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Abstract

This paper presents the development of a geometric shape optimization method-
ology based on the so-called "Hadamard boundary variation" method for performing
very general domain deformations, and the related concept of domain differentia-
tion. The resulting method is used to determine the optimal configuration of a two-
dimensional packed-bed reactor that simultaneously optimizes its conversion rate and
fluid energy dissipation, and where a homogeneous first-order reaction or a catalytic
surface reaction takes place. The considered multi-objective optimization problem is
subjected to four constraints: the process model constraints consisting of the Navier-
Stokes, continuity and mass balance equations, an iso-volume and two manufacturing
constraints. The approach to solve the problem is based on the linear scalarization
method which converts the multi-objective problem into a single objective problem.
The adjoint system method is used to compute the gradient of the performance in-
dices and constraints. Since the indices are conflicting, the solution of the problem is
a set of solutions, called Pareto front. Each optimal solution is evaluated using multi-
attribute utility theory (MAUT) to determine the best optimal shape of the reactor.
Finally, the resulting shape is fabricated using a 3D printing technique and will be
experimentally validated.

Keywords: Multi-objective shape optimization, Adjoint system method, OpenFOAM
environment, Packed-bed reactor, Additive manufacturing, Multi-criteria decision-making
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1 Introduction

Fixed-bed reactors are important in process engineering since they are among the most
common reactors in the chemical industry. Indeed, they are used in catalytic hydrogena-
tion (Logunova and Chernyak, 2007), hydrotreatment and hydrocracking of oil fractions
(Delmon et al., 1997), power-to-gas techniques (Bremer et al., 2017), wastewater treat-
ment (Ramaswami et al., 2019), etc. Despite their wide use, their design still poses many
problems due to the complex phenomena involved and the lack of reliable and accurate
data on hydrodynamics and transfer phenomena, especially at the local scale. Nowadays,
the shape of fixed-bed reactors involved in a process is predefined (structured or random
packing) and the process is optimized by its operating conditions (inlet concentrations,
flow rate, temperature, etc.). Although optimal with respect to these decision variables,
the reactor may exhibit non-ideal behaviors such as stagnation or channeling zones that
reduce its efficiency and even its lifetime. It is therefore important to overcome these effects
by modifying the shape of the device and shape optimization techniques are well suited to
address these issues.

In the context of packed-bed reactors, the objective of shape optimization is to de-
termine the packing configuration that optimizes one or more criteria while satisfying
operational and manufacturing constraints. Shape optimization techniques can be clas-
sified into three main categories, depending on the degree of freedom and complexity of
the algorithm (Allaire and Schoenauer, 2007): (a) parameter optimization, (b) geometry
optimization, and (c) topology optimization. The approach developed in this work is an
iterative geometry optimization method which allows us to test a wide range of possible
shapes but prevents topology changes, i.e., creation or disappearance of inclusions in two
dimensions (Allaire and Schoenauer, 2007). It is a gradient based method which computes
the so-called shape gradient of the performance index and the constraints by means of the
adjoint system method. In this respect, geometry optimization methods offer an appro-
priate compromise between the advantages and disadvantages of other categories of shape
optimization. They allow large and sufficient modifications of the shape (in contrast to
parametric methods) and therefore considerably improve the performance of the object
while avoiding high CPU consumption. Finally, they guarantee the manufacturability of
the final object (Courtais et al., 2021b) since its topology is chosen by the user (unlike
topological methods).

In process engineering, shape optimization methods are not widely deployed, in com-
parison to other fields such as mechanical engineering, where structural optimization has
been intensively investigated in the last decade (Allaire et al., 2017; Feppon et al., 2020;
Sun et al., 2019). In addition, shape optimization methods used so far in process engi-
neering dealt with systems involving fluid flow and heat transfer phenomena. (Henrot and
Privat, 2010; Hadad et al., 2020; Joo et al., 2017). In contrast, systems involving mass
transfer such as reactors have not been the subject of extensive studies. Obviously, several
studies have already applied shape optimization techniques to determine optimal reactor
shapes (Grundtvig et al., 2017; Hoseini et al., 2020). However, the improvements in reac-
tor performance are not maximal due to the limiting nature of the parameter optimization
methods used.
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Furthermore, in most process engineering studies, the investigated problem is formu-
lated as a single-objective minimization or maximization problem (e.g. the reactant concen-
tration at the reactor outlet (Courtais et al., 2021b) or the average outlet fluid temperature
(Feppon et al., 2021)) under constraints imposed by the optimized process. However, the
constant improvement of the industrial sector frequently requires to consider and optimize
simultaneously multiple conflicting objectives (e.g. the pressure drops and the heat trans-
fer rate for a heat exchanger (Bianco et al., 2021)). The solution of the resulting problem
is no longer a single solution but a whole set of optimal solutions called Pareto front. The
solution of this kind of problems requires the use of multi-objective optimization techniques
(Collette and Siarry, 2004).

The shape optimization approach developed in this paper is based on the Hadamard
boundary variation method which is used in order to determine the packing structure
of a packed-bed reactor where a homogeneous first order reaction or a catalytic surface
reaction takes place. The problem studied is formulated as a multi-objective optimization
problem involving two conflicting objective functions (Courtais et al., 2021a,b): the energy
dissipation in the fluid and the average concentration of reactant at the reactor outlet.
For example, an increase in energy dissipation, e.g. pressure drop, would probably be
correlated with a better mixing, which would have positive influence on conversion, but
will have a negative economic impact.

The admissible shapes of the optimization problem are subjected to two thickness
constraints accounting for the manufacturability properties of the optimal reactors, an
iso-volume constraint and the process model described by a system of Navier-Stokes and
convection-diffusion equations. The developed methodology is implemented and solved
within the OpenFOAM CFD software to estimate the Pareto front and the selected optimal
shape is chosen using the multi-attribute utility theory (MAUT, (Keeney et al., 1979))
according to the preferences of the decision-maker.

Although this study cannot be used directly to optimize an actual, industrial scale
reactor, the methodology described could be applied to such systems provided the opti-
mization problem can be formulated. Nonetheless, this formulation might be not obvious:
taking into account a turbulent flow, for example, requires formulating and solving the
corresponding adjoint equations, which is still an issue for Reynolds stress models.

The purpose of this paper is mostly to present this methodology.
The article is organized as follows. The investigated multi-objective optimization prob-

lem is first described in Section 2. Section 3 is devoted to the presentation of the mathe-
matical methods used to solve the problem, it describes in particular the multi-objective
optimization approach, the shape optimization method and the multiple-criteria decision
analysis. The resulting numerical results are gathered in Section 4, as well as the manufac-
turing of the selected optimal shape of the reactor. Finally, Section 5 provides a conclusion
to this work and some perspectives for future studies.
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2 Formulation of the multi-objective shape optimization prob-
lems

2.1 Governing equations

Symmetry

Γ
Γlat

ΓoutΓin

Ω

O y

x

Figure 1: Reactor geometry used as the initial shape Ω0 for the optimization process. The
boundary condition of symmetry is applied on the axis located in the center of the reactor.

The initial configuration of the considered reactor consists of a two-dimensional packed-
bed reactor in which 128 cylindrical obstacles are staggered with longitudinal and trans-
verse rows of 1 cm each. A schematic representation of this structured reactor is displayed
in Fig. 1. The studied domain corresponding to the reactor is designated by the subset
Ω ⊂ IR2 and its geometry is described by the union of its outer boundaries: the packing Γ,
the lateral wall Γlat, the fluid inlet Γin and outlet Γout. The boundary Γ which coincides
with the structured packing in the initial shape (Fig. 1) represents the decision variable of
the optimization problem that is modified throughout the optimization procedure. It is of-
ten called the “free boundary”, the others will not evolve and are named “fixed boundaries”.
The fluid relative pressure is imposed equal to zero at the reactor outlet, the single-phase
liquid is assumed to be Newtonian and incompressible, the flow regime is supposed to be
laminar and the steady state is considered to be reached. The liquid momentum transport
in Ω is therefore described by the Navier-Stokes and continuity equations associated with
the usual boundary conditions according to the following system of equations:

−ν∆U +U · ∇U +∇p = 0 in Ω

∇ ·U = 0 in Ω

U = Uin on Γin

U = 0 on Γlat ∪ Γ

σ(U , p)n = 0 on Γout

(1a)
(1b)
(1c)
(1d)
(1e)

where ν is the fluid kinematic viscosity, U and p are the velocity and the kinematic
pressure (the ratio between the absolute pressure and the density of the fluid) of the fluid
and n is the outward unit normal vector to the boundary. In Eq. (1e), σ(U , p) denotes
the viscous stress tensor given by:
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σ(U , p) = 2νε(U)− pI with ε(U) =
1

2
(∇U + (∇U)T ) (2)

where I is the identity matrix and ε(U) is the strain-rate tensor.
Since the two case studies involve different types of reactions, the convection-diffusion

equations describing mass transfer in the reactor are presented separately in the following
sections.

2.1.1 First case study: homogeneous reaction (HR)

The first studied case deals with a first order homogeneous reaction that takes place in
the packed-bed reactor. The considered mechanism is of the type R→ P and its reaction
kinetics is given by:

r = kC (3)

where C is the concentration of the reactant and k the kinetic rate. Moreover, it is
considered that the reaction does not occur on the walls Γ and Γlat. The mass balance of the
reactant is therefore described by the following convection-diffusion system of equations:

−D∆C +U · ∇C + kC = 0 in Ω

C = Cin on Γin

∂C

∂n
= 0 on Γlat ∪ Γout ∪ Γ

(4a)
(4b)

(4c)

where D is the diffusion coefficient of the reactant. In this homogeneous reaction case,
it is assumed that the packing only acts as a static mixer.

2.1.2 Second case study: surface reaction (SR)

The second studied case considers a catalytic surface reaction occurring in the reactor, and
particularly on the walls Γ and Γlat considered as impregnated with catalyst. The catalytic
reaction is assumed to be limited by the external mass transfer. Therefore, the reactant
concentration is imposed equal to zero at the boundaries Γ and Γlat in the following system
of mass balance equations:

−D∆C +U · ∇C = 0 in Ω

C = Cin on Γin

C = 0 on Γlat ∪ Γ

∂C

∂n
= 0 on Γout

(5a)
(5b)
(5c)

(5d)

It is important to point out that the volume reaction term kC in Eq. (4a) does no
longer appear in Eq. (5a) since it is assumed that the reaction only occurs on the walls.
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2.2 Optimization problems description

2.2.1 Performance indices

The two (conflicting) objectives considered are the energy dissipation due to viscous fluid
friction J1 and the average reactant concentration at the outlet boundary J2. They are
expressed by the following relations Courtais et al. (2021b):

J1(Ω) = 2ν

ˆ
Ω
|ε(U)|2 dx (6)

J2(Ω) =

ˆ
Γout

C dσ (7)

where U is the solution of Eqs. (1) and C is the solution of Eqs. (4) or (5) depending
on the considered case. In Eq. (6), the integrant term is |ε(U)|2 = ε(U) : ε(U) where
the notation “:” represents the Frobenius inner product of two matrices 3 × 3 with real
coefficients, defined by A : B =

∑3
i,j=1AijBij (Hjørungnes, 2011). For practical purposes,

minimizing those two objectives is relevant since the pressure losses and the conversion rate
of the reactor are functions of these criteria. Thus, minimizing J1 and J2 simultaneously
leads to maximizing the conversion rate while minimizing the pressure drop in the packed-
bed reactor.

2.2.2 Decision variables

The decision variables of the multi-objective optimization problem are the shape and the
positions of each obstacle (i.e. the packing Γ).

2.2.3 Set of constraints

The optimization problem is subjected to the following four constraints:

• The process model equations which consist of momentum, continuity and mass bal-
ance equations. They are described in detail in Section 2.1.

• In order to compare the initial and optimal shapes of the reactor, the residence time
is kept the same in both shapes. To do this, the volume of the reactor is prescribed
equal to that of the initial reactor according to the following iso-volume constraint:

CV(Ω) = V(Ω)− V(Ω0) = 0 (8)

where V(Ω0) and V(Ω) stand for the volume of the initial and optimal reactors
respectively. Since the flow rate is not modified during the optimization process,
imposing an iso-volume constraint is equivalent to maintaining the residence time
constant.
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• The Stratoconception manufacturing process (Barlier, 1991) is used to print in 3D
the reactors. It involves standard manufacturing of thin layers that are subsequently
stacked and assembled. This implies a minimum obstacle thickness and a minimum
distance between them (i.e. the pores width), leading to the following two inequality
constraints:

dobs > dobs
min and dpore > dpore

min (9)

where dobs and dpore are the obstacles thickness and the pore width (Fig. 2), dobs
min

and dpore
min are the corresponding lower bounds.

obstacle
(solid part)

obstacle
(solid part) pore

(fluid part)

x

dpore(x)

dobs(x)

y

dpore(y)

dobs(y)

Figure 2: Schematic illustration of the thickness of obstacles and of the distance between
them.

These two constraints are pointwise, i.e. they are in fact defined at each point of the
boundary ∂Ω. From a practical point of view, once discretized, each constraint turns into
2N inequalities, where N denotes the number of boundary points. Moreover, they both
involve constraints on minimum distances between the two sides of an obstacle or between
two obstacles, which raises mathematical and practical difficulties since they are not dif-
ferentiable in the sense of Hadamard (Feppon et al., 2020). Hence, such constraints must
be reformulated (e.g. as penalty functions Allaire et al. (2016)) or processed differently
from the usual treatment (i.e. by aggregation within the Lagrangian functional). The
methodology adopted is detailed in Courtais et al. (2021b).
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2.2.4 Problem formulation

The shape optimization problems subjected to the process model equations, manufacturing
and iso-volume constraints investigated in this work are then formulated as:

Pareto-min
Ω

[J1(Ω); J2(Ω)]T

s.t. Ω ∈ C

Eqs. (1)-(2)-(4) or (1)-(2)-(5)

(P1)

where C represents the set of reactor shapes meeting the iso-volume and manufacturing
constraints:

C = {Ω ⊂ IR2 | CV(Ω) = 0, dobs > dobs
min and dpore > dpore

min }. (10)

The wording “Pareto-min” above means that optimality for these problems refers to
the notion of Pareto optimality.

The solution of a multi-objective optimization problem of two conflicting objectives J1

and J2 is called Pareto front. It is defined as the set of pairs (J∗1 , J
∗
2 ) of optimal values

for the problem of minimizing any convex combination of J1 and J2. Note that, when
dealing with more objectives, the definition of Pareto front is more intricate and involves
tools from Game theory. In section 4, we will plot the Pareto front associated with each
problem considered and discuss its interpretation in terms of process engineering.

3 Mathematical methods used for problem solving

3.1 Multi-objective optimization approach

Multi-objective optimization methods may be classified in 2 main categories (Collette and
Siarry, 2004): the meta-heuristic methods (e.g. Non dominated Sorting Genetic Algorithm,
Multiple Objectives Genetic Algorithm, etc..) whose algorithms are based on Pareto domi-
nation and the scalar methods which reformulate the multi-objective optimization problem
as a single-objective problem. Since the decision variable is the shape of the packing Γ de-
scribed by about 9,000 to 16,000 boundary points, a meta-heuristic method would be CPU
intensive. Therefore, a scalar method is considered. It is a linear scalarization method
which aggregates the objectives as follows:

J(Ω) = τJ1(Ω) +Kcrit(1− τ)J2(Ω)

= τ2ν

ˆ
Ω
|ε(U)|2 dx+Kcrit(1− τ)

ˆ
Γout

C dσ
(11)

where τ ∈ [0, 1] and Kcrit > 0 is a constant ensuring the same order of magnitude of
the objectives. The multi-objective optimization problem (P1) is therefore reformulated as
the following single-objective optimization problem which is solved several times modifying
the parameter τ in order to estimate the Pareto front:

8



min
Ω

J(Ω) = τJ1(Ω) +Kcrit(1− τ)J2(Ω)

s.t. Ω ∈ C

Eqs. (1)-(2)-(4) or (1)-(2)-(5)

(P2)

Finally, the Lagrangian of the problem (P2) which combines the objectives and the
volume constraint is expressed as follows:

L(Ω, λV) = τJ1(Ω) +Kcrit(1− τ)J2(Ω) + λVCV(Ω) (12)

where λV is the Lagrange multiplier associated to the iso-volume constraint.
The developed mathematical approach used to solve the problem (P2) is based on the

concept of differentiation with respect to the domain. It is detailed in Courtais (2021) and
Courtais et al. (2021b) and a brief summary is provided in appendix A. The associated
methodology of shape optimization is implemented within the open-source software Open-
FOAM which solves the PDEs by means of finite volumes method and C++ programming
language. The iterations of the algorithm are linked to each other using the “pyFoam”
library, and for each iteration, the algorithm runs through a 6-step procedure which is
explained in details in Courtais et al. (2021b).

3.2 Multi-criteria decision-making method

Once the estimate of the Pareto front has been determined, it is necessary to select the best
reactor shape to manufacture. To this end, the optimal shapes are ranked according to the
preferences of the decision-maker (i.e. how much importance is given to each objective)
which are often subjective and depend on the considered process. At this stage, the
concept of Pareto optimality is no longer relevant since each optimal pair (J∗1 , J

∗
2 ) cannot

be directly compared to another. Therefore, another approach must be used to rank the
solutions and a multi-criteria decision analysis (MDCA) procedure is carried out using the
multi-attribute utility theory (MAUT) introduced by Keeney et al. (1979). The MAUT
method allows to classify the Pareto solutions in two steps:

(i) The decision-maker assigns to both criteria Ji an individual utility function ui which
evaluates the performance of a solution x in the i-th objective. The form of the
selected utility function is chosen by the decision-maker but it must be monotonic
and continuous (Olson, 1997). According to the literature works, three main forms
are identified: exponential (Kim and Song, 2009), linear (Voola and Vinaya Babu,
2017), and power (Fonseca et al., 2020; Benyahia et al., 2011) forms. The latter form
has been chosen in this work, and the individual utility functions are expressed as
follows:

ui(x) =
(Jmax

i − Ji(x)

Jmax
i − Jmin

i

)αi

(13)
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where Jmax
i and Jmin

i are maximum and minimum values reached by objective i
among the Pareto solutions. In Eq. (13), parameter αi represents the relative tol-
erance factor with respect to objective i. Figure 3 illustrates the influence of the
parameter αi: for small values of the parameter αi (e.g. αi = 0.2), the individual
utility function ui is less sensitive to the degradation of the associated performance
index Ji in the vicinity of its optimal value. The opposite behavior of ui occurs for
large values of αi (e.g. αi = 5).

(ii) The individual utility functions are then combined defining the multi-attribute utility
function which allows to rate the Pareto solutions. It reads:

U(x) = wu1(x) + (1− w)u2(x) (14)

where w ∈ [0, 1] and (1− w) are weighting factors for each utility function to assign
relative importance to either objectives.

In conclusion, the decision-maker preferences are reflected through the chosen values
of w, α1 and α2 (see Fig. 3).

Figure 3: Influence of the relative tolerance αi (i = 1 or i = 2) on the individual utility
function.
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4 Results and discussions

4.1 Numerical results

The optimization results of the two cases HR and SR are presented and discussed. The
values of the parameters used are reported in Table 1 for both cases. This section is
split into two parts, the first one is devoted to the optimization of the reactors where the
homogeneous reaction takes place, whereas the second one presents the optimization of the
reactor where the catalytic surface reaction occurs.

Table 1: Values of the parameters used in simulation and optimization.
Parameters Values Units Equations

HR case SR case

ν 10−6 10−6 m2.s−1 (1a), (26), (25) and (28)
Uin 10−2 10−2 m.s−1 (1c)
D 10−9 10−9 m2.s−1 (25), (27a), (28) and (29a)
k 10−2 - s−1 (4a)
γ 10−4 10−4 m−2 (24a) and (24c)

KBC 3× 10−3 3× 10−3 mol.m−2.s−1 (25), (28) and (26d)
Kcrit 3× 10−5 3× 10−5 m6.s−3.mol−1 (12), (25) and (28)
t 10−1 1.5× 10−1 - (16)
λ0
V 0 0 - (25) and (28)

4.1.1 Case of the homogeneous reaction

The solution of the first optimization problem (i.e. the HR case) is computed in two steps:

1. As explained in Section 3.1, the multi-objective problem (P1) is first recast as a single
objective problem (P2) by aggregating the objectives into a unique performance index
and by introducing a parameter τ ∈ [0 : 1].

2. Problem (P2) is then solved several times (25 times in this case) by modifying the pa-
rameter τ between its bounds. For each single objective resolution, the configuration
displayed in Fig. 1 is used as the initial shape of the reactor.

The Pareto front obtained is presented in Fig. 4 where each solution is represented
by a circle. This Pareto front emphasizes the importance of performing a multi-objective
optimization in this case. Indeed, the performances of the shape optimized by Courtais
et al. (2021b) using a single-objective method are displayed in Fig. 4 (green triangle), and
the Pareto front is almost vertical from this point to values of J1 around 4× 10−12. This
shows that the energy dissipation can be reduced by about 33% at the cost of a negligible
loss in conversion rate.

Optimization problems involving only one criterion (i.e. for τ = 0 and τ = 1) allow
to compute minimal bounds of each objective; the lower bound for the energy objective is
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Figure 4: Pareto front of the HR case.

1.12× 10−12 J/(kg/m3), while it is 8.16× 10−2 mol.m−3 for the conversion rate objective.
Thus, it results in an utopian point whose coordinates are (8.16 × 10−2 ; 1.12 × 10−12)
which does not meet the constraints C, and therefore, its associated configuration is not
manufacturable or not suitable for practical purposes. We also define the nadir point
whose coordinates are the worst values reached by the criteria within the Pareto front,
i.e. (1.24 × 10−1 ; 1.84 × 10−11). The determination of these two points will be useful
thereafter, especially when choosing the best shape using the MAUT method.

Figure 5 presents the concentration and velocity profiles of the initial and different
optimized reactors depending on the values of the parameter τ . For initial shape, a dead
zone can be observed close to the entrance, with very low velocities (left column) leading
to an almost non-reacting volume with very low concentrations (right column)

When only the criterion J2 is optimized (i.e. τ = 0), this dead zone disappears and
the fluid flow in the reactor becomes homogeneous, which allows a 10-percent decrease of
the criterion, and therefore, an improvement of 2.7% of the conversion rate (74.2% versus
71.5%). As highlighted in Courtais et al. (2021b), the conversion rate of this optimized
reactor is very close to the one of the ideal plug flow reactor whose conversion rate is 74.6%.
Consequently, in this case, the optimization procedure allows to reduce the deviation from
the ideal reactor by modifying the packing structure. However, this modification leads to
an increase in the energy dissipation since the reactor exhibits areas with high velocity
gradients (i.e. where the channels are narrow and the velocity is high). This result was
expected since the dissipated energy does not influence the performance index when the
parameter τ is zero. When the values of τ increase up to 0.2, the flow remains homogeneous
which leads to a negligible deterioration of the conversion rate. Nevertheless, the channels
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Initial
shape

τ=0

τ=0.09

τ=0.15

τ=0.25

τ=0.32

τ=0.4

τ=0.6

τ=0.73

τ=0.738

τ=0.739

τ=0.8

τ=0.9

τ=1

Figure 5: Concentration (left) and velocity (right) profiles in the initial (top row) and
different optimized shapes – HR case.
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(a) Average residence time. (b) Standard deviation of the RTDs.

Figure 6: Evolution of (a) the average residence time, and (b) the standard deviation of
the RTDs as a function of τ .

width increases which reduces the velocity gradients, and therefore, the dissipated energy.
On the other hand, Fig. 5 shows that the higher the weight τ , the larger the channels
which ensures a decrease of the energy dissipation. However, it leads to a deterioration of
the flow homogeneity, and consequently, to a reduction of the conversion rate. Moreover,
when τ is close to 1 (τ ∈ [0.739 : 1]), dead zones appear which significantly decrease the
conversion rate since the reactant concentration is almost zero in these regions. Finally,
for τ = 1, the performance index only depends on the energy dissipation. Therefore, the
reactor looks like a large channel ensuring low velocity gradients but also low conversion
rate. Thus, this configuration leads to a reduction of the dissipated energy by a factor of
5.6, but the conversion rate is degraded by 9.2% (62.3% versus 71.5%).

The numerical residence time distribution of the 25 optimal reactors have been deter-
mined and are analyzed using the method of moments which consists in computing the
three first order moments according to the following formula (Levenspiel, 1999):

µi =

ˆ ∞
0

tiE(t)dt (15)

where E(t) is the RTD function and i ∈ [0 : 2] is the moment order. The zeroth order is
equal to one, the first order µ1 represents the average residence time in the reactor and the
second order allows to compute the standard deviation given by σ =

√
µ2 − µ2

1. The latter
quantifies the homogeneity of the fluid flow in the reactor. Figure 6 presents the evolution
of the average residence time and the standard deviation of RTDs versus τ . It particularly
highlights the presence of dead zones in optimal reactors for τ > 0.739 (Fig. 6(a)) since
the average residence time slightly varies for τ 6 0.738, and it strongly decreases when
τ > 0.739 (Villermaux, 1993). It also shows the degradation of the fluid flow when the
parameter τ is increased, since the standard deviation of RTDs increases with τ , as can be
seen in Fig. 6(b).
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Figure 7: Pareto front of the SR case.

On the other hand, Figs 6 exhibit a discontinuity in the area near the gray diamond of
the Pareto front where the optimal shapes strongly differ between τ ' 0.738 and τ ' 0.739
(Fig. 5). Indeed, the Pareto front seems slightly concave in this region and the linear
scalarization method can only determine convex parts of Pareto fronts (Collette and Siarry,
2004). Thus, the ε-constraint method has been used in order to determine the reactor shape
associated to the gray diamond displayed on Fig. 4 and whose coordinates are (9.56×10−2

; 1.7× 10−12).

4.1.2 Case of the surface reaction

The same computation procedure is used to estimate the Pareto front made up of 40 optimal
solutions determined by varying the weight τ between 0 and 1. As emphasized by Courtais
et al. (2021b), a single-objective optimization requires between 7 and 10 computational
days on a computer with a 3.7GHz Xeon processor. Consequently, the estimation of the
whole Pareto front would be time consuming on a single computer. Thus, each single-
objective optimization has been parallelized and therefore computed on 40 different nodes
of the University of Lorraine supercomputer named EXPLOR.

The resulting Pareto front is displayed on Fig. 7 and a part of the optimized configu-
rations is presented on Fig. 8. Similarly to the previous case, the optimizations involving
only one criterion allow to define the utopian point (2.06 × 10−1 ; 1.12 × 10−12) and the
nadir point (3.02 × 10−1 ; 4.34 × 10−11). The analysis of the reactor shapes displayed
on Fig. 8 shows that the reactive surface increases significantly (up to 80%) between the
initial and the optimized shape for τ = 0, which mainly explains the improvement of the

15



Initial
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τ=0

τ=0.09

τ=0.13
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τ=0.3
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τ=0.65

τ=0.75

τ=0.9

τ=1

Figure 8: Concentration (left) and velocity (right) profiles in the initial (top row) and
different optimized shapes – SR case.
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Figure 9: Evolution of the relative reactive surface area A/A0 with τ .

conversion rate of the reactor by 16% (35.6% versus 19.6%). This improvement is also due
to a good fluid flow homogeneity. However, the reactor exhibits areas with high velocity
gradients leading to significant increase in energy dissipation. Moreover, when increasing
τ , the flow homogeneity in the reactor is degraded (for τ ∈ [0 : 0.2]), more and more
significant channelings occur (for τ ∈ [0.2 : 0.7]), and finally stagnation zones where the
reactant concentration reaches almost zero appear (for τ ∈ [0.75 : 1]). These three phe-
nomena explain the deterioration of the conversion criterion when increasing the weight
τ while the energy losses in the reactor are reduced. Finally, for τ = 1, the optimized
shape depends only on the hydrodynamics as in the previous case, the optimal reactor is
therefore identical to the one presented in sub-section 4.1.1.

Figure 9 presents the evolution of the relative reactive surface area (i.e. the ratio A/A0,
A0 being the reactive surface area of the initial shape) with τ . It particularly highlights
the decrease of the reactive surface area of optimized reactors thus providing a second
explanation of the deterioration of the conversion rate objective when τ is increased.

4.2 Multi-criteria decision analysis

Since the Pareto solutions are not directly comparable with each other (they are all non-
dominated), the “best” optimized shape is chosen by means of a multi-criteria decision
aid technique, i.e. the multi attribute utility theory (MAUT). Table 2 shows that the
conversion rate (criterion J2) is favored over the energy dissipation (criterion J1) since the
corresponding weight is higher. For both cases, the ranking of the optimized solutions is
presented in Fig. 10. In this figure, the points corresponding to the higher rates are in
lighter colors, and the selected solutions are highlighted by green triangles. They present
the best compromise between the two conflicting objectives according to the preferences
of the decision-maker.

For the HR case, the best reactor is associated to τ = 0.25 and its shape has been
manufactured by means of a 3D-printing technique. The manufactured shape then under-
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(a) HR case. (b) SR case.

Figure 10: Multi-criteria decision analysis by means of the MAUT method - (a) HR case,
(b) SR case.

Table 2: Weighting and tolerance factors assigned to each criterion.
Factor Criterion 1 Criterion 2
w 0.4 0.6
α 0.5 1

goes tests for its experimental validation (Fig. 11) in order to validate the choice using flow
and conversion experiments. The results show that the conversion rate and the dissipated
energy are improved respectively by 2.6% (74.1% versus 71.5%) and by 46.7% with respect
to the initial shape of the reactor. These improvements are mainly due to the good ho-
mogeneity of the flow in the reactor and to the disappearance of the dead zones . This is
highlighted in Table 3 which presents the first order moment and the standard deviation
of RTDs of the initial and the “best” shapes. It particularly emphasizes the disappearance
of the stagnation zone in the initial shape since the average residence time (i.e. the first
order moment) is higher in the “best” shape. This stagnation zone in the initial reactor is
also highlighted by the standard deviation of the distributions since that associated to the
initial shape is twice higher.

Table 3: Parameters of the residence time distributions (HR case)
Reactor Moments of order Standard deviation
shape Zero One (mean) Two (σ =

√
µ2 − µ2

1)

Initial 1 134 s 23284 s2 73 s
“Best” 1 142 s 21667 s2 36 s

In the SR case, the selected shape corresponds to the weighting factor of τ = 0.09 and
is displayed in Fig. 8. It improves the conversion rate by 12.6% (32.2% versus 19.6%) which
is mainly due to the 70-percent increase in the reactive surface of the reactor (Fig. 9), but
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(a) Reactor configuration selected using the MAUT method.

(b) Manufactured reactor.

Figure 11: Comparison between the shape selected using the MAUT method and the
corresponding reactor manufactured by 3D printing.

it increases the energy loss by a factor 3.5. This choice also emphasizes the importance
of carrying out multi-objective optimization since the two optimal reactors determined by
Courtais et al. (2021b) with performances shown on Fig. 7 (green and yellow squares) are
not the best compromises that meet the decision-maker preferences.

5 Conclusions and perspectives

A multi-objective shape optimization methodology based on the Hadamard boundary vari-
ation and adjoint system methods has been developed and implemented within OpenFOAM
in order to determine the shape of a packed-bed reactor that optimizes simultaneously (i)
the pressure drops and (b) the conversion rate of the reactor. For both cases, the solution
of the multi-objective problem is a set of solutions and the MAUT method is used to deter-
mine the “best” shape according to the preferences of the decision-maker. The best shape
has been manufactured by means of the stratoconception 3D printing method (?) in order
to verify both the improvement of the optimal reactor performances and the accuracy of
the CFD model solved at each iteration in order to compute the mesh displacement.
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The developed methodology is very promising since it allows a significant improve-
ment of the reactor performances mainly due to the ability of the geometry optimization
approach to test a wide range of possible shapes. However, some elements of the method-
ology deserve to be improved. First, even if the developed geometry algorithm allows
substantial modifications of the reactor shape unlike parametrization based algorithms, it
prevents topology changes that could be relevant in those case studies, in particular for
τ > 0.739 in the HR case (Fig. 5). The application of a topology optimization algorithm,
for instance based on the level-set (Kambampati et al., 2021) or the homogenization (Ozguc
et al., 2021) methods, could constitute an interesting continuation of this work. However,
its use would lead to an increase of the computational time required by an optimization
procedure which already constitutes the second element that needs improvements. Indeed,
one optimization procedure takes between 3 and 10 days to converge on a computer with
a 3.7GHz Xeon processor depending on the case study, and the SR case has required the
use of a supercomputer in order to run in parallel all single-objective computations. To
reduce the CPU time, several possibilities can be investigated. Indeed, since the most CPU
consuming step is the resolution of the PDEs, the use of surrogate models (Rabhi et al.,
2018) that would approximate and accelerate the PDEs resolutions could be investigated.
However, care should be taken since such an approach could lead to an imprecise estimate
of the shape gradient.

Another point to consider is the reduction of the number of optimization iterations
needed to reach convergence by using a linear search method that computes the optimal
step t at each iteration. However, the computation of the optimal step is performed using a
finite difference technique. Therefore, it involves several integrations of the model equations
(which are PDEs – Navier-Stokes and mass balance equations) in order to compute the
performance index with different values of the step (i.e. different mesh displacement). This
would increase the computational effort required for each iteration, that could balance out
the positive effect of the reduction of required iterations.

Finally, optimizing the reactor under its three-dimensional shape could be a natural
continuation of this work.
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Nomenclature

Latin symbols

C reactant concentration mol.m−3
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C set of constraints of the optimization problem -
C ′ sensitivity of C with respect to the variation of Ω mol.m−4

Ca adjoint state of C mol.m−3

Cin reactant inlet concentration mol.m−3

CV iso-volume constraint m3

D diffusion coefficient of the reactant in the solvent m2.s−1

dpore
min minimal width of pores m
dobs

min minimal thickness of obstacles m
G shape gradient functional -
J aggregation of the performance indices -
J1 energy criterion J/(kg/m3)
J2 conversion criterion mol.m−3

k kinetic constant s−1

L Lagrangian of the optimization problem -
n boundary normal vector -
p kinematic pressure field Pa.m3.kg−1

p′ sensitivity of p with respect to the variation of Ω Pa.m2.kg−1

pa pressure of the adjoint state to (U , p) Pa.m3.kg−1

s.t. subject to -
t step of the optimization method -
U fluid flow velocity m.s−1

U ′ sensitivity of U with respect to the variation of Ω s−1

Ua velocity of the adjoint state to (U , p) m.s−1

Uin fluid velocity profile imposed at the reactor inlet m.s−1

V vector field representing the displacement of the mesh m
V(Ω) volume of Ω m2

Greek symbols

αi tolerance factor associated to each objective -
γ parameter allowing to adjust the diffusion of the mesh m2

Γ free boundary of the domain Ω -
Γin fluid inlet of Ω -
Γout fluid outlet of Ω -
Γlat lateral wall of Ω -
∂Ω union of the boundaries of Ω -
λV Lagrange multiplier associated to the volume constraint -
ν fluid kinematic viscosity m2.s−1

τ weighting factor -
Ω studied domain -

Indices

a refer to an adjoint state
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in refer to reactor inlet Ω

A Summary of the developed mathematical approach

A.1 Differentiation with respect to the domain

The shape optimization approach developed in this work is based on a gradient based
iterative method: the Hadamard boundary variation method (Allaire and Schoenauer,
2007). Starting from an initial object configuration, the method computes a sequence
of shapes that improve the objective at each iteration by adapting the position of the
boundaries. The method relies on the concept of differentiation with respect to the domain
which consists in determining the sensitivity of the Lagrangian with respect to the following
perturbation of the free boundary (Henrot and Pierre, 2005):

Ωi+1 = (Id + tV )(Ωi) (16)

where Id is the identity function, t is the step of the iterative method, and V is the
vector field describing the mesh displacement. The small perturbation of the free boundary
is therefore described by the vector tV . In other words, the purpose of Hadamard’s method
is to determine the step t and the displacement vector field V leading to a decrease of the
Lagrangian functional at each iteration. Those two variables are determined using the
computation of an adjoint state, allowing to compute the gradient of the Lagrangian by
introducing some adjoint system equations. In this paper, two adjoint system equations
are introduced: one is associated to the fluid equations and the other is associated to the
convection-diffusion equations.

In the framework of the Hadamard method, the derivative with respect to the domain
of a functional in the V direction, such as the Lagrangian, is defined as follows:

L′(Ω, λV)(V ) = lim
t→0

L(Ωt)− L(Ω)

t
(17)

where Ωt = (Id + tV )(Ω) represents a “small” perturbation of the domain Ω. Usual
differentiation formulas are applied to compute the shape derivative (or derivative with
respect to the domain) of the Lagrangian functional (12), leading to

L′(Ω, λV)(V ) = τJ ′1(Ω)(V ) +Kcrit(1− τ)J ′2(Ω)(V ) + λVC
′
V(Ω)(V ) (18)

Let us express the shape derivative of each term of Eq. (18), according to Allaire and
Schoenauer (2007); Henrot and Pierre (2005):

J ′1(Ω)(V ) = 2ν

ˆ
∂Ω
|ε(U)|2(V · n) dσ + 4ν

ˆ
Ω
ε(U) : ε(U ′) dx (19)

J ′2(Ω)(V ) =

ˆ
Γout

C ′ dσ (20)

C ′V(Ω)(V ) =

ˆ
∂Ω

(V · n)dσ (21)
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In Eqs. (19) and (20), U ′ and C ′ are respectively the sensitivities of U and C with
respect to the aforementioned small perturbation of the free boundary Γ (see for example
Henrot and Privat (2010); Bonnivard et al. (2018) for additional explanations). Using
Eqs. (19), (20) and (21), the shape derivative of the Lagrangian functional rewrites:

L′(Ω, λV)(V ) =2ντ

ˆ
∂Ω
|ε(U)|2(V · n) dσ + 4ντ

ˆ
Ω
ε(U) : ε(U ′) dx

+Kcrit(1− τ)

ˆ
Γout

C ′ dσ + λV

ˆ
∂Ω

(V · n)dσ
(22)

However, and for practical reasons, equation (22) is not directly applicable since some
of its terms do not depend explicitly on the normal component of the deformation field
(V · n). Indeed, the dependence is carried out through U ′ and C ′. In this form, choosing
a suitable displacement ensuring a descent of the Lagrangian is not straightforward. The
objective of the method is to reformulate the Lagrangian shape derivative under the form
(Henrot and Pierre, 2005):

L′(Ω, λV)(V ) =

ˆ
∂Ω
G(Ω, λV)(V · n)dσ (23)

where G(Ω, λV) is the so-called shape gradient, a functional defined on the free bound-
ary which depends on the solution of the process model (U , p, and C) and the adjoint
variables introduced by the method (Ua, pa, and Ca) but not on the displacement V .
Once an expression such as (23) is obtained, it is simple to derive a displacement field
leading to a descent of the Lagrangian functional. Indeed, moving the free boundary ac-
cording to (V · n) = −G(Ω, λV) would directly imply L′(Ω, λV)(V ) 6 0, and therefore
a decrease of the Lagrangian. However, this approach to determine the displacement V
is not appropriate in practice because it requires to remesh the shape at each iteration
which would significantly increase the computational time. Such method is also known to
generate undesired oscillations of the boundary due to the low regularity of the resulting
perturbation. Indeed, since G(Ω, λV) is only defined on the free boundary, this approach
determines the displacement only for the boundaries, and not for all mesh points (Allaire
and Schoenauer, 2007). Consequently, we need to extend the displacement inside the mesh.
For this purpose, the vector field V is computed from the shape gradient values by solving
the following system of equations (Courtais, 2021; Dapogny et al., 2018):

−γ∆V + V = 0 in Ω

V = 0 on Γin ∪ Γout ∪ Γlat

γ∇V n = −G(Ω, λV , λE)n on Γ

(24a)
(24b)
(24c)

where γ > 0 is a parameter allowing to adapt more or less the diffusion of the mesh
displacement. Once the vector field V is determined, relation (16) is applied to all mesh
points in order to move the mesh for the following iteration. Finally, it only remains to
establish an expression for the shape gradient functional G(Ω, λV). Since the two investi-
gated case studies involve slightly different process model, the formulations of the shape
gradient functional and the adjoint system equations are provided independently.
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A.2 Homogeneous reaction case (HR case)

The calculation of the shape gradient expression is detailed in Courtais (2021). It is
expressed as:

G(Ω, λV , λE) = 2ν(ε(U) : ε(Ua)− τε(U) : ε(U))− Kcrit

KBC
(1− τ)DCa∆C + λV , (25)

where the parameter KBC 6= 0 represents a constant introduced in the outlet boundary
condition of the adjoint states (27) and (29) to ensure the same unit of measure of the
terms of Eqs. (27d), (29c) and (25). (Ua, pa) denotes the adjoint state to (U ,p) which is
determined by solving the following system of equations:



H(U ,Ua) +∇pa = −Kcrit

KBC
(1− τ)Ca∇C in Ω

∇ ·Ua = 0 in Ω

Ua = 0 on Γin ∪ Γlat ∪ Γ

σ(Ua, pa)n+ (U · n)Ua = 4ντε(U)n on Γout

(26a)

(26b)
(26c)
(26d)

with H(U ,Ua) = −ν∆Ua+ (∇U)TUa−∇UaU + τ2ν∆U and Ca is the adjoint state
to C defined as the solution of the following system of equations:

−D∆Ca −U · ∇Ca + kCa = 0 in Ω

Ca = 0 on Γin

∂Ca
∂n

= 0 on Γlat ∪ Γ

Ca(U · n) +D∂Ca
∂n

= KBC on Γout

(27a)
(27b)

(27c)

(27d)

In order to ensure the same order of magnitude of C and Ca, the parameter KBC is set
to 3× 10−3 mol.m−2.s−1.

A.3 Catalytic surface reaction case (SR case)

For this case study, a similar reasoning , also detailed by Courtais (2021), is adopted and
leads to the following the shape gradient functional:

G(Ω, λV , λE) = 2ν(ε(U) : ε(Ua)− τε(U) : ε(U)) +
Kcrit

KBC
(1− τ)D∂Ca

∂n

∂C

∂n
+ λV , (28)

where Ua is the solution of Eqs. (26) and Ca is obtained from the following system of
equations:
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−D∆Ca −U · ∇Ca = 0 in Ω

Ca = 0 on Γin ∪ Γlat ∪ Γ

Ca(U · n) +D∂Ca
∂n

= KBC on Γout

(29a)
(29b)

(29c)
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