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Action of the Euclidean versus Projective group on an agent’s internal space
in curiosity driven exploration: a formal analysis

Grégoire Sergeant-Perthuis1, David Rudrauf2, Dimitri Ognibene3, Yvain Tisserand4

Abstract— In human spatial awareness, information appears
to be represented according to 3-D projective geometry. It
structures information integration and action planning within
an internal representation space. The way different first person
perspectives of an agent relate to each other, through transfor-
mations of a world model, defines a specific perception scheme
for the agent. In mathematics, this collection of transformations
is called a ‘group’ and it characterizes a geometric space by
acting on it. We propose that imbuing world models with
a ‘geometric’ structure, given by a group, is one way to
capture different perception schemes of agents. We explore how
changing the geometric structure of a world model impacts the
behavior of an agent.

In particular, we focus on how such geometrical operations
transform the formal expression of epistemic value in active
inference as driving an agent’s curiosity about its environment,
and impact exploration behaviors accordingly. We used group
action as a special class of policies for perspective-dependent
control. We compared the Euclidean versus projective groups.
We formally demonstrate that the groups induce distinct
behaviors. The projective group induces nonlinear contraction
and dilatation that transform entropy and epistemic value as
a function of the choice of frame, which fosters exploration
behaviors. This contribution opens research avenues in which
a geometry structures a priori an agent’s internal representation
space for information integration and action planning.

I. INTRODUCTION

In artificial agent learning and control, intrinsic
and extrinsic rewards can be combined to optimize
the balance between exploration and exploitation.

Intrinsic rewards in Reinforcement Learning (RL)
[Hester and Stone, 2017], [Merckling et al., 2022],
[Oudeyer et al., 2007] or terms of epistemic value in
active inference [Friston et al., 2015] have been brought
forth as mechanisms mimicking curiosity and driving
exploration, e.g. by integrating prediction error or
uncertainty to drive actions favoring their reduction.
However, efficient exploration is a computationally hard
task. Recent neural planning models have increased
planning flexibility and generality [Sekar et al., 2020]. Yet,
it is well-known that models’ structures heavily impact
planning performance, computational cost and tractability
[Geffner and Bonet, 2013]. A good representation may
improve learning and search efficiency.

These issues are particularly salient for computation-
heavy, highly recursive machine learning algorithms and
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applications, e.g. reinforcement learning (RL) in artificial
agents [Bonet and Geffner, 2019]. Although generic neural
world models can support exploration-related processes,
incorporating prior knowledge that shapes internal repre-
sentations to more effectively support exploration across a
broad range of environments, such as 3-D environments,
may enable autonomous agents to explore more complex and
realistic settings on a larger scale. The exploration planning
problem can thus be approached by considering how the
structure of representation impacts exploration behaviors.

Here, we do not consider mechanisms of representation
learning, e.g. in which world dynamics and action effects
need to be learned and represented, as typically done in RL.
We specifically consider control and execution when object
locations, world states, and maps may not be known but
dynamics, rewards, and action effects already are. We focus
on action selection for environment exploration and mapping.

We adopt the active inference framework, i.e. an
implementation of the Bayesian Brain Hypothesis
aimed at generating adaptive behaviors in agents
[Friston et al., 2006], [Timsit and Sergeant-Perthuis, 2021].
It relies on an internal representation of the environment
that an agent is driven to explore and exploit. The
agent continually updates its beliefs about plausible
competing internal hypotheses on the environment state.
Under common sensory limitations, active inference
relates to Partially Observable Markov Decision Process
(POMDP) [Da Costa et al., 2020], [Ognibene et al., 2019].
The epistemic value of states is a quantity that
arises in active inference [Friston et al., 2015]. Its
maximization drives the agent’s curiosity and actions.

Defining states’ embedding capturing both the
environment’s local coherence and global topology is
key for exploration optimization [Merckling et al., 2022].
For exploration or search in 3-D space, it is warranted to
consider how geometrical principles could be embedded
into efficient control mechanisms, to regularize the internal
representation of information and mediate exploration
under a drive of uncertainty reduction or information
maximization. Geometrical considerations have previously
been integrated into a variety of optimization and machine
learning approaches, such as RL, active inference, and
Bayesian inference (See Related Work below), but
not in the specific perspective we introduce herein.

We build upon the hypothesis that 3-D internal
representations of space in agents performing active
inference may correspond to specific geometries, with
properties that can be mathematically analyzed and



demonstrated. More specifically, we consider how
different first person perspectives may relate to each other,
through transformations of a world model, as a specific
perception (and imagination) scheme for agents. This
entails considering the action, on the spatial distribution of
information experienced and encoded by agents internally, of
geometrical groups of transformations (in the mathematical
sense of the concept in Group theory; see Section III-
A). The question is whether such group action could
contribute to information gain estimation and maximization,
as an internal planning or perspective-dependent control
mechanism. Certain geometrical groups might imply
internal representations, policies, value functions and
principles of action that are particularly relevant for search
and exploration. More specifically, we wish to compare
how different groups impact the quantification of epistemic
value. We then wish to characterize how the optimization
of action from those different groups may yield different
exploration behaviors. We contrasted two separate toy
models of an agent performing a simple search task using
active inference based solely on epistemic drives. One
model used Euclidean geometry and the other projective
geometry for the agent’s internal space. We compared the
two models in terms of resulting exploration behaviors.

We chose to compare Euclidean versus projective
geometry based on previous work, leveraging
psychological research on the phenomenology of
spatial consciousness and its role in the control of
behaviors [Rudrauf et al., 2017], [Rudrauf et al., 2020],
[Rudrauf et al., 2022], [Rudrauf et al., 2023]. This research
suggested that 3-D projective geometry plays a central
role in human cognition and decision-making by shaping
information representation and subsequent drives. It also
offers a mechanism of changes of points of view and
perspectives on a world model, including for perspective
taking in social cognition, which is critical for the
development of strategies of action planning in humans (see
[Rudrauf et al., 2022], [Rudrauf et al., 2023]). We used
Euclidean geometry as a standard baseline geometry for
comparison [Ognibene and Demiris, 2013]. Our geometrical
rationale implies a different understanding of how agents’
actions in their environment (here in the behavioral
sense of the term) are implemented compared to usual
active inference. Agents’ actions can naturally be seen
as dual to internal changes of perspective, i.e. group
actions, in their representation space. We thus used group
actions as a predictive model of actual behavioral actions.

The approach allowed us to formally study and
demonstrate how the geometry governing the internal
representation space may directly impact the computation
of epistemic value and ensuing exploratory behaviors.
Projective geometry versus Euclidean geometry
demonstrated remarkable properties of information
integration for motion planning under epistemic drive.

II. RELATED WORKS

A. Representation of space and exploration, in the context
of machine learning and control

The integration of geometrical mapping in machine learn-
ing has been proposed to reduce the high-dimensionality
of input spaces and provide efficient solutions for ac-
tion selection and navigation. Seminal neurally inspired
models used projections on 2-D manifolds for represen-
tation learning of complex spatial information and self-
motion effects [Arleo et al., 2004]. The impact of changes
of perspective in exploration has long been of interest.
[Ognibene and Demiris, 2013]. [Ferreira et al., 2013] pro-
posed an internal 3-D egocentric, spherical representation of
space, to modulate information sampling and uncertainty as
a function of distance, and control a robot attention through
Bayesian inference. This was a seminal example of how
geometrical rationale could suggest solutions to integrate
perception and action planning.

Exploration methods must often maintain high-resolution
representations of space to maximize information gain fol-
lowing action. This may hinder exploration efficiency, in
particular in large-scale environments. 3-D topological repre-
sentations of ambient space have been proposed as part of an
abstract planning scheme, showing promising improvements
of exploration efficiency [Yang et al., 2021].

Active vision principles, combined with curiosity-
based algorithms and RL, were applied to the learning
of saliency maps in the context of autonomous robots’
navigation [Craye et al., 2016]. The approach yielded
promising optimization solutions to both adaptive
learning of task-independent, spatial representations,
and efficient exploration policies, which could
serve as prior to support long-term, task-oriented,
utility-driven RL mechanisms [Craye et al., 2016]
(see also [Ognibene and Baldassare, 2014],
[Sperati and Baldassarre, 2017]).

Complex control tasks with continuous state and action
spaces have been solved using deep reinforcement learning
(DRL) with joint learning of representations and predic-
tions. Such approach may entail non-stationarity, risks of
instability and slow convergence, in particular in control
tasks with active vision. Separating representation learn-
ing and policies’ computations may mitigate the issues,
but may also lead to inefficient information representa-
tions. [Merckling et al., 2022] have sought to build com-
pact and meaningful representations based on task-agnostic
and reward-free agent-environment interactions. They used
(recursive) state representation learning (SRL) while jointly
learning a state transition estimator with near-future predic-
tion objective, to contextually remove distracting information
and reduce the exploration problem complexity. Positive out-
comes were maximized through inverse predictive modeling,
and prediction error was used to favor actions reducing
uncertainty, which improved subsequent performance in RL
tasks. The authors emphasized that dealing with partial
observability through memory and active vision may require



new solutions to both representation learning of hidden
information and exploration strategies.

Uncertainty-based methods using intrinsic reward and ex-
ploration bonuses to plan trajectories have been criticized
for inducing non-stationary decaying surprise, and for being
hard to structure and optimize [Guo et al., 2021]. Maximum
State-Visitation Entropy (MSVE) was introduced to maxi-
mize state exploration uniformity, but optimization has been
often challenging for large state spaces. [Guo et al., 2021]
have introduced Geometric Entropy Maximization, which
leverages geometry-aware entropy based on Adjacency Reg-
ularization (AR) and a similarity function, in order to opti-
mize the MSVE problem at scale.

Geometrical constraints considered across these related
works were not integrated into a global model, and were
somewhat ad hoc. They pertained to a lower level of process-
ing than the one we are concerned with here. However, they
emphasize the current needs and challenges for integrating
geometry in learning, control and navigation.

Methods and algorithms combining computer vision, ma-
chine learning and optimization, e.g. for robotic plan-
ning, have integrated group theoretic concepts to obtain,
for instance, invariance to rotation and translation in im-
age processing [Lee and Moore, 2004], [Qin et al., 2019],
[Meng et al., 2017]. Likewise, the leveraging of geometri-
cal concepts, in Deep learning, e.g. for learning manifolds
and graphs, has been growing in recent years, demon-
strating very promising results for representation learning
[Gerken et al., 2021], [Cao et al., 2022]. The approach in-
troduces combinatorial structures to leverage prior knowl-
edge of geometry on the data of interest, e.g. applying
‘convolutional Neural Networks’ to non-Euclidean space.
However, the Euclidean group E3, or more specifically SE3

(see [Lee and Moore, 2004]), which includes translations
and rotations, but excludes reflections, or simply SO3, the
3-dimensional rotation group [Gerken et al., 2021], are the
groups being typically considered.

Here, in addition to the Euclidean group, we also consider
PGL3, the projective general linear group in 3-D (which
has more degrees of freedom than E3). The projective group
is central to computer vision, for instance to generate 2-D
images from 3-D information, but is used in such context in a
restricted manner. Our approach, which is based on cognitive
science, considers spatial cognition and its relations to action
at a higher level of integration, and do not reduce to the visual
modality.

B. Projective Consciousness Model (PCM) and active infer-
ence

We have shown that geometrically constrained
active inference can be used as a framework to
understand and model central aspects of human
spatial consciousness, through our Projective
Consciousness Model (PCM) [Rudrauf et al., 2017],
[Rudrauf et al., 2022]. Consciousness accesses and
represents multimodal information through a Global
Workspace [Dehaene et al., 2017] within which subjective

perspectives on an internal world model can be
taken. The process contributes to appraise possible
actions based on their expected utility and epistemic
value [Rudrauf et al., 2022]. In [Rudrauf et al., 2017],
[Williford et al., 2018], [Rudrauf et al., 2022],
[Rudrauf et al., 2023], [Williford et al., 2022], it is
hypothesized that such internal representation space is
geometrically structured as a 3−D projective space, denoted
P3(R). Changes of perspective then correspond to the choice
of a projective transformation ψ, i.e. an action from PGL3.
A projective transformation can also be modeled as a linear
isomorphism Mψ ∈ GL4(R) up to a multiplicative constant.
The model yieled an explanation for the Moon illusion
[Rudrauf et al., 2020] with, for the first time, falsifiable
predictions on how strong the effect should be depending
on context, as well as for the generation of adaptive
and maladaptive behaviors, consistent with developmental
and clinical psychology (see [Rudrauf et al., 2022]).
Though essential in integrative spatial cognition,
notably for understanding multi-agent social interactions,
perspective taking is rarely integral to existing models of
consciousness or formally implemented [Koch et al., 2016],
[Kleiner and Tull, 2021], [Mashour et al., 2020],
[Dehaene et al., 2017], [Merker et al., 2022]. The PCM
assumes that projective mechanisms of perspective changes
are integral to the global workspace of consciousness,
both in non-social and social contexts. The advantages of
mechanisms of perspective taking for cybernetics remains
to be fully formulated (see [Rudrauf et al., 2022]).

III. METHODOLOGY

The experiment we consider is that of an agent, denoted
as a, which is looking for an object O in the ‘real world’,
the 3-D Euclidean space E3 := R3. The set of moves of the
agent is denoted M . The position of O is denoted o ∈ E3.
The agent ‘represents’ the position of the object O inside its
‘internal world model’. We consider ‘internal world models’,
spaces denoted W , that are such that there is a group
acting on them; we call such spaces, group structured world
models. This group accounts for the change of coordinates
that each movement of the agent induces when the positions
of the object are expressed in the agents reference frame. We
consider two spaces in particular:

1) Euclidean case: W is the 3-D vector space, W = R3

2) Projective case: W is the 3-D projective space, denoted
as P3(R)

We will denote B(W ) the Borel σ-algebra of the respective
topological spaces.

In Section III-B, we explain how the ‘real world’ and the
‘internal world model’ are related to one another in both
the Euclidean and Projective case. Figure 1 illustrates the
setup of the toy model and main transformations considered.
The agent’s internal beliefs about the position of the object
are encoded by a probability measure on W that the agent
updates through observations. The agent explores its envi-
ronment through the computation of an epistemic value, the
maximization of which captures curiosity-based exploration.



Fig. 1. Toy model setup and main transformations

Upper-tier. Agent a simulates move m in Euclidean space E. R0

and R are its frames in E before and after the move, oriented
toward object O. Vertical arrows indicate transformations φ from
the external to the internal space. Lower-tier. Rendering of the
effect of the internal group action ψ(m) corresponding to move
m in the Euclidean versus projective case. (Made with Unity).

In Section III-C, we explain how epistemic value is defined
for group structured internal representations. In Section III-D
we give the details of the exploration algorithm.

A. Group structured world model

Let us first recall what a group is.

Definition 1 (Group, §2 Chapter 1 [Lang, 2012]). A group is
a set G with an operation . : G×G→ G that is associative,
such that there is an element e ∈ G for which e.g = g for
any g ∈ G, and any g ∈ G has an inverse denoted g−1

defined as satisfying, g.g−1 = g−1.g = e.

We call a group structured world model, a world model
provided with a group action; we now make this statement
formal.

Definition 2 (Group structured world model). W is a group
structured world model for the group G when there is a map
h : G ×W → W denoted as h(g, x) = g.x for g ∈ G and
x ∈ X , such that,

1) (g.g1).x = g.(g1.x) for all g, g1 ∈ G, x ∈W
2) e.x = x, for all x ∈W

In the Euclidean case the group structured world model,
W , is the 3-D vector space R3; it is structured by the group of

invertible matrices GL3(R). In the Projective case, the group
structured world model, W , is the projective space P3(R); it
is structured by the group of projective linear transformations
PGL(R3).

B. Relating the ‘real world’ to the ‘internal world model’

We assume that the ‘real world’ is the 3-D Euclidean
space, E3. We assume that the ‘real world’ comes with with
an Euclidean frame RE , i.e. a point C and three independent
vectors e0, e1, e2. This frame is used to set up the experiment:
the configurations of the object and agent across time are
encoded in this frame; it is fixed once and for all before
starting the experiment. Therefore we now identify E3 with
R3, C with (0, 0, 0) and e0, e1, e2 with the respective basis
vectors, (1, 0, 0), (0, 1, 0), (0, 0, 1).

The agent, denoted as a, is modeled as a solid in the ‘real
world’; it has its own Euclidean frame (the solid reference
frame), R := (P, u0, u1, u2), with P the center of a and
u0, u1, u2 three unitary vectors that form a basis.

In the Euclidean case, the map that relates E3 and its
group structured world model, W , is the affine map, φR,
that changes the coordinate in RE to coordinates in R.

In the Projective case, this map is a projective transfor-
mation. The choice of such a projective transformation is
dictated by Proposition A.1 [Rudrauf et al., 2022]. Let us
now recall some facts about that transformation.

Let for any (x, y, z) ∈ R3,

ρ(x, y, z) =

(
x

γz + 1
,

y

γz + 1
,

z

γz + 1

)
(1)

with γ ∈ R+ a strictly positive parameter. The (projective)
transformation φpR, from E3 to W , which relates the ‘real
world’ to the ‘internal world model’ in the projective case,
is posed to be φpR := ρ ◦ φR.

Proposition 1. When the agent a makes the move m ∈ M ,
its solid reference frame changes from R to Rm. In the
Euclidean case this move induces an invertible linear map,
ψm ∈ GL3(R) from the ‘internal world model’ to itself. In
the Projective case it induces a projective transformation,
ψm ∈ PGL(R3).

We will denote 1U or x → 1[x ∈ U ] the characteristic
function of subset U , i.e. the functions that is equal to 1 for
x ∈ U and 0 elsewhere.
Remark 1. In both cases there is a dense open subset,
U , of W which is in continuous bijection with R3. From
the Lebesgue measure dx on R3, we define the following
measure on W , dλ := 1U dx. In what follows we do not
raise this technical point anymore and simply refer to dλ as
the Lebesgue measure on W .

C. Beliefs, policies and epistemic value

1) Beliefs: The agent a keeps internal beliefs about the
position of the object represented in its ‘internal world
model’; these beliefs are encoded by a probability measure
QX ∈ P(W ), where P(W ) denotes the set of probability
measures on W . Probability measures will be denoted with



upper case letters and their densities with lower case letters.
These beliefs are updated according to noisy sensory obser-
vations of the position of O. ‘Markov Kernels’ can be used
to formalize noisy sensors. Let us recall their definition.

A ‘Markov Kernel’ Π from Ω1 to Ω is a map Π : Ω×Ω1 →
[0, 1] such that for any ω1 ∈ Ω1,

∑
ω∈Ω P (ω|ω1) = 1, i.e.

a map that sends any ω1 ∈ Ω1 to a probability measure
Π|ω1

∈ P(Ω).
The uncertainty on the sensors of a is captured by a

Markov kernel PY |X from W to W . It is a parameter of
the experiment: it is fixed before the agent starts looking for
O. The couple (PY |X , QX) defines the following probability
density, PX,Y ∈ P(W ×W ): for any x, y ∈W ,

PX,Y (dx, dy) := pY |X(y|x)qX(x)dxdy (2)

where dx is the Lebesgue measure on W . An observation
of the position of the object yo ∈ W triggers an update of
the belief QX to the belief with density

QX|yo =
pX,Y (x|yo)qX(x)dx∫

x∈W pX,Y (x|yo)qX(x)dx
(3)

2) Policies: Recall that the agent has a set of moves it
can make M ; moves m ∈ M are associated with the group
action ψm : W → W (Proposition 1). The agent plans
the consequence of its moves on its internal world model
one step ahead: each change of frame induces the following
Markov Kernel, for any m ∈M , A ∈ B(W ), and x0 ∈W ,

pX1|X0,m(A|x0,m) = 1[ψm(x0) ∈ A] (4)

Each move m spreads a prior QX on X0 into the following
prior on X1: ∀A ∈ B(W ),

ψm,∗QX(A) :=

∫
1[ψm(x0) ∈ A]qX(x0)dx (5)

= QX(ψ−1
m A) (6)

We chose to denote this probability measure as ψm,∗QX ,
because it is the standard mathematical notation for the
‘pushforward measure’ by ψm. The generative model the
agent uses to plan its future actions is summarized in Figure
2.

X0 = W
φRm

o ∈ E3

X1

Y = W 3 yo Y 3 yom

1[ψm(x0) ∈ A]

PY |X

φR

Fig. 2. m ∈ M is a move of the agent a, 1[ψm(x0) ∈ A] defines
the kernel induced by move m, PY |X is the noisy sensor. The diagram
constituted of solid arrows defines the generative model the agent uses to
plan its actions. o is the position of the object in the ‘real world’, yo ∈W
is the representation of o in the ‘internal world model’ of a with respect to
the solid reference frame R, yom is the same for the reference frame Rm

after move m.

3) Epistemic value: The following definition is
a restatement of the epistemic value introduced
in [Friston et al., 2015] in the case of the kernel
PY |X : W →W .

Definition 3 (Epistemic Value). For any probability measure
QX ∈ P(W ), the epistemic value of this measure is:

C(QX) :=EPY

[
H(PX|Y |QX)

]
(7)

=

∫
pY (y)dy

∫
pX|Y (x|y) ln

pX|Y (x|y)

qX(x)
dx

(8)

H is the relative entropy, also called Kullback-Leibler
divergence.

Reexpressing Equation 7, it becomes apparent that epis-
temic value is simply a mutual information:

C(QX) =

∫
pX,Y ln

pX,Y (x, y)

pY (y)qX(x)
dxdy (9)

We propose to define the epistemic value of move m as
the epistemic value of the induced prior on X1,

C(m) := C(ψm,∗QX) (10)

D. Exploration algorithm

Let us now put the previous elements together to describe
the exploration behavior programmed in our agent. The agent
a is initialized in a configuration of the ‘real world’, with
solid reference frame R0; the object O is positioned at
o ∈ E3. a starts with an initial belief Q0

X ∈ P(W ) on the
position of O. It plans one step ahead the consequence of
move m; move m induces a group action ψm : W → W
that pushes forward the belief Q0

X to ψm,∗Q
0
X . The agent

then evaluates the epistemic value of (PY |X , ψm,∗Q
0
X) for

each move m and chooses the move that maximizes this
value, m∗. a executes the move m∗ which transforms its
solid reference frame R0 to R. It can then observe (with its
’noisy sensors’) the position of O which is yo := φR(o) in
its internal world model, which triggers the update of prior
ψm,∗Q

0
X to the distribution conditioned on the observation:(

ψm,∗Q
0
X

)
|yom

. The process is iterated with this new prior.
The exploration algorithm is summarized in Algorithm 1.

Algorithm 1: Curiosity based Exploration for agent a

Data: Initialization: Q0
X initial belief, R0 initial solid

reference frame of a
1 QX ← Q0

X ;
2 while True do
3 m∗ ← argmaxm∈M C(ψm,∗QX);
4 R ← solid reference frame of a after move m∗;
5 QX ← ψm,∗QX ;
6 yo ← φR(o);
7 QX ← QX|yo ;
8 end



IV. THEORETICAL PREDICTIONS

We wish to understand how the group by which the
internal world model is structured influences the exploration
behavior of the agent. The Euclidean case serves as the
reference model; in this case the world model shares the
same structure as the real world: it is the ‘classical’ way
of modeling this exploration problem. The Projective case
corresponds to the hypothesis underlying the PCM. The
following Theorem states that this experiment allows us to
discriminate when the behavior of the agent is dictated by
‘objective’ perspectives (Euclidean change of frame) versus
by ‘subjective’ perspectives (projective change of frame) on
its environment.

We consider the following noisy sensor, for any x, y ∈ R3,

PY |X(y|x) =
3

4πε3
1[‖x− y‖ ≤ ε] (11)

where ‖.‖ designates the Euclidean norm on R3, i.e.
‖x‖2 = x2

0 +x2
1 +x2

2; ε > 0 is a strictly positive real number.

Theorem (Discrimination of behavior with respect to internal
representations). Let us assume that staying still is always a
possible move for the agent.

Euclidean case: when the agent has an objective
representation of its environment, given by an affine map,
the agent stays still.

Projective case: Assume now that the set of moves M is
finite; assume furthermore that after any possible move, the
agent faces O, in other words, we assume that the agent
knows in which direction to look in order to find the object
but is still uncertain on where the object is exactly. If it
has a ‘subjective’ perspectives, i.e. its representation is given
through a projective transformation, it will choose the moves
that allows it to approach O (for any ε small enough).

Proof: The details of the proof are given in Appendix
A. Let us here give an idea of the proof. The agent circum-
scribes a region of space in which it believes it is likely
to find the object. This region corresponds to the error the
agent tolerates on the measurement it makes of the position
of O; we can also see it as the precision up to which the agent
measures the position of O. In the Euclidean case, the region
in which the agent circumscribes the object appears to always
be of the same size, irrespective of the agent’s configuration
with respect to the object. Therefore not moving ends up
being an optimal option and the agent will not approach the
object without additional extrinsic reward. In the Projective
case, the agent can ‘zoom’ on this region in order to gain
more precision in measuring o; the configurations of the
agent in which this region is magnified are more informative
regarding the position of O and therefore preferred by the
agent. The only way for the agent to actually zoom onto this
area is to approach the location it believes O is likely to be,
therefore the agent will end up approaching O.

Remark 2. This particular choice of Markov kernel (Equation
11) allows for an explicit expression of epistemic value

which simplifies the proof of the result; however we expect
the result to hold for a larger class of kernels.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed a generative model for environ-
ment exploration based on first person perspective in which
actions are encoded as changes of perspective. The family of
all possible perspective taking on the environment structures
the representation of sensory evidence inside the world
model of the agent. In other words each family corresponds
to a specific perception scheme for the agent. We encoded
each of such family as a group acting on the internal world
model of the agent, i.e. in the geometric properties of this
internal world model. We showed that different geometries
induce different behaviors, focusing on two case: when the
internal world model of the agent followed Euclidean geom-
etry versus projective geometry. The study of world models
with projective geometries was motivated by ongoing work in
computational psychology aimed at reproducing features of
consciousness. Although preliminary, this result contributes
to understanding how integrative geometrical processing and
principles can play a central role in cybernetics. In our
approach, the geometry of the world model links perception
and representation with action and behavior.

In the future, we will further examine how the geometry of
a latent space intertwines with information processing. One
motivation is theoretical, as we would like to assess how
geometry changes learning behavior. In this contribution,
we have discarded representation learning per se, as it was
beyond its scope. In future work, we wish to use deep learn-
ing to learn group structured representations. However, it is
important to note that such approach differs from geometric
deep learning [Bronstein et al., 2021] as we do not seek to
learn equivariant representations: a group structure will only
be considered for the internal world model but none will
be presupposed on the observation side. Likewise, we will
examine how geometry may play a role in overt and covert
attention. Projective geometry induces effects of magnifica-
tion and focalization that appear immediately relevant for
spatial attention, and more generally for contextual salience.
Another motivation for this research is more practical, as we
would like to use such principles to design virtual and robotic
artificial agents mimicking human cognition and behaviors
following [Rudrauf et al., 2022], [Rudrauf et al., 2023].
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APPENDIX

A. Proof of Proposition and Theorem

1) Proof of Proposition 1: Euclidean case: For any refer-
ence frame of the agentR, φR is an affine map and φ−1

R (0) is
the center of the agent, P , in E3. In particular, φRm ◦φR−1

is an affine map that sends 0 to 0; it is therefore a linear
map. By construction ψm = φRm ◦ φR−1, therefore ψm is
a linear map.

Any 3-D affine transformation is encoded by a matrix
M = (mi,j ; i, j = 1..3) and a vector (mj,4; j = 1..3);
let (mRi,j ; i, j = 1..3) be the matrix associated to φR and
(mR4,j ; j = 1..3) its vector.

Projective case: φpR = ρ ◦ φR is the projective map with
expression in homogeneous coordinates given by the matrix,

m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4

0 0 γ 1


By construction, the transition map in the projective case,

ψpm, is φpRm ◦ φpR
−1; it is the composition of two projective

transformations, therefore it is a projective transformation.



2) Proof of Theorem: We will denote Bεy the
Euclidean ball of radius 1 around y ∈ R3,
i.e. Bεy = {x ∈ R3| ‖x− y‖ ≤ ε}.

Lemma 1. For any Q ∈ P(W ), both in Euclidean and Pro-
jective cases, for any affine map or projective transformation
ψ : W →W ,

C(ψ∗Q) = −
∫
dyQ(ψ−1(Bεy)) lnQ(ψ−1(Bεy)) (12)

Proof:

C(ψ∗Q) =
3

4πε3
×∫

ψ∗Q(dx1)

∫
dy 1[x1 ∈ Bεy] ln

1[x1 ∈ Bεy]∫
ψ∗Q(dx1) 1[x1 ∈ Bεy]

= − 3

4πε3

∫
dy lnQ(ψ−1(Bεy)

∫
ψ∗Q(dx1) 1[x1 ∈ Bεy]

= − 3

4πε3

∫
dyQ(ψ−1(Bεy)) lnQ(ψ−1(Bεy)) (13)

Proof of Theorem:

Euclidean case: for any set of moves M , and for any m ∈
M , ψm is a rotation; therefore for any y ∈ W , ψ−1

m (Bεy) =
Bε
ψ−1

m (y)
. Then, for any prior Q ∈ P(W ),

C(ψ∗,mQ) = − 3

4πε3

∫
dyQ(Bε

ψ−1
m (y)

) lnQ(Bε
ψ−1

m (y)
)

= − 3

4πε3

∫
dyQ(Bεy) lnQ(Bεy) (14)

In this case, the epistemic value is independent from the
change of Euclidean frame, and not moving is a perfectly
valid choice for the agent to maximize it, at each time step
of the exploration algorithm (Algorithm 1).
Remark 3. The fact that staying still is a valid strategy arises
as the agent assumes (or believes) that it has access to the
whole configuration space of O. If it knew it had limited
access to it, through for example limited sight, we expect
the agent would look around until the object O would be in
sight, and then stop moving.

Projective case: Consider two projective transformations
ψ,ψ1 : W →W , if for any y ∈W ,

ψ−1(Bεy) ⊆ ψ−1
1 (Bεy) (15)

then,

−Q(ψ−1(Bεy)) lnQ(ψ−1(Bεy)) (16)

≥ −Q(ψ−1
1 (Bεy)) lnQ(ψ−1

1 (Bεy)) (17)

This suggests that the moves that maximize epistemic
value are those where ψ−1

m shrinks the zone around yo =
ρ(φR(o)), which is the representation of O in the internal

world of the agent. In particular, it means magnifying the
zone around ρ(φRm(o)) in the agent’s new frame, Rm, after
move m. The only way to do so is to select moves that bring
the agent closer to O. Let us denote yom := ρ(φRm(o)). Let
us now make the previous argument more formal. We assume
that the set of moves M is finite. Let Q0 = q0dλ be any
initial prior on W = P3(R), at stating time t = 0. After one
step, move m1 is chosen and the agent updates its prior as,

q1(x) ∼= 1[x ∈ Bεyom1
]q0(x) (18)

where∼= means proportional to. The prior we now consider
is Q1 denoted simply as Q. One shows that there is α > 0,
such that for all m ∈M , and ε > 0 small enough,

C(ψ∗,mQ) = − 3

4πε3
×∫

dy 1[y ∈ Bαεyom ]Q(ψ−1
m (Bεy)) lnQ(ψ−1

m (Bεy)) (19)

(20)

Let ≈ stand for ‘approximately equal to’ (equal at first
order in development in powers of ε). Then from the previous
statement the summand can be approximated by its value in
yom:

C(ψ∗,mQ) ≈ −α3Q(ψ−1
m (Bεyom)) lnQ(ψ−1

m (Bεyom)) (21)

Furthermore, Q(ψ−1
m (Bεyom)) ≈ 4πε3

3
q1(yo)

| det∇ψm|(yo) , where
|det∇ψm|(yo) is the absolute value of the Jacobian deter-
minant of ψm at yo. The epistemic value is maximized when
|det∇ψm|(yo) is maximized. By definition, ψm = ρ◦φRm◦
φ−1
R ◦ ρ−1, therefore, by the chain rule of differentiation

|det∇ψm|(yo)
= |det∇ρ|(φRm(o)).|detφRm |(o).|det∇[φ−1

R ◦ ρ
−1]|(yo)

(22)

Let us make explicit each terms in the previous equation.
φRm is a rigid movement therefore, |detφRm |(o) = 1.
|det∇[φ−1

R ◦ ρ−1]|(yo) does not depend on m so we can
label it as a constant C. φRm(o) is the coordinate of O in
the Euclidean frame Rm; let us denote (xm, ym, zm) these
coordinates, i.e. (xm, ym, zm) := φRm(o). Then,

|det∇ρ|(xm, ym, zm) =
1

(γzm + 1)4
(23)

Therefore, |det∇ψm|(yo) = C 1
(γzm+1)4 .

As we assumed that for any move m ∈ M , the object O
is always in front of the agent, then zm ≥ 0; in this case,
zm is also the distance of the agent to the object. Epistemic
value is maximized when zm is minimized and therefore the
agent selects moves that reduce its distance to the object.
Denote one of such move m∗; the argument then loops
back with the new reference frame Rm∗

and updated belief
q ← ψm,∗q|yom .


