, or VDs,
suggesting that all the dampers are suitable for low-rise, and mid-rise buildings, but VDs
seems to be studied more for high-rise buildings [10–17,44,57–60,81,99,109,134,193–196]. It
is important to notice that for further investigation, buildings’ regularities or irregularities
in plan and elevation, should be also examined to study their effect on dampers design
optimization, and to choose the most appropriate strengthening solutions for multisto-
ried buildings.

7. Conclusions

This article focuses on passive energy dissipation systems and more specifically the
dampers that can be positioned in steel braces to increase the absorption of seismic energy
and to protect them from buckling. This review paper systematically reviews/refers to
196 publications in the literature, it presents a brief overview of the steel braces frames
and their problems, the seismic energy absorption dampers, such as Friction (Section 3),
Metallic (Section 4), and Viscous (Section 5), that can be installed in the steel braces.

The most popular FDs is the Pall damper, published in 1981, which has been incor-
porated into existing and new buildings, with the most important being the Library of
Concordia University in Montreal and the Montreal Casino in Canada. This type of damper
provides a large energy dissipation per cycle loading and insensitivity to ambient tempera-
ture, while the sliding interface conditions may change with time and due to their strong
nonlinear behavior, may excite higher modes, and the nonlinear analysis is required.

MDs provide a stable hysteretic behavior and insensitivity to ambient temperature,
while the replacement of the damper after the earthquake and the nonlinear analysis is
required. The most popular damper of this type is the damper ADAS which has been
applied to many buildings and warehouses in the USA, Mexico, and Japan.

VDs can be activated at low displacements, and provide restoring forces, and due
to their linear behavior, simplified modeling of the damper is required during numeral
analysis. Fluid VDs are velocity dependent which means that the same damper exerts
different responses in different excitation, which leads to more complex fabrication tech-
niques. In addition, the viscoelastic solid dampers are limited in the deformation capacity
and a debonding of VE material is possible, while for the viscous fluid dampers, a fluid
seal leakage is possible.

In terms of economic details, fabrication, installation, and repair costs, FDs and MDs
have the most economical mechanism. In addition, the cost of repair is also small as
FDs/MDs just need the removal of a part of the damper and do not need to be shipped
back to the factory, while the whole VDs need to be shipped back.

The efficacy of all these types of dampers has been proved, as they had been used
all around the world, and their comparison into experimental or numerical studies, ap-
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plications, and optimization shows that there is no unilateral solution, as the appropriate
selection of effective retrofit strategies takes into account parameters such as cost, duration,
technical aspects, architectural needs, etc. The aim of this review paper is to systemati-
cally present the overview of passive energy dampers that can be installed on steel braces
(Sections 3–5), summarize the advantages and the disadvantages of each one, compare
global parameters (Section 6) such as the relation of velocity and damper force, economic
details, and type of study (experimental or numerical), and to facilitate future researchers
working in the related field, for its better understanding and development.

From this review, it is clear that there is a huge variety of dampers that can be added
to steel braces, but there is a lack of comparable applications. Future research will focus on
the application to real low-rise, mid-rise, and high-rise structures (steel or concrete) as well
as irregularities in plan and elevation.
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Nomenclature
The acronyms that have been followed through this review paper are presented below.

Nomenclature Referred to
ADAS Added Damping and Stiffness
BF Braced Frame
BFD Bar-Fuse Damper
BRB Buckling-Restrained Brace
CBF Concentrically Braced Frame
CMPD Casting Multiplate Damper
DB Damped Braces
EBF Eccentric Braced Frame
EDF Energy Dissipating Restraint
FD Friction Damper
MD Metallic Dampers
MYP Metallic-Yielding Pistonic
PFD Pall Friction Damper
PT Post-Tensioned
RC Reinforced Concrete
RFD Rotational Friction Damper
SBC Slotted Bolted Connection
SFD Sumitomo Friction Damper
SMA Shape Memory Alloys
TADAS Triangular plate Added Damping and Stiffness Damper
TTD Tube-in-Tube Damper
UMYD U-shape Metallic Yielding Damper
VD Viscous Damper
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