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Abstract 20 

Alzheimer’s disease (AD) is a neurodegenerative disorder with neuronal and synaptic losses due to the accumulation 21 

of toxic amyloid  () peptide oligomers, plaques, and tangles containing tau (tubulin-associated unit) protein. While 22 

familial AD is caused by specific mutations, the sporadic disease is more common and appears to result from a complex 23 

chronic brain neuroinflammation with mitochondriopathies, inducing free radicals’ accumulation. In aged brain, 24 

mutations in DNA and several unfolded proteins participate in a chronic amyloidosis response with a toxic effect on 25 

myelin sheath and axons, leading to cognitive deficits and dementia.  peptides are the most frequent form of toxic 26 

amyloid oligomers. Accumulations of misfolded proteins during several years alters different metabolic mechanisms, 27 

induce chronic inflammatory and immune responses with toxic consequences on neuronal cells. Myelin composition 28 

and architecture may appear to be an early target for the toxic activity of A peptides and others hydrophobic misfolded 29 

proteins. In this work, we describe the possible role of early myelin alterations in the genesis of neuronal alterations 30 

and the onset of symptomatology. We propose that some pathophysiological and clinical forms of the disease may 31 

arise from structural and metabolic disorders in the processes of myelination/demyelination of brain regions where the 32 

accumulation of non-functional toxic proteins is important. In these forms, the primacy of the deleterious role of 33 

amyloid peptides would be a matter of questioning and the initiating role of neuropathology would be primarily the 34 

fact of dysmyelination. 35 

 36 

Keywords: myelin, early biomarker, Alzheimer’s disease, oligodendrocytes, Aβ peptides  37 

Introduction 38 

Sporadic AD typically occurs after the age of 65 and is the most common cause of dementia in older people. We 39 

consider here the disease under its main pathophysiological definition that classically consists of extracellular amyloid 40 

plaques and intracellular neurofibrillary tangles [70, 71]. These abnormalities lead to a cascade of events eventually 41 

conducting to cognitive disorders and dementia. There are, however, a significant number of diverse clinical 42 

presentations with ages of onset and evolution in the disease that suggest non-univocal pathophysiological mechanisms 43 

[61]. It seems that some cases of sporadic AD involve changes in the constitution and architecture of myelin, and this 44 

early in the life of the future patient. In general, extracellular abnormalities of the amyloid cascade predominate, 45 

followed most often by other Tau mediated biological mechanisms at the intracellular level, accompanied by 46 

inflammatory, neuroimmune and neurochemical disorders that can put dysmyelination at the forefront of 47 

neurodegenerative disorders. 48 

Myelin consists of a multilayered membrane wrapped around the axons of most central nervous system (CNS) neurons. 49 

This membrane is produced by expansions of specialized glial cells of the brain, “the mature oligodendrocytes”, 50 

derived from oligodendrocytes progenitor cells (OPCs) [22]. This cell line constitutes the precursor cells for the 51 

constitution of the myelin sheath through a well-defined program of proliferation, migration, and differentiation to lead 52 

to the myelination of neuronal axons [101]. Among the properties of myelin, the best known is the saltatory conduction 53 

of nerve impulses, which gives it more speed and efficiency. Furthermore, it is now well acknowledged that 54 
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oligodendrocytes’ expansions display a trophic, plastic, and metabolic influence on the axons they envelop (Fig.1)   55 

[131, 139]. Myelin is constantly reshaping and its alteration in degenerative phenomena such as Alzheimer's disease 56 

(AD) may be a fundamental element for the genesis of pathophysiological and clinical disorders observed in the early 57 

stages of the disease [21]. 58 

AD involves progressive neurodegeneration with neuronal losses leading to cognitive, memory, emotional, behavioral 59 

disorders, and a progressive dependence [210]. Long considered to primarily affect the grey matter, many studies have 60 

described early lesions of the white matter in patients with nascent and moderate intensity [55]. The main molecular 61 

alterations of the disease are considered to contain essentially a pathology of the production/degradation and an intra-62 

brain accumulation of amyloid  (A) peptides producing deposits in the form of hydrophobic plates of aggregated 63 

toxic peptides (senile plaques) [70, 160]. Another proteinopathy usually accompanies the previous protein in the form 64 

of hyperphosphorylated tau proteins and deposits of neurofibrillary tangles. These toxic proteins maintain chronic 65 

inflammation and oxidative stress accompanied by neuronal and synaptic losses at the origin of the symptomatology 66 

Fig.1 Oligodendrocytes are derived from the differentiation of oligodendrocyte precursor cells (OPCs) and are the main cell 

for remyelination (modified from [176]). The differentiated oligodendrocytes of OPCs migrate to different axons via positive 

chemotactism [216]. A variety of growth and trophic factors regulate the development of oligodendrocytes and their temporal and 

geographical attractions [17]. Many of these factors are produced by both neurons and astrocytes, regulating the proliferation, 

survival, or degeneration of OPCs. The neuroregulin, which activates Erb-tyrosines kinases receptors, promotes the survival and 

proliferation of oligodendrocytes. The activation of the Notch 1 cascade inhibits the differentiation of oligodendrocytes, and an 

integrin/contactin complex coordinates signals from the extracellular matrix and the axonal surface to regulate oligodendrocyte 

survival and myelination. This also depends closely on the electrical activity propagated in the axons. OPCs express functional 

adenosine receptors, activated by action potential [150, 184]. Adenosine acts as a powerful transmitter between glia and neurons 

to inhibit the proliferation of OPCs, stimulate their differentiation and stimulate myelin production. The LIF (leukemia inhibitory 

factor) is heavily involved in oligodendrocyte development kinetics and in the overall myelination process [134, 198]. 

Abbreviations: CNTF, ciliary neurotrophic factor; FGF, fibroblast growth factor; IGF, insulin-like growth factor; LIF, leukemia 

inhibitory factor; NCAM, neural cell adhesion molecule; NT-3, neurotrophin 3; OPCs, oligodendrocyte precursor cells; PDGF-

A, platelet-derived growth factor-A. 
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[31]. This paper reviews the fundamental importance of myelin and correct CNS myelination for its development, 67 

functional adaptations, and permanent reshuffling. During aging in the human patient, sporadic AD has plurifocal 68 

impairments that induces various clinical presentations depending on the intensity of inflammatory and immune 69 

reactions, and ischemic, mitochondrial, and free radical disorders. In many cases, the hypothesis of an alteration of the 70 

amyloid cascade A as a primitive mechanistic etiology is questionable and multiple proteinopathies can be implicated, 71 

which depend on somatic mosaicism, transcriptional and translational alterations. In many cases, myelin and its 72 

integrity appear to be a preferential and early target in multiple forms of AD, and oligodendrocytes represent a cell 73 

population highly sensitive to A and other proteinopathies. These misfolded proteins result in multiple dysmetabolism 74 

that accentuate and modify the course and clinical forms of the disease. 75 

Multiple causes, multiple targets  76 

AD as an heterogeneous disease 77 

The amyloid hypothesis as the essential cause of neuronal loss and brain atrophy is a matter of discussion mainly 78 

because removal or reduction of amyloid plaques by immunological treatments display no significant effect on clinical 79 

symptoms of AD [37, 140]. However, before aggregation, the soluble oligomeric forms of Aβ peptides possess strong 80 

toxic properties against myelin integrity and neuronal survival [161, 189]. White matter lesions are commonly found 81 

in magnetic resonance imaging (MRI) scans of elderly people and are associated with cognitive decline [129]. Whether 82 

or not a primary role of Aβ peptides is fundamental in these lesions is a matter of debate. 83 

Increase in the concentration of Aβ peptides in brain has also been described because of head trauma or cerebral 84 

ischemia [179, 220]. This increase in the concentration of Aβ peptides is additional evidence for the existence of 85 

various forms of Alzheimer’s like diseases with various clinical pictures and various mechanisms of neurodegenerative 86 

processes in term of pathophysiological evolution and biological markers [41, 212]. In addition to Aβ peptides 87 

accumulation and toxicity, hyperphosphorylation of tau proteins, which disturbs microtubules assembly and axonal 88 

transport, could have some impact on the trophic effect on the myelin envelop [209]. These basic alterations are also 89 

supplemented with several others biological modifications of many molecular pathways and functions namely in the 90 

domain of energy metabolism and cholesterol transports [19]. Cholesterol is fundamental for oligodendrocytes survival 91 

and for synthetis of myelin, this compounds represent a large proportion of the human brain and abnormalities in 92 

cholesterol metabolism are present and associated with brain age and in Alzheimer's disease [12, 106]. Regarding 93 

cholesterol delivery to axons and synapses, the ε4 allele of the apolipoprotein E (APOE) gene is the less effective factor 94 

for cholesterol transport compared to ε3 and ε2. Interestingly, normal adults at the cognitive level show microstructural 95 

changes in myelin architecture when carrying homozygous alleles 4 that is a major marker for late AD [129, 146, 96 

147]. 97 

Sporadic AD is a multifactorial disease  98 

While familial AD has essentially genetic causes expressed in amyloid precursor protein (APP) and presenilin leading 99 

early in life to specific proteinopathies and inducing neurodegenerative pathologies [64], these mechanisms are less 100 

consistent in the sporadic AD of elderly subjects. In these patients displaying accumulations of cerebral amyloid 101 
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peptides, the question arises as to whether this accumulation is the cause or the consequence of other factors inducing 102 

neurodegeneration. Over the years, many mutations are present in brain neurons, generating multiple proteinopathies 103 

after transcriptional, translational, or post-translational errors. Some of these are of exogenous origin and enter the 104 

CNS due to the pathological porosity of the blood-brain barrier (BBB). The accumulation of these abnormal proteins 105 

generates inflammatory and immune responses that lasts for many years. Such accumulation is increased by 106 

mitochondriopathies, and the genesis of free radicals related to the disruption of oxidative phosphorylation and the 107 

depreciation of energy metabolism. The most deleterious and widespread proteinopathy is that affecting the regulated 108 

proteolysis of the APP, giving rise to toxic peptides interfering with many neuronal functions and leading to synaptic 109 

and neuronal losses, as well as inducing profound cognitive and behavioral functional abnormalities. These peptides 110 

exhibit amyloid properties and accumulate over time into hydrophobic plaques, which can be detected by PET scan 111 

ligands or post-mortem histology. 112 

Accumulating evidence supports a multi-factor for the origin of many forms of sporadic AD. Multi-organ alterations 113 

could initiate or worsen neurodegeneration [8, 194, 208]. Developing heart failure promoting hypoxia, intestinal and 114 

hepatic disorders altering brain metabolism through the microbiome, ischemic symptoms due to vascular deposits and 115 

chronic inflammation, could also contribute to the decrease in neuronal survival [115, 197]. 116 

Metabolic disorders and AD 117 

Many metabolic alterations have often been encountered in AD with varying severities. Most of these alterations 118 

concern or affect brain energy metabolism, these phenomena being aggravated by cerebral hypoperfusion and blood 119 

sugar abnormalities [10]. Carbohydrate metabolism and dysfunctions in intestinal absorption phenomena, nutritional 120 

abnormalities and deficiencies, resistance to glucose utilization via decreased insulin sensitivities combined with fatty 121 

acid metabolism disorders, induce energy deficiencies deleterious to neuronal functioning and survival [86]. The 122 

slowing down of the tricarboxylic cycle generates the accumulation of acetyl-CoA coming from the increased fatty 123 

acids degradation and the synthesis of ketone bodies that could have a positive role on neuronal survival. White matter 124 

degeneration in AD could be in part due to the accelerated degradation of lipids in this context of decreased energetic 125 

metabolism coming from reduced glucose utilization (Fig.2) [142, 206]. 126 

At the hepatic level, functional alterations (cirrhosis, hepatitis) could aggravate the elimination of deleterious proteins 127 

including Aβ [203]. Modifications of bile acids synthesized by the altered liver tissue exhibit impaired neuroprotective 128 

functions. Frequently, the accumulation of mutations in the mitochondrial genome accelerates pathological phenomena 129 

at the level of the tricarboxylic cycle or the respiratory chain and increase ROS production [74]. Metabolic disorders 130 

of the periphery of the body often affect brain metabolism via abnormal permeability of BBB and the presence of 131 

abnormal metabolites in the cerebrospinal fluid (CSF). This mainly concerns certain intermediates of amino acids 132 

metabolism, particularly regarding the catabolites of tryptophan degradation [171]. This essential amino acid is the 133 

precursor not only of melatonin and serotonin, but also of the intermediates of the kynurenine cycle, some of which 134 

possess neuroprotective or neurotoxic properties or interfere with the elimination of amyloid peptides from the brain 135 

[117]. 136 

 137 
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Myelin has morphological alterations in the early stages of AD 138 

Change of the lipid composition of myelin over time [128] 139 

Oligodendrocytes-derived myelin accounts for about 40% of CNS lipids, consisting of 50% phospholipids, 40% 140 

glycolipids, 10% cholesterol and cholesterol esters, and polyunsaturated long-chain fatty acids (Fig.3) [84] .  141 

Synthesized by oligodendrocytes, cholesterol comes almost exclusively from ketone bodies as precursors. This lipid 142 

has structural functions at the level of the myelin by regulating the fluidity and permeability of this membrane around 143 

the axons, and it regulates the speed of myelination according to its uptake by the membrane in formation. The typical 144 

lipids of myelin are essentially galactosyl ceramides and sulfatides. They stabilize and organize myelin in direct 145 

association with the basic protein. 146 

Changes in the configuration of myelin are observed with age but are more accentuated in AD. Not all regions of the 147 

brain are affected in the same way. In general, the volume of white matter decreases over time and the phenomena of 148 

demyelination/remyelination accentuated by pathology leads to the decrease in the size of axons and the reduction in 149 

the size of the internodal distances. These structural changes induce functional consequences for conduction rates and 150 

Fig.2 Dysregulation in multiple biochemical pathways underlie the pathogenesis of AD. Metabolomic approaches conducted 

from the blood or CSF of AD patients compared to controls highlighted abnormalities in the energy metabolism of patients. A 

diabetic-type pathology is often evoked with a decrease in insulin sensitivity. In addition to disorders in glycolysis and the 

respiratory chain, abnormalities involving accumulations of ketone bodies resulting from the metabolism of acetyl-CoA residues, 

a product of the accelerated degradation of fatty acids by β-oxidation, have been described. The bioavailability and metabolism of 

several amino acids could also be affected, especially concerning tryptophan degraded in the kynurenine cycle and resulting in the 

formation of neuroprotective (kynurenic acid) or neurotoxic (quinolinic acid) compounds. Abbreviations: AD, Alzheimer's disease; 

CSF, cerebrospinal fluid; NADH, nicotinamide-adenine-dinucleotide; ROS, reactive oxygen species; TCA, tricarboxylic acid; 

βOHD, beta-hydroxybutyrate. 
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vulnerability to traumatic, ischemic, dysmetabolic conditions and toxic factors such as oligomers A peptides. These 151 

processes are commonly encountered as factors favoring Alzheimer's genesis and pathology. 152 

A step for the conversion of mild cognitive impairment (MCI) into dementia? 153 

Studies of myelin sheath’s conformation in AD were mostly conducted by electron microscopy and MRI both in 154 

animals and humans. The 5XFAD mouse is a transgenic model that expresses three different mutations in the APP and 155 

two in presinilin 1 (PS1). In this mouse, amyloid deposits can be detected with synaptic losses at an age as early as 156 

1.5 months [143] and myelin abnormalities can be seen even earlier accompanying the first alterations in spatial 157 

memory occurring around the age of 1 month [68]. Several studies conducted in humans suggest that myelin disorders 158 

strongly contribute to the onset of AD symptoms. Neuroimaging shows myelination defects in several brain regions, 159 

but especially and firstly in the hippocampus and corpus callosum [55, 138, 148, 201]. Conformation abnormalities 160 

accompanied by thinning of the myelin sheath are frequently encountered even before the onset of axonal lesions, 161 

which may indicate premises for demyelination. In the pre-clinical stages of the disease, MRI shows altered 162 

longitudinal and transverse relaxation times and increased myelin hydration degrees [18]. In general, abnormalities in 163 

the structure and formation of the cerebral white matter have been identified in many presentations of Alzheimer's 164 

disease that can be warning signs for a disease in progress [157]. Variations in T1w/T2w ratios in patients with risk 165 

factors (close family history, APOE4 phenotypes) were identified compared to control individuals. In addition, 166 

individuals at risk had an association with altered patterns of resting-state functional connectivity (rs-FC) [53]. These 167 

abnormalities support the idea of significant alterations in myelin developing with age and constituting signals of 168 

vulnerability [52]. Interestingly, some studies have shown a relationship between structural abnormalities of myelin in 169 

ADs in the pre-clinical period and peptide concentrations of Aβ1-42 in patients' CSF [34, 36].  170 

Fig.3 Myelin composition and organization. The myelin wrapping around most of the CNS axons includes a large majority of 

complex lipids and 15-30% of specific proteins. Lipids are essentially made up of cholesterol, galactocerebrosides and 

phospholipids. This envelope is constantly reshuffled in time and space from the oligodendrocytes that make up the bulk of the glial 

cells of the CNS. Chronic inflammatory and autoimmune reactions, mutations in certain constituent proteins, attacks by free 

radicals or ischemic, and metabolic problems related to aging alter the myelin sheath that releases its constituents into the CSF 

and the bloodstream. In AD, myelin is one of the first bulwarks for the anatomical and functional integrity of the axons it surrounds 

and undergoes early toxic action of misfolded extracellular toxic proteins or peptides. Abbreviations: AD, Alzheimer’ disease; 

CNP, C-type natriuretic peptide; CNS, central nervous system; CSF, cerebrospinal fluid; MAG, myelin-associated glycoprotein; 

MBP, myelin basic protein; MOG, myelin oligodendrocyte glycoprotein; PLP, proteolipid protein. 
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Studies of cortical stratification in the human brain provide important knowledge on the level of degeneration, in 171 

addition to the information given by the level of volumetric atrophy [148, 156]. MRI studies show hyper-densities in 172 

the white matter with volume increase consistent with the abnormalities of amyloid peptides and tau proteins in CSF. 173 

At the histological level, it appears that these stratification disorders are mainly due to alterations in myelin architecture 174 

in which iron ions could play an important role [43]. Vascularization and oxygen supply in injured hyper-dense regions 175 

are decreased and are related to axonal lesions and inflammatory disorders, BBB permeability abnormalities and 176 

multiple disseminated micro-hemorrhagic structures [89, 103]. 177 

Potential involvements of epigenetic mechanisms in myelin reshuffle  178 

GWAS (genome-wide association study) has identified about 40 loci associated with AD in the European population 179 

and in these respective loci, several genes involved directly in the causative mechanism of the disease have been 180 

described (APOE, CR1, BIN1, TREM2, CLU SORL1, ADAM10, ABCA7, CD33, SP11, PIRLA). It remains to identify 181 

the functions of many genes in the identified loci. Many risk genes are involved in the innate immune response and 182 

neuroinflammation. The CD33 and TREM2 microglia receptors, implicated in microglial pathology, represent new 183 

targets for the development of therapeutic tools. It is possible in many cases that the activation of innate immunity, 184 

like that encountered in other myelin pathologies, associated with long-term inflammatory mechanisms, is responsible 185 

for subtle alterations of myelin during the incubation period of the disease [5, 66]. 186 

Over 20 AD risk loci falling mainly in noncoding regions of the genome have been identified by genome-wide 187 

association studies, explaining the complexity of the disease at the genetic level [82, 99, 127]. The regulation of gene 188 

expression by microRNA is a promising issue for the diagnostic and treatment of several kind of MCI and AD at the 189 

beginning of the symptoms, as well as to discriminate with other myelin pathologies like multiple sclerosis [104, 226]. 190 

In such diseases, the dynamics of the myelination/demyelination/remyelination balance is continuously evolving under 191 

normal conditions of plasticity of the nervous system, but also under pathological conditions, where this balance is 192 

affected [46]. In this respect, the process of myelin degeneration are particularly concerned both in multiple sclerosis 193 

and in the early phases of AD. Oligodendrocytes and their progenitors are directly involved in membrane and metabolic 194 

interactions with neurons during the different phases of destruction and regeneration of the myelin sheath, driven by 195 

the dynamic and fluctuating expression of many transcription factors [180]. The activity of the nervous system is 196 

intimately linked to the epigenetic regulation of the activity of these factors and to the neo-expression of certain genes 197 

involved in the functional dynamics of the production/destruction of myelin [159]. Correct myelination is essential for 198 

the proper development and evolution of neuronal connections and the adaptation of brain function to the environment. 199 

It constantly reshapes neuron/oligodendrocytes interactions following many factors such as learning, social 200 

relationships, emotional stimuli (emotions, anxiety) [167, 217]. These stimuli can induce epigenetic modifications that 201 

alter the physiology and functionality of precursors and oligodendrocytes [166]. 202 

Changes in the epigenome have a role in the manifestations of AD [13]. Social isolation impacts the intensity of 203 

neuronal activity and reduces the importance of myelination [6, 139]. Modifications in the acetylation and methylation 204 

of histones were detected, as well as in DNA [132]. These adaptations participate in the regulation of genes involved 205 

in the processes of myelination/demyelination and in the pathophysiology of certain neurodegenerative diseases where 206 
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these processes play a central role (AD, but also multiple sclerosis) [30]. This last pathology of myelin includes 207 

analogies with those existing in some phenotypic form of AD and may be the consequence of a combined alteration 208 

of genetic and epigenetic factors, the latter involving DNA methylations, histone modifications, chromatin remodeling 209 

and modified regulation of non-coding RNA [16]. 210 

Brain markers of myelin in Alzheimer’s patients 211 

Looking for myelin components in biological fluids 212 

At the genetic markers level, several genes associated with the corpus of the oligodendrocyte ecosystem have been 213 

described as risk factors in late-onset AD [125]. In genomic association studies, the BIN1 (bridging integrator 1) gene 214 

is considered to be significantly involved in late AD behind the APOE gene [169]. It is mainly expressed in mature 215 

oligodendrocytes and white matter in rodents and humans, where it regulates membrane dynamics in the phenomena 216 

of endocytosis and membrane remodeling [35]. Histologically, BIN1 is mostly expressed at the Ranvier nodes. 217 

BACE1 (beta-site amyloid precursor protein cleaving enzyme 1) codes for a transmembranesecretase expressed in 218 

several cell types including oligodendrocytes. It cleaves APP giving birth to amyloid peptides, but also neuroregulin 1, 219 

which modulates the myelination and differentiation of oligodendrocytes [49, 195]. Many -secretase inhibitors have 220 

effects on myelin abnormalities caused by AD. Finally, several other genes that are also expressed in oligodendrocytes 221 

(PICALM, NME8, PSEN, for example) possess a special responsibility as genetic factors associated with the 222 

development of AD [124]. 223 

LINGO 1 (leucine rich repeat and Immunoglobulin-like domain-containing protein 1) codes for a transmembrane 224 

protein primarily expressed in the cortex, hippocampus, thalamus, and amygdala. The protein acts primarily as a 225 

negative regulator of myelination and its inhibition may have potential applications for the treatment of myelin damage 226 

in neurodegenerative diseases [202]. As such, anti-LINGO 1 antibodies promote the action of oligodendrocytes and 227 

the repair of myelin disease [211]. 228 

The biochemical markers of the white matter indicating the evolution of late AD are of many natures and depend on 229 

the stage of the disease. Since myelin is mainly composed of complex lipids synthesized by oligodendrocytes, reduced 230 

levels of galactosyl ceramide (cerebroside) and sulfatide can be found in both the grey and white matters of AD brains 231 

[90]. These compounds are the most specific lipids of myelin, decreasing in parallel with the severity of the disease 232 

and altering long before fibrillary deposits of tau protein [28, 88]. Cholesterol concentrations, another majority lipid 233 

compound of myelin sheaths, is known to decrease with the onset of cerebral atrophy [42]. 234 

Myelin proteins are also involved in relatively early stages of the disease (Braak stage I and II), in which alterations 235 

of oligodendrocytes and myelin are noted even before the onset of clinically detectable cognitive disorders [55]. The 236 

level of most myelin proteins is likewise decreased in more advanced stages of AD (Braak stages V and VI). Lowered 237 

concentrations of basic myelin protein (MBP), proteolipid (PLP) and 2'-3' cyclic nucleotide phosphodiesterase 238 

(CNPase) are observed, specifically in several regions of the cerebral cortex.  239 

In the field of protein markers present in patients' CSF, there is a wide heterogeneity and variability, which confirm 240 

the impression that sporadic AD may be the consequence of multiple and varied alterations in many metabolic circuits. 241 
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This reinforces the idea that the pathophysiological mechanisms leading to late AD are multifactorial and reveal a 242 

disease of great complexity [205]. Many cognitive pathologies with MCI are often accompanied in a non-specific way 243 

by the presence of inflammatory markers and proteins associated with the complement cascade in the CSF or blood of 244 

patients. 245 

Oligodendrocyte’s dysfunction: A major risk factor in AD and a process in the onset of the 246 

disease? 247 

Before the appearance of amyloid and tau pathology, many forms of AD showed a breakdown of myelin due to the 248 

vulnerability of oligodendrocytes under this neurodegenerative pathology. In many cases, the loss of myelin sheaths 249 

appears to be the initiating step in the earliest stages of the disease. Extensive evidence has indicated that the breakdown 250 

of myelin is associated with AD since the vulnerability of oligodendrocytes under Alzheimer's pathology easily induces 251 

the myelin breakdown and the loss of the myelin sheath. 252 

Aging itself is already an important factor of myelin alterations and multiple cellular partners are involved in this 253 

process. Brain MRI often reveals signs including several hyper signal outbreaks in T2-weighted images (T2WI) with 254 

chronic cerebral hypoperfusion often associated with carotid stenosis [113]. These alterations appear more massive at 255 

the stage of MCI both in animal models and in human pathology than in established AD. In myelin abnormalities, 256 

association of oligodendrocytes’ losses with axonal alterations are commonly encountered in post-mortem patients 257 

[138]. The accumulation of Aβ peptides is considered a princeps factor in the neurodegenerative process even before 258 

the appearance of aggregates in the form of amyloid plaques [23, 76]. The response of oligodendrocytes to the presence 259 

of amyloid peptides or plaques has been the subject of several studies. During aging, the spontaneous involution of 260 

these cells is important, and their disappearance is close to 25 % from the age of 50 years, this phenomenon being 261 

potentiated by the presence of the APOE ε4 allele in the genomic baggage of the individual [108, 133, 135]. 262 

Furthermore, the importance of increase in the expression of myelinating genes in oligodendrocytes from Alzheimer's 263 

patients is related to the severity of the disease [65, 80]. In transgenic animals over-expressing the APP, the myelin 264 

sheath has an increased thickness and a modified architecture [54, 68, 214]. 265 

Originating mostly from the ventricular and subventricular regions of the brain, OPCs are present in the brain, even in 266 

the adult stage [62, 165, 188, 218]. OPCs control the angiogenesis of the white matter, its vascularization/oxygenation, 267 

and the myelination of axons according to spatial-temporal parameters, which contribute to their stability, functions, 268 

and integrity [97, 154]. Intimate exchanges between neurons regulate ionic homeostasis, making of real synaptic 269 

connections and activity of OPCs via numerous neurotransmitters [58, 69, 173]. These cells are also the target for 270 

several mitogens produced by neurons and trophic factors like neuroregulin 1 and brain-derived neurotrophic factors 271 

(BDNF), whose release depends on neuronal activity [78, 204]. Many studies have been conducted to explore early 272 

oligodendrocyte alterations in AD in association with changes in myelination and early symptoms of the disease. Most 273 

commonly, oligodendrocyte differentiation abnormalities are associated with disruption of oxidative stress phenomena 274 

associated with excitotoxicity, mediated by glutamatergic metabotropic receptors in large amounts in oligodendrocyte 275 

precursors [21, 138]. Other factors, such as high iron ion levels and disorders in the glutathione cycle, would accentuate 276 

the presence of free radicals, without forgetting the mitochondrial chain disorders induced by the toxicity of Aβ 277 
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peptides [191]. Mitochondria pathologies are at the forefront of axonal survival for functional and metabolic exchanges 278 

with the myelin envelope [67, 219]. 279 

Myelination is directly related to the intensity of neural activity, which affects the electrical properties of axons. The 280 

toxicity of Aβ peptides proteinopathy affects immediately the whole myelin-axon, which forms a couple with multiple 281 

functional and metabolic relationships [182]. 282 

The toxicity of proteinopathies, which causes degenerations in AD, mainly concerns oligomeric Aβ peptides and 283 

hyperphosphorylated tau proteins [2, 39, 84]. Senile plaques are rarely seen in the hydrophobic white matter and does 284 

not lend itself to the aggregation of toxic oligomers. As a result, it is mainly these latter that exert toxicity on myelin. 285 

The therapeutic strategies currently developed for plaque removal seem not to display huge impact on clinical 286 

symptomatology [196]. In fact, the degree to which the therapeutic strategies for plaque removal have clinical effects 287 

remains an open question, as the reason why such therapies are not working well. For more than twenty years, 288 

therapeutic research against AD has focused on reducing the accumulation of pathological amyloid peptides and the 289 

substances studied have made it possible to achieve this goal without significant improvement in cognitive impairment 290 

in patients. The amyloid hypothesis revised in many cases is questioned, sometimes in favor of primitive alterations 291 

of the myelin envelope [61]. Oligodendrocytes are very active cells from a metabolic point of view, especially during 292 

the process of myelination or remyelination. A cellular respiratory abnormality that may be related to hypo-293 

vascularization or ischemia may be the source of a myelination disorder [138]. Vascular pathologies affecting the white 294 

matter are common in the elderly or with symptomatologically occurring early AD [79, 109]. The human brain is 295 

largely myelinated, which may partly explain its vulnerability to neurodegeneration [193]. 296 

Oligodendrocytes are widely represented in many areas of the human CNS, especially in the neocortex, where they 297 

account for about 75% of glial cells [44]. They are considered very fragile, and their density decreases sharply in the 298 

brain of the elderly person from 50 years of age [223]. Various methods of labeling these cells have shown a severe 299 

loss of oligodendrocytes in several regions of the hippocampus, not correlated with the density of amyloid  deposits 300 

[38]. These specific depopulations probably precede the disorganization of the neural connectome that precedes the 301 

appearance of AD, and a contemporary demyelination around the outbreaks of amyloid peptide deposits [95]. These 302 

dysfunctions are strongly associated with abnormalities in lipoprotein metabolism given that the amyloid  303 

oligodendrocytes actively participate in the synthesis of cholesterol constituting synaptic contacts [121]. They secrete  304 

apolipoproteins E and J, which are severe risk factors depending on the alleles involved in the onset of AD [86]. 305 

Interestingly,  the production of new oligodendrocytes seems fundamental for motor learning in mice [112]. 306 

During the development of AD, including in the early stages characterized by mild, worsening memory disorders 307 

(MCI), numerous studies have been performed to characterize the changes observable by MRI techniques in the 308 

structure and architecture of myelin. Schematically, the results obtained showed very early the existence of a reduction 309 

in cerebral myelin levels, with losses of oligodendrocytes and axons, microglial activations accompanied by dilated 310 

perivascular regions in the white matter. These studies are essentially based on the contrasts between the aqueous 311 

contents of the intra- and extra-cellular spaces at the periventricular level, comparing MCI patients and control persons. 312 

It seems that progressive ischemia with vascular and energy losses associated with the toxicity of certain 313 



12 

 

proteinopathies (especially amyloidosis A) alters the myelin structure very early and hinders proliferation and 314 

oligodendrocytic re-myelination [89, 138, 149]. 315 

Adaptative immunity to myelin components in AD 316 

An auto-immune process for degeneration? 317 

Many results support the existence of mutual interactions between immune processes (innate and acquired) and 318 

neurodegenerative events, especially those occurring during the incubation of AD [33, 51, 145].  319 

Neuroinflammation phenomena are considered to pre-exist for a very long time in the brain before the onset of cellular 320 

stigmas of neurodegeneration and clinical symptomatology. Chronic inflammation, microglia activation and 321 

lymphocytic infiltration are thought to be the result of intracerebral accumulation of misfolded proteins and/or multiple 322 

exogenous attacks of various infectious agents during the individual's lifetime [40]. Amyloid peptides and 323 

hyperphosphorylated tau are particularly involved in the inflammatory reaction and progressive onset of autoimmunity 324 

[207]. Changes in circulating cytokines as well as disorders in the cascades of the complement and clotting factors 325 

testify to changes in the immune response at the periphery [144]. Cleavage fragments of abnormal proteins, numerous 326 

glycated proteins and a large population of phosphoproteins contribute to microglial activation in the brain and 327 

alteration of many resident proteins [24]. This include myelin constituent proteins that are presented as new antigens 328 

to the immune system. Studies have shown significant accumulation of autoantibodies in the serum of patients with 329 

AD, especially directed against myelin proteins [63, 116]. IgG and IgM immunoglobulins directed against the MOG, 330 

MBP, MAG and PLP proteins are frequently present in the CSF and circulating blood [153]. This strongly suggests 331 

the involvement of the immune system in myelin alterations observed in many AD patients and in some animal models 332 

of the disease.  333 

Since the discovery of mutations in APP, PSEN1 and PSEN2 genes, which induce familial ADs, the hypothesis of the 334 

amyloid cascade at the origin of the pathophysiology of AD remains the preferred mechanism of this type of 335 

neurodegeneration [137]. The problem is that sporadic AD does not usually present this type of mutation, although 336 

similar pathologies of Aβ peptides and tau proteins are encountered in familial and late forms of the disease [107]. The 337 

main hypothesis remains those long-term abnormalities in Aβ peptide metabolism are the starting point of tau 338 

dysfunction and a series of toxic phenomena inducing neuronal and cognitive losses. It appears that during aging, 339 

multiple mutations accumulate in the nuclear and mitochondrial DNA of neural cells that add up to the increased loss 340 

of editing and quality control of translated proteins [77, 111]. It is estimated that in the normal individual, about 20% 341 

of the proteins synthesized by ribosomes have structural and folding abnormalities and must be eliminated by the 342 

proteasome, lysosome, or resident proteases of the cell membrane [98, 158, 181]. Overloading these mechanisms leads 343 

to chronic neuroinflammation, microglial and macrophagic activation, and immune responses against abnormal non-344 

functional proteins over the long-term [123]. Among the oligomeric peptides that accumulate in the brain and display 345 

significant cellular toxicity are Aβ peptides and particularly the peptide Aβ1-42. This accumulation most often comes 346 

from a drop in the clearance to the vascular compartment and the CSF. 347 

The rupture of the myelin envelope appears to be an early phenomenon in the pathophysiology of AD [36, 151, 201]. 348 

In humans, the vulnerability of myelin materializes on MRI through morphological changes, thinning and hydration 349 
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swelling [48, 228]. At the same time, there are elevations of tau, phosphotau, soluble APPβ (sAPPβ) peptides and Aβ1-350 

42 peptides. The latter peptide has a high toxicity to myelin in oligodendrocyte cultures and in animal models of 351 

familial AD (e.g. 5XFAD mice), where morphological alterations of myelin are the first pathological stigmas to appear 352 

in animals at 1 month of age [68]. The mechanisms of toxicity of peptides Aβ are still the subject of speculation; it 353 

seems that the oligomeric Aβ peptides are the main culprits of this toxicity [76]. Several cellular receptors (glutamates, 354 

ephrin’s, adrenergic, cholinergic, and immunoglobulins) bind oligomeric Aβ peptides and could mediate the toxicity 355 

of amyloid oligomers during the years of incubation of the disease [172, 215]. 356 

Multi-proteinopathies are associated with aging brains 357 

During lifetime, mutations accumulate in the post-mitotic cells of neurons due to non-replication of DNA, but also 358 

within mitochondrial DNA [87, 96]. This results in harmful mitochondriopathies for neuronal survival, as well as 359 

increased production of misfolded and non-functional proteins. Deficiencies in quality control and protein structure 360 

editing also contribute to the intra-brain accumulation of protease-resistant hydrophobic deposits with intrinsic toxicity 361 

[1, 152]. These chronic accumulations lead to long-term inflammatory and phagocytic reactions, as well as immune 362 

responses accompanied by infiltration of immunocompetent cells. Gradually, an amyloid reaction develops, in which 363 

peptides Aβ participates largely because of their cerebral accumulation. The elimination of these peptides from the 364 

brain is largely conditioned by the effectiveness of the enzymes that degrade them and allow their clearance [222]. The 365 

peptide Aβ1-42 is particularly toxic to myelin sheaths, axonal and synaptic endings that finally degenerate [76, 138]. 366 

In several transgenic models of familial forms of Alzheimer's, the first stigmas of the disease result in morphological 367 

abnormalities of myelin sheaths, in the form of edema and thinning of the envelope surrounding myelinated axons. At 368 

the same time, disturbances in animal behavior appear manifesting as reduced anxiety manifestations and reduction of 369 

memory and spatial recognition [56, 57].  370 

Depending on the individual, brain aging does not occur unequivocally but depends on multiple factors related to 371 

specific genes and environmental situations (Fig.4) [177]. The accumulation of mutations in the nuclear DNA of post-372 

mitotic cells and mitochondrial DNA induce deleterious mitochondriopathies [122, 187], promote the production of 373 

abnormal proteins, impair respiratory and energy functions, and amplify cellular and oxidative stress [92]. Toxicity of 374 

abnormal oligomers seems to be the result of their misfolded nature, which exposes hydrophobic residues leading to 375 

aggregation and abnormal interactions with a large range of cellular components [4]. Membranes like myelin 376 

constituted mainly by complex hydrophobic lipids could be an important target for amyloid oligomers for direct 377 

interactions andymes modifications inducing inflammatory and immune responses.  378 

Several evidence from studies of the population of abnormal proteins in the CSF showed that abnormal proteins in 379 

CSF represent a picture close to that of abnormal proteins in the brain [11]. This methodology can provide information 380 

on the biochemical and metabolic changes that occur in the CNS of patients with neurodegeneration. CSF amyloid 381 

peptides and tau proteins are used for the diagnosis and evolution of AD [155]. Aβ1-42 peptides correlation has been 382 

described with several CSF proteins belonging to the endocannabinoid and the somatostatin systems [72] with the 383 

latter regulating the proteolytic degradation of the amyloid peptide. The presence of other proteins has been linked to 384 

the degradation of the myelin [170].  385 
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The quality control processes of in vivo newly formed proteins and the elimination of abnormal proteins are phenomena 386 

with growing alterations with age [93, 141]. This results in the cellular and extra-cellular accumulation of an increasing 387 

number of non-functional proteins that tend to form hydrophobic aggregates [118]. At the brain level, these toxic 388 

aggregates induce significant cellular and functional losses that are the basis of many neurodegenerative diseases [14]. 389 

In addition to the amyloid peptides and tau protein that are the canonical proteins of early AD and whose toxic deposits 390 

in brain tissue are the basis of mechanistic theories of neurodegeneration, it has been shown that a wide range of protein 391 

aggregates from other sources exist in the brain of elderly patients displaying a cognitive impairment or at first stages 392 

of AD [163]. Among the proteins significantly altered compared to controls, many are found in the biochemical cascade 393 

of glycolysis that primarily feeds cellular energy and whose intensity decreases with age, even faster in patients with 394 

AD [136]. Other strategic proteins form larger insoluble aggregates depending on symptomatologic impairment. These 395 

include glucose 6 phosphate isomerase creatine kinase B, certain forms of adenylate cyclase and calcium/calmodulin 396 

protein kinase 2. This list is not exhaustive but reflects the importance of metabolic and functional disorders that 397 

develop over time in the brains of patients with mild cognitive impairments that worsen in AD [92].  398 

It could be speculated that the accumulation of misfolded proteins during old age in multiple regions of the brain alters 399 

mitochondrial and metabolic functions, saturates the processes of cleaning and elimination of senescent cells, and 400 

Fig.4 Multiple Alzheimer's disease etiologies and many cellular partners. Deleterious proteinopathies (in the first-place amyloid 

peptides) are to be integrated into the complex cellular environment of the brain. These multiple cellular elements participate in 

progressive multi-focal neuro-axonal degeneration leading to the irreversible symptomatology of AD. This is expressed when the 

toxic peptide removal systems are overwhelmed, which appears only after a long incubation period. Altered neurons express phases 

of hypo- and hyperexcitability with deficits in axonal transport and synaptic activity that affects myelination / remyelination activity 

and oligodendrocyte trophism. These are very vulnerable cells whose density decreases sharply with age. There seems to be a link 

between the intensity of neuronal involvement and the extent of demyelination. This is strongly accentuated in AD in which 

remyelination processes seem deficient. The activation of astrocytes participates in the elimination of deficient neurons and 

synapses. They actively participate in the elimination of abnormal proteins and inflammation processes, in the same way that the 

activation of microglia facilitates the phagocytosis of cellular debris. In the same way, these cells participate in the activation of 

the innate immune responses, the activation of the complement and the secretion of inflammatory cytokines. Abbreviations: AD, 

Alzheimer's disease; ROS, reactive oxygen species. 
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slows down the neurogenesis that persists in the older brain [20, 81]. Inflammatory vasculitis, hypoxia, and oxidative 401 

stress due to the accumulation of non-functional deleterious proteins are considered the primary factors in myelin 402 

envelope impairment. The decrease in electrical and metabolic activity of axons contributes to the decrease in myelin 403 

density that surrounds them leading to its gradual dislocation. The toxicity of Aβ peptides has been demonstrated in 404 

vitro against neurons, endothelial cells, astrocytes, vascular smooth muscle cells and oligodendrocytes [224]. Aβ 405 

peptides cytotoxicity might involve the susceptibility of oligodendrocytes to oxidative stress because of its low content 406 

of reduced glutathione and high concentration of iron [191]. The Aβ peptides activation of the neutral 407 

sphingomyelinase-ceramide pathway has been reported to induce oligodendrocyte death [102]. In addition, inhibition 408 

of neutral sphingomyelinase 2 in these cells reduces their ceramide content and favor the myelination process by 409 

improving the quality of myelin structure [221].  410 

Microbiome and myelin dysregulation in the neurodegenerative brain  411 

A role for the gut-brain axis and for hepatic metabolism 412 

Some arguments favor a view of AD as a disease that is not limited to the CNS alone but reflects multi-organ 413 

dysfunctions that contribute to or influence brain neurodegeneration [200]. Multiple proteinopathies, including the A 414 

cascade, may come from peripheral organs that no longer metabolize abnormal proteins properly and allow their 415 

dissemination through a permeable BBB. Abnormal communication between various compartments of amyloid 416 

proteins can contribute to altering brain disease. Chronic peripheral metabolic abnormalities are suspected to 417 

participate or to worse neurodegeneration. In this regard, intestinal metabolism is often questioned. 418 

The population of microorganisms of the gut microbiota constitutes a true symbiotic organ that has a great inter-419 

individual heterogeneity due to many intrinsic and extrinsic factors dependent on genetic, medication (e.g. antibiotics), 420 

physical and hormonal activity, and infectious factors [186]. The composition of the microbiome changes with age and 421 

the reactivity of the immune system [130]. An active exchange via the bloodstream and intestinal innervation between 422 

the microbiome and the nervous system exist, whose influence is important during the neurogenesis, the molecular 423 

organization of the connectome, and the variations of CNS myelination. These phenomena are especially different 424 

during periods of brain development or during aging [229]. 425 

In various transgenic models of familial AD, disturbances in the composition and diversity of the intestinal microbiome 426 

compared to healthy animals are observed [175]. In humans, it has also been described qualitative and quantitative 427 

changes in the population of intestinal bacteria in patients with cognitive disorders associated with cerebral amyloidosis 428 

[59, 119]. These disturbances can be the source of chronic neuroinflammation targeting several organs including the 429 

brain and a decrease in the immune response inducing neurodegeneration over the long term [27, 75]. These 430 

phenomena are increased by the leaky permeability of the BBB as a function of age, allowing the passage at the cerebral 431 

level of many toxics present at the periphery (Fig.5) [213].  432 
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The problems of pathological cerebral aging are probably the result either of the evolution of protein targets at the 433 

central level, or the modification of a peripheral immune response [60, 183], the two mechanisms can combine over 434 

time to lead to an autoimmune alteration colonizing the CNS and involving, in the first place, the components of 435 

myelin. Many environmental factors can promote this chronic process by perpetuating the homeostasis of the intestinal 436 

flora and at the origin of certain metabolic and cytotoxic disorders [15, 91]. This primarily affect oligodendrocytes, 437 

which are fragile cells of the CNS, and which adapt their functions throughout the life of the individual. Many factors 438 

contribute to the activity of oligodendrocytes, intrinsic and environmental factors that modify the status of the 439 

epigenome [166]. Among these factors, the composition and activity of the microbiome plays a reweighting role and 440 

interferes with the spatio-temporal character of myelination in the brain. In general, the relationships between the 441 

intestinal sphere and the brain are of primary importance for myelination. This sphere includes not only the intestinal 442 

epithelium, but also hepatic metabolism, sympathetic and parasympathetic nerve activity, endocrine, and cytokine 443 

secretions and metabolites of microbial origin [45]. The microbiota has an important role in the regulation of myelin 444 

plasticity as the existence of hyper-myelinated axons has been demonstrated in germ-free mice or treated chronically 445 

with antibiotics [73]. This abnormality could be a consequence of neuronal hyperactivity in certain regions of the brain 446 

of these mice, such as the amygdala or the prefrontal cortex. The development of myelinating oligodendrocytes is 447 

Fig.5 Multiple communication system that includes neural, immune, endocrine, and metabolic pathways lead to degeneration.  

Continuous fluctuation of the microbiota due to the environment constantly influences the inflammatory, immune, and metabolic 

responses of the CNS [110]. With age, the permeability of intestinal and BBB is often impaired [85, 162]. The gut microbiota 

metabolizes and release many growths, metabolic and inflammatory factors which could penetrate the brain via the circulating 

blood. These substances contribute to increase the inflammatory, immune, and oxidative phenomena that exist in the elderly brain 

due to the accumulation over time of many abnormal proteins due to their hydrophobic conformation. The very likely origin of 

these malformed proteins is found in the accumulation during senescence of many mutations in post-mitotic cells that are neurons 

[9, 77]. In addition, the role of epigenetic dysregulation of gene expression induced by aging or abnormal environmental 

stimulation is also considered to be an important factor in neurodegeneration and cognitive alterations [126]. Abbreviations: BBB, 

blood-brain barrier; CNS, central nervous system. 
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controlled by a set of transcription factors (Sox 10 and Myrf for example) that drive the steps of myelination and re-448 

myelination [7]. The anomalies of these phenomena alter certain brain functions, those concerning cognitive functions. 449 

Restoring a normal microbiome in germ-free mice greatly improves their social and executive performance [174, 190, 450 

192].  451 

It is now recognized that disorders intestinal physiology can influence the risk of Alzheimer’s and its rate of 452 

progression. Deposits of aggregate of Aβ peptides at the intestinal level have been detected in AD patients [75], but 453 

most of the results involving the intestinal sphere and the progression of AD have been obtained in animal models. 454 

The ratios between Firmicutes and Bacteroidetes are considered strategic in the composition of the human intestinal 455 

microbiota [168]. The fecal microbiota is the product of a very complex and diverse ecosystem, and its composition 456 

can modify the accumulation of intestinal APP in the early phases of AD [29, 120]. In transgenic  APP/PS1 animals, 457 

an increase in Aβ peptides levels have been observed in the CNS in relation to changes in the intestinal flora, 458 

accompanied by disorders of spatial memory [225]. Oligodendrocytes and myelin sheaths may be the first to be 459 

affected by these deleterious deposits. A parallel can be observed between the myelin alterations observed in AD and 460 

during normal aging in the elderly. In the latter case, the installation of progressive ischemia could be the cause of this 461 

demyelination [138, 178]. The lesions often appear disseminated with a predilection for intracortical axons of small 462 

diameters that are myelinated late during development. Myelin dystrophies lead to axonal alterations and neuronal 463 

death with different rate in individuals [164]. 464 

Conclusion and perspectives 465 

To conclude, myelin damage and its several possible outcomes (Table 1) is one of the early lesions observed in many 466 

clinical forms of AD. Even though many differences exist in the presentations and structural alterations between 467 

multiple sclerosis and AD, neurodegenerative alterations between both pathologies have common etiologies and 468 

mechanisms [114]: long-standing inflammatory disorders, some autoimmune reactions, cognitive impairments, and 469 

mitochondrial alterations [105, 185]. Amyloid disorders are not absent from the pathophysiology of multiple sclerosis 470 

and A peptides levels are generally lower in the CSF of patients with multiple sclerosis who have cognitive 471 

impairment [94]. The accumulation of APP in the brain of these patients appears parallel to the worsening of 472 

symptomatology and dynamic processes of demyelination/remyelination [25]. These parallels remain hypotheses at 473 

present, but there are indications that some mechanistic similarities exist. 474 

 Current mechanistic hypothesis favors long-term dysfunctions in the proteolysis of APP and in the accumulation of 475 

hydrophobic A peptides with multiple toxicities. These lead to inflammatory, oxidative, and immune reactions 476 

leading to massive cellular apoptosis accompanied by post-translational modifications on target proteins inducing 477 

profound functional alterations in brain cells activities. It seems possible that a multiplicity of mutations and epigenetic 478 

alterations of neuronal genomes, associated with intrinsic or extrinsic predisposing factors, generate metabolic and 479 

inflammatory alterations over the long term, inducing a multiplicity of phenotypic and clinical presentations involving 480 

secondarily multiple deleterious proteinopathies, including amyloidosis of Atypes. 481 

 482 

 483 
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Table 1. Examples of different outcomes of myelin damages. 484 

Myelin modifications References 

Demyelination (as evidenced, for example, by decreased myelin water fraction) [18, 47, 83, 95, 138, 178] 

Rupture of the myelin envelope [36, 151, 201] 

Myelin reshuffle [16, 46, 166, 180] 

Defect in myelin biosynthesis (loss of ceramide synthase 2 activity) [32] 

Down-regulation of myelination network [3] 

Morphological abnormalities of myelin sheaths, in the form of edema and thinning of the 

envelope surrounding myelinated axons 

[48, 138, 228] 

Myelin degeneration -> driving cognitive and motor impairment [26, 154] 

Changes of myelin organization (q-Space myelin map imaging) [149] 

Myelin instability [50, 199] 

Myelin damage in cortical gray matter (Western blot quantification of MBP and dMBP) [227] 

Decrease of myelin density (multi-echo T2 relaxation time technique) [100] 
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Figure legends  1136 

Fig.1: Oligodendrocytes are derived from the differentiation of oligodendrocyte precursor cells (OPCs) and are the 1137 

main cell for remyelination (modified from [176]). The differentiated oligodendrocytes of OPCs migrate to different 1138 

axons via positive chemotactism [216]. A variety of growth and trophic factors regulate the development of 1139 

oligodendrocytes and their temporal and geographical attractions [17]. Many of these factors are produced by both 1140 

neurons and astrocytes, regulating the proliferation, survival, or degeneration of OPCs. The neuroregulin, which 1141 

activates Erb-tyrosines kinases receptors, promotes the survival and proliferation of oligodendrocytes. The activation 1142 

of the Notch 1 cascade inhibits the differentiation of oligodendrocytes, and an integrin/contactin complex coordinates 1143 

signals from the extracellular matrix and the axonal surface to regulate oligodendrocyte survival and myelination. This 1144 

also depends closely on the electrical activity propagated in the axons. OPCs express functional adenosine receptors, 1145 

activated by action potential [150, 184]. Adenosine acts as a powerful transmitter between glia and neurons to inhibit 1146 

the proliferation of OPCs, stimulate their differentiation and stimulate myelin production. The LIF (leukemia inhibitory 1147 

factor) is heavily involved in oligodendrocyte development kinetics and in the overall myelination process [134, 198]. 1148 

Abbreviations: CNTF, ciliary neurotrophic factor; FGF, fibroblast growth factor; IGF, insulin-like growth factor; 1149 

LIF, leukemia inhibitory factor; NCAM, neural cell adhesion molecule; NT-3, neurotrophin 3; OPCs, oligodendrocyte 1150 

precursor cells; PDGF-A, platelet-derived growth factor-A. 1151 

Fig.2: Dysregulation in multiple biochemical pathways underlie the pathogenesis of AD. Metabolomic approaches 1152 

conducted from the blood or CSF of AD patients compared to controls highlighted abnormalities in the energy 1153 

metabolism of patients. A diabetic-type pathology is often evoked with a decrease in insulin sensitivity. In addition to 1154 

disorders in glycolysis and the respiratory chain, abnormalities involving accumulations of ketone bodies resulting 1155 

from the metabolism of acetyl-CoA residues, a product of the accelerated degradation of fatty acids by β-oxidation, 1156 

have been described. The bioavailability and metabolism of several amino acids could also be affected, especially 1157 

concerning tryptophan degraded in the kynurenine cycle and resulting in the formation of neuroprotective (kynurenic 1158 

acid) or neurotoxic (quinolinic acid) compounds. Abbreviations: AD, Alzheimer's disease; CSF, cerebrospinal fluid; 1159 

NADH, nicotinamide-adenine-dinucleotide; ROS, reactive oxygen species; TCA, tricarboxylic acid; βOHD, beta-1160 

hydroxybutyrate. 1161 

Fig.3: Myelin composition and organization. The myelin wrapping around most of the CNS axons includes a large 1162 

majority of complex lipids and 15-30% of specific proteins. Lipids are essentially made up of cholesterol, 1163 

galactocerebrosides and phospholipids. This envelope is constantly reshuffled in time and space from the 1164 

oligodendrocytes that make up the bulk of the glial cells of the CNS. Chronic inflammatory and autoimmune reactions, 1165 

mutations in certain constituent proteins, attacks by free radicals or ischemic, and metabolic problems related to aging 1166 

alter the myelin sheath that releases its constituents into the CSF and the bloodstream. In AD, myelin is one of the first 1167 

bulwarks for the anatomical and functional integrity of the axons it surrounds and undergoes early toxic action of 1168 

misfolded extracellular toxic proteins or peptides. Abbreviations: AD, Alzheimer’ disease; CNP, C-type natriuretic 1169 

peptide; CNS, central nervous system; CSF, cerebrospinal fluid; MAG, myelin-associated glycoprotein; MBP, myelin 1170 

basic protein; MOG, myelin oligodendrocyte glycoprotein; PLP, proteolipid protein. 1171 
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Fig.4: Multiple Alzheimer's disease etiologies and many cellular partners. Deleterious proteinopathies (in the first-1172 

place amyloid peptides) are to be integrated into the complex cellular environment of the brain. These multiple cellular 1173 

elements participate in progressive multi-focal neuro-axonal degeneration leading to the irreversible symptomatology 1174 

of AD. This is expressed when the toxic peptide removal systems are overwhelmed, which appears only after a long 1175 

incubation period. Altered neurons express phases of hypo- and hyperexcitability with deficits in axonal transport and 1176 

synaptic activity that affects myelination/remyelination activity and oligodendrocyte trophism. These are very 1177 

vulnerable cells whose density decreases sharply with age. There seems to be a link between the intensity of neuronal 1178 

involvement and the extent of demyelination. This is strongly accentuated in AD in which remyelination processes 1179 

seem deficient. The activation of astrocytes participates in the elimination of deficient neurons and synapses. They 1180 

actively participate in the elimination of abnormal proteins and inflammation processes, in the same way that the 1181 

activation of microglia facilitates the phagocytosis of cellular debris. In the same way, these cells participate in the 1182 

activation of the innate immune responses, the activation of the complement and the secretion of inflammatory 1183 

cytokines. Abbreviations: AD, Alzheimer's disease; ROS, reactive oxygen species. 1184 

Fig.5: Multiple communication system that includes neural, immune, endocrine, and metabolic pathways lead to 1185 

degeneration.  Continuous fluctuation of the microbiota due to the environment constantly influences the 1186 

inflammatory, immune, and metabolic responses of the CNS [110]. With age, the permeability of intestinal and BBB 1187 

is often impaired [85, 162]. The gut microbiota metabolizes and release many growths, metabolic and inflammatory 1188 

factors which could penetrate the brain via the circulating blood. These substances contribute to increase the 1189 

inflammatory, immune, and oxidative phenomena that exist in the elderly brain due to the accumulation over time of 1190 

many abnormal proteins due to their hydrophobic conformation. The very likely origin of these malformed proteins is 1191 

found in the accumulation during senescence of many mutations in post-mitotic cells that are neurons [9, 77]. In 1192 

addition, the role of epigenetic dysregulation of gene expression induced by aging or abnormal environmental 1193 

stimulation is also considered to be an important factor in neurodegeneration and cognitive alterations [126]. 1194 

Abbreviations: BBB, blood-brain barrier; CNS, central nervous system. 1195 


