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Abstract: - In the context of spectrum surveillance, a method to recover the code of direct sequence spread 
spectrum signal is presented, whereas the receiver has no knowledge of the transmitter’s spreading sequence. 
The approach is based on an artificial neural network which is forced to model the received signal. Experimental 
results show that the method provides a good estimation, even when the signal power is below the noise power. 
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1   Introduction 
Although spread spectrum communications were 
initially developed for military  applications, they are 
now widely used for commercial ones, especially for 
code division multiple access (CDMA), or global 
positioning systems (GPS) [1]. They are mainly used 
to transmit at low power without interference due to 
jamming, to others users or to multipath propagation. 
The spread spectrum techniques are useful for secure 
transmissions, because the receiver has to know the 
sequence used by the transmitter to recover the 
transmitted data, using a correlator [2, 3, 4]. 
 Our purpose is to automatically determine the 
spreading sequence, whereas the receiver has no 
knowledge of the transmitter’s pseudo-noise (PN) 
code. 
 In the next section, we present the technique of 
direct sequence spread spectrum (DS-SS) and we 
explain the difficulty to recover the data in an 
unfriendly context. Then, we introduce our method, 
which uses artificial neural networks to solve the 
problem. Finally, section 4 shows experimental 
results in various configurations.  
 

 

2   DS-SS technique 
In order to spread the signal power over a broadband 
channel, far in excess of the minimum bandwidth 
necessary to transmit the data, the direct sequence 
spread spectrum (DS-SS) technique consists in 

multiplying the information signal with a periodic 
pseudo-noise sequence.  
 

2.1   A simple model 
Let us note b(t) the information bearing signal 

b t b p t nTn b( ) ( )= −
−∞

+∞

                    (1)              where 

bn = ±1  with equal probability and p t( )  is a 

rectangular pulse of duration Tb
.  

Let us note y , the PN sequence of length P  : 

y y y yP= −0 1 1, , ,⋯                                                   (2) 

The transmitted signal ɵyn
 is the product of both 

waveforms. Let us consider a direct sequence spread 
spectrum system without noise : 
ɵy b yn n=                                                                 (3)   

We assume the receiver knows this sequence and can 
despread the signal using a correlator : 

ɵ , , ,y y b y y b y y b Pn n n n= = =                        (4) 

according to the properties of PN sequences [5], the 
data information is then recovered. 
However it becomes more challenging when the 
receiver does not know exactly the code used by the 
transmitter. 
Let us note ~y  a sequence similar to y , but not 

exactly the same. Then using a correlator with ~y , we 

get : 

ɵ , ~ , ~ , ~y y b y y b y yn n n= =                                  (5) 
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according to the properties of PN sequences, y y, ~  

is low [5] and then we do not recover the data 
information. 
 

2.2   A realistic model 
Typically direct sequence spread spectrum systems 
use binary or quadrature phase shift keying (BPSK or 
QPSK) data modulation. Usually the PN sequence is 
a binary maximal length sequence or a Gold 
sequence [4]. Sometimes complex signature 
sequences are used. It has been shown [6], that using 
complex codes provides an improvement of 3 dB (in 
comparison with binary Gold sequences) against 
users interference.  
Here we consider a PSK data modulation, spread by 
a complex signature sequence. The baseband receiver 
signal at the output of the receiving filter can be 
written as : 

s t a h t kT n tk s
k

( ) ( ) ( )= − +
=−∞

+∞

                                (6) 

where h t( )   is the combined impulse response of the 

channel and the spreading code : 

h t c p t mTm c
m

P

( ) ( )= −
=

−


0

1

                                         (7) 

and  p t e g c t( ) ( )( )= ∗ ∗                                          (8) 

P is the length of the spreading sequence. 

{ }c m Pm , = −0 1⋯  is the spreading sequence. 

ak
 is the symbol number k . 

Tc
is the chip period. 

Ts
is the symbol period ( )T PTs c= . 

c t( ) is the channel filter (that modelises the channel 

echoes). 
e t( )  is the transmitting filter. 

g t( )  is the receiving filter. 

n t( ) is the noise at the output of the receiving filter. 

The baseband channel noise is assumed to be white,  
gaussian and centered.  
An interesting method to estimate h t( ) is proposed 

in [7]. It takes profit of blind identification 
techniques available for multiple FIR channels. Good 
results were obtained. The method implicitly assume 
that each symbol ak

 has been precisely located in 

time. This is a strong requirement, since no method is 
known to perform time localization of the symbols  
without knowing the sequence. In this paper, we 
propose an approach that does not require knowledge 
of symbols times. It only needs previous estimate of 

the symbol period. The method is based on artificial 
neural networks techniques. 
 
 

3 Estimation of the spreading sequence 
To recover data information, we have to estimate 
h t( ) , without knowing the transmitter’s PN 

sequence. In this section we explain our method, 
which is based on artificial neural networks. 
 

3.1 Theoretical analysis 
The transmitted signal is the same as previously 
defined.  
The symbol period Ts

 is assumed to be known, it can 

be estimated using cyclostationarity analysis [7]. The 
received signal is sampled, and we will note Te

 the 

sampling period. We assume that Te
 is such that 

T MTs e=  where M  is an integer.  

Let us note 
�
s t( ) the M-dimensional vector below : 

[ ]�
⋯s t s t s t T s t T Te s e( ) ( ), ( ), , ( )= + + −                (9)       

where 
�
h t( )  and 

�
n t( )  are defined in the same way. 

From the signal samples, we can create a matrix 
S with M rows and N  columns, where N  is the 
number of temporal windows of duration Ts

 in the 

signal used for estimation : 

S s t s t T s t N Ts s= + + −
















⋮
�

⋮

⋮
�

⋮

⋯

⋯

⋯

⋮
�

⋮

( ) ( ) ( ( ) )1    (10) 

Let us note t mT ts= + 0 , where 0 0≤ <t Ts
 

From equation (6) we can write : 

� � �
s t a h t m k T n tk s

k

( ) ( ( ) ) ( )= + − +
=−∞

+∞

 0                 (11) 

 

� � �
s t a h t kT n tm k s

k

( ) ( ) ( )= + +−
=−∞

+∞

 0                            (12) 

Let us note 
�
h tk ( )0  the vector below : 

�
⋯h t h t kT h t k T Tk s s e

T( ) [ ( ), , ( ( ) )]0 0 0 1= + + + −  

Hence we can write : 
� � �
s t a h t n tm k k

k

( ) ( ) ( )= +− 0                                 (13) 

Since the time extension of h t( ) is limited, the sum 

has been limited to values of k for which 
�
h tk ( )0  is 

not null. In the sequel, we assume for clarity, that 
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h t( ) ≈ 0  for t outside the interval [ ]0,Ts . Hence, 
�
s t( )  can be written as follow : 
� � � �
s t a h t a h t n tm m( ) ( ) ( ) ( )= + ++ −0 0 1 1 0                   (14) 

where 
�
h t0 0( )  is the M-dimensional vector 

containing the end of the spreading waveform (for a 
duration T ts − 0 ) followed by zeros (for duration t0 ) . 
�

⋯ ⋯h t h t h t T h T Te s e

T

0 0 0 0 0 0( ) [ ( ), ( ), , ( ), , , ]= + − . 
�
h t−1 0( )  is the M-dimensional vector containing 

zeros (for a duration T ts − 0 ) followed by the 

beginning of the spreading waveform (for duration 

t0 ) . 
�

⋯ ⋯h t h h T h t Te e

T

− = −1 0 00 0 0( ) [ , , , ( ), ( ), , ( )] . 

Hence, we can write the matrix S  as follow : 

S h a h a n t
T T= + +−

� � � � �
0 0 1 1. . ( )                                   (15) 

where 
�

⋯a a a am m m m N

T= + + −[ , , , ]1 1  
�
h t0 0( )  and 

�
h t−1 0( )  are orthogonal, and  the noise is 

uncorrelated with the signal. Hence the subspace 

spanned by 
�
h t0 0( )  and 

�
h t−1 0( )  can be identified by 

a three layers neural network, whose hidden layer 
includes two neurons [8, 9, 10]. In fact we estimate 
h t( ) thanks to the second layer of weights. 

 
3.2 Description of the artificial neural 

network 
We create a feedforward network with three layers : a 
layer of the inputs, a hidden layer of two sigmoid 
neurons with hyperbolic tangent nonlinearities and an 
output layer of linear neurons. 
As the transmitted signal is complex, a neural 
network algorithm has been generalized to neural 
network with complex weights [9]. The network’s 
inputs are the columns of the matrix S , and the 
desired outputs are the same data as the inputs.  The 
weights are adjusted according to a backpropagation 
algorithm [10], which minimizes the mean square 
error between the network outputs and the desired 
ones. Contrary to classical use of neural networks, 
the useful information is not the outputs of the 
network, but the weights. In fact we recover the 
spreading sequence  in the second layer of weights. 
That is the reason why there is not previous train, but 
a training at each experiment. Hence we impose a 
condition to the two vectors corresponding  to the 
second layer of weights. The constraint does not 
allow the vectors to have energy in the same time at 
the same place. In this way, adding the two vectors 

gives us the spreading sequence used by the 
transmitter.  
 
3.3 Evaluation of the results 
As the weights are complex, we recover the 
spreading code with a phase indetermination. It is not 
a problem, because in any transmission system 
symbols phase is always indeterminate on the 
receiver side. Anyway, in our application, it can be 
useful to normalize the phase for results 
interpretation. The phase is calculated according to 
the expected sequence, to visualize the results, as 
stated below : 
let us note V  the spreading code found with the 

neural network, we visualize ɵV  such as 

{ }ɵ ReV Vz= , where z
V H

V

T

=
* .

2 , with H the true 

sequence. 
 

 

4   Illustrative results 
In many spread spectrum transmission systems, the 
spreading code is real when the channel effects are 
omitted, then we introduce several results with real 
sequences, treated with neural networks, the weights 
of which are first real and then complex. Then we 
study a transmission system, where the code and the 
network’s weights are complex. To complete our 
work, we provide some results according to the 
signal to noise ratio (SNR) to the number of temporal 
windows N of duration Ts

 and according to the 

length of the spreading sequence. 

 
4.1 Real sequence  

 

4.1.1 With real weights 

The studied PN sequence is a binary Gold code of length 
P = 31 , and we consider a BPSK data modulation. 
The channel adds white, gaussian, centered, and real 
noise. The SNR is -5 dB (the signal power is less 
than the noise power). 

 

 

 

 

 

 

 

 

Fig. Fig 1 shows the code used by the transmitter. 
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                 Fig. 1 : Transmitter’s PN code 

 

The first weight vector is shown on Fig. 2 
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                  Fig. 2 : First weight vector 

 

Fig. 3 shows the second weight vector. 
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                   Fig. 3 : second weight vector 

 

The first weight vector corresponds exactly to the end of 
the spreading sequence, whereas the end of the 
second weight vector corresponds to the opposite of 
the beginning of the code. Moreover we can observe 
that the constraint imposed to the vectors is well 
respected. There is only a problem of sign between 
the vectors, to recover the spreading code, we have to 
add the first one, with the opposite of the second one. 
It is a problem of phase indetermination.  

 

 

4.1.2 With complex weights 

The PN sequence is still a Gold code. It is the same 
as previously, and we consider now a QPSK 
modulation, damaged with a white, gaussian, 
centered and complex noise. The SNR is -10 dB. 
To visualize the results, we used the technique of  
phase normalization. 
 
Fig. 4 shows the estimated sequence (sum of the two 
weight vectors). 
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                           Fig. 4 : sum of two weight  vectors 

 

In comparison with Fig. 1, we recover exactly the 
spreading sequence, with a shift of ten positions left, 
because the received signal is not synchronized. 
 

4.2 complex sequence 

Let us now consider a complex sequence, the real and 
the complex parts of which are a Gold sequence. The 
information bearing signal is still a QPSK 
modulation, and the SNR is -10 dB. In this case we 
have to recover the real and imaginary parts of the 
sequence.  

 

Fig. 5 represents the real part of the code. 
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                  Fig. 5 : Real part of the code 

 

 

 

 

 

 and Fig. 6,  the imaginary part 
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                  Fig. 6 : Imaginary part of the code 

 

Fig. 7 and 8 represent the results of the neural network 
estimation (respectively real and imaginary parts of 
the weights). 
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                  Fig. 7 : Real part of the weights 
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              Fig. 8 : Imaginary part of the weights 

 

If we compare Fig. 5 and Fig. 7, the signs of  real 
part of the weights correspond exactly with the real 
part of the spreading sequence. Furthermore the 
signs of the imaginary part of the weights correspond 
exactly to the imaginary part of the code (Fig. 6 and 
Fig. 8). 

 

 

4.3 Performances of the method  
Here we introduce some tables summarizing the 
performances of our method. 

 

4.3.1 Influence of the number of windows in the 

studied signal 
We study the influence of the number of temporal 
windows N included in the signal used to estimate 
the spreading sequence.  
For this experiment, the sequence length is P = 31 , 
the modulation is a BPSK  and the SNR is equal to   
-12 dB. 

   

N 50 100 150 200 
nb_errors 5 2 0 0 

              
           Table 1 :Influence of the number of windows N 

 

nb_errors is the number of sign errors in the 
recovered  sequence . When N increases, the results 
are improved. 

 

4.3.2 Influence of the sequence length and the 

SNR 

The modulation signal is a QPSK filtered at the 
transmitter and the receiver sides, the spreading 
sequence is a complex code, and we study the 
number of errors with respect to the SNR for several 
sequence lengths. For our experiment, we consider 
sequences of length P = 31 63 127, , , the real and 

imaginary parts of which are different Gold 
sequences, and we have N = 200. We assume, for 
simplicity, that T PTs c= . So the signal to noise ratio 

on the correlator output can be expressed as a 
function of the signal to noise ratio on the correlator 
input : 
SNR P SNRout in=  

If we express the signal to noise ratio in dB : 
 

SNR P SNRout in= +10 10log ( )  

Hence the error probability per symbol Pe  can be 
written as :  

 

Pe erfc
SNR

erfc
SNRout out=









 −























1

2 2
2

1

2 2
 

with erfc x e dt
t

x

( ) = −
+∞


2 2

π
 

This shows that the performance of a transmitted 
spread spectrum signal is better with long sequences 
than with short ones. 
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Here are our results for different sequence lengths 
and SNRin

 (dB) 

 
  P  = 31  P  = 63  P   = 127 
SNR -2 -3 -4 -5 -6 -7 -9 -10 -11 
errors  0  1  4  0  1  2  0   0   2 

                             
      Table 2 : Influence of sequence length 

 
errors are the number of  signs errors in the sequence 
estimated by the neural network. 
We observe, that the results are improved, when the 
sequence is longer. We get a gain of 3 dB when we 
use a sequence length equals to 63 rather than 31, or 
a sequence length equals to 127 rather than 63, which 
corresponds about to : (10 63 10 3110 10log ( ) log ( )− ) 

and (10 127 10 6310 10log ( ) log ( )− ). The results 

follow approximately the same law as the error 
probability per symbol. 
   

 

5   Conclusion 
In the context of spectrum surveillance, a method for 
identification of a spread spectrum transmitter PN 
sequence has been proposed. Experimental results 
have been provided and show  good estimation 
results. Further work will include removal of sign or 
phase  indecision. 
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