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STRONG LARGE DEVIATION PRINCIPLES FOR PAIR EMPIRICAL

MEASURES OF RANDOM WALKS IN THE

MUKHERJEE-VARADHAN TOPOLOGY

DIRK ERHARD AND JULIEN POISAT

Abstract. In this paper we introduce a new topology under which the pair empirical
measure of a large class of random walks satisfies a strong large deviation principle.
The definition of the topology is inspired by the recent article by Mukherjee and
Varadhan [12]. This topology is natural for many translation-invariant problems such
as the Swiss cheese model [14]. We also adapt our result to certain rescaled random
walks.
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1. Introduction

Let X = (Xn)n∈N0 be a Markov chain on a Polish space Σ with a Feller transition
probability π which we assume to have a density p(x, y) with respect to a reference
measure λ(dy). In the seventies, Donsker and Varadhan [7, (II)] showed that the empirical
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measure defined by

(1.1) Ln =
1

n

n∑
k=1

δXk

satisfies a large deviation principle in the space of probability measures equipped with
the weak topology, when Σ is compact and p(x, y) is uniformly bounded above and below.
If the state space Σ is not compact (e.g. Σ = Rd equipped with the Euclidian distance),
the upper bound holds for compact sets rather than closed sets, while the lower bound
still holds for any open set under the following assumption: for all x ∈ Σ, for all A ⊂ Σ
such that λ(A) > 0, there exists k ∈ N such that πk(x,A) > 0, see [8, Corollary 3.4
and Equation (4.1)]. In some cases, this weak large deviation principle may be upgraded
to a standard (or strong) one, recovering the large deviation upper bound for all closed
sets. However such cases (see e.g. the uniformity assumption in [4, Corollary 6.5.10])
fail to include many natural examples. In applications, the lack of compactness may be
dealt with by adding a confining drift to the Markov chain (or diffusion) [10] or folding
on a large torus [1, 3, 9]. Quite recently, Mukherjee and Varadhan [12] proposed a new
approach in which they embed the space of probability measures on Rd into a larger
space equipped with a certain topology that makes it a compact metric space. Under
this new topology, they were able to prove a strong large deviation principle for the
empirical measure of Brownian motion [12, Theorem 4.1], which was then successfully
applied to the so-called polaron problem [2, 11, 12].

In this paper we adapt and extend the work of Mukherjee and Varadhan in order to
prove a strong large deviation principle for the pair empirical measure of the Markov
chain (Xn)n∈N0 , defined by

(1.2) L(2)
n =

1

n

n∑
k=1

δ(Xk,Xk+1),

in the case Σ = Rd. Our work is motivated by the application of this LDP to the so-called
Swiss cheese problem, that is the (downward) large deviation for the volume of a Wiener
sausage in Rd (d ≥ 2), by van den Berg, Bolthausen and den Hollander [14]. In [14] (as
well in the discrete random walk counterpart studied a bit later by Phetpradap [13] in
his Ph.D thesis) the authors used the aformentionned folding procedure on a large torus
to deal with the lack of compactness of the state space. In a future paper, we plan to
apply the strong LDP for the pair empirical measure to the Swiss cheese problem in
order to obtain the so-called tube property. The latter basically means that the empirical
measure introduced in [14] is close to the minimizer of the variational problem appearing
in [14].

The present paper is organized as follows. In Section 2 we introduce the relevant
notations and topology. Although there is a lot in common with [12], let us stress that this
is not the Mukherjee-Varadhan topology applied to the product space Rd×Rd instead of
Rd, see also Remark 2.1 below. Our main result is stated in Section 3, see Theorem 3.1.
Lower semi-continuity of the rate function is proven in Section 4. The lower and upper
bounds of the LDP are proven in Sections 5 and 6, respectively, in which we use the
well-known fact that (Xn, Xn+1) is itself a Markov chain. Finally we adapt our result to
the case of certain rescaled random walks in Section 7
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We refer the reader to [4, 5, 6, 15] for an account on Large Deviation Theory and [16]
for the role of topology in this theory.

2. Topology on the space of probability measures modulo shifts

Let M(2)
1 := M1(Rd × Rd) be the space of probability measures on Rd × Rd and

M(2)
≤1 := M≤1(Rd × Rd) be the space of sub-probability measures on Rd × Rd. We

consider the action of the shifts θx,x for x ∈ Rd, defined by:

(2.1)

∫
Rd×Rd

f(u, v)(θx,xν)(du,dv) =

∫
Rd×Rd

f(u+ x, v + x)ν(du,dv)

for all continuous bounded functions f : Rd × Rd 7→ R and ν ∈ M(2)
≤1. We shall denote

by M̃(2)
1 (resp. M̃(2)

≤1) the space of equivalence classes of M(2)
1 (resp. M(2)

≤1) under the
collection of shifts θx,x. For k ≥ 2, we define Fk as the space of continuous functions

f : (Rd)k 7→ R that are translation invariant, i.e.

(2.2) f(x1 + x, . . . , xk + x) = f(x1, . . . , xk), ∀x, x1, . . . , xk ∈ Rd,

and vanishing at infinity, in the sense that

(2.3) lim
maxi ̸=j |xi−xj |→∞

f(x1, . . . , xk) = 0.

For k ≥ 1, f ∈ F2k and α ∈ M(2)
≤1, we write

(2.4) Λ(f, α) :=

∫
f(u1, v1, . . . , uk, vk)

∏
1≤i≤k

α(dui, dvi),

which only depends on the orbit α̃.

Remark 2.1. Note that the space M̃(2)
1 defined here is different from M̃1(R2d) defined

in [12]. Indeed, in [12] the shifts are with respect to all directions in R2d whereas here
they are only with respect to all directions of the form (x, x) ∈ R2d. This is very natural
in view of our application to the pair empirical measure.

2.1. Vague and weak convergence. In this section we give a slight generalisation
of [12, Lemma 2.2] which will be useful for later purposes.

Lemma 2.2. Consider a sequence (µn)n∈N0 of sub-probability measures in Rd that con-
verges vaguely to some sub-probability measure α. Then we can write µn = αn + βn for
every n ∈ N0, where (αn)n∈N0 converges weakly to α and (βn)n∈N0 converges vaguely to
zero. Moreover, αn and βn can be chosen such that they have disjoint supports.

Proof of Lemma 2.2. The only part that was not explicitly mentioned in [12] is that αn

and βn can be chosen to have disjoint supports. However, this is a direct consequence
of the proof in [12]. Indeed, adopting their notation they defined αn as the restriction
of µn to B(0, Rn) and βn as the restriction of µn to B(0, Rn)

c, where ∥ · ∥2 denotes
the Euclidean norm in Rd and (Rn)n∈N0 is an increasing sequence converging to infinity
satisfying

(2.5) µn(B(0, Rn)) ≤ α(Rd) +
1

Rn
.
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The claim therefore follows. ■

2.2. Widely separated sequences. We say that two sequences (αn) and (βn) in M(2)
≤1

are widely separated if, for some positive function V in F4,

(2.6) lim
n→∞

∫
(Rd)4

V (u1, v1, u2, v2)αn(du1, dv1)βn(du2, dv2) = 0.

The following lemma, which mimicks [12, Lemma 2.4], lists the most important properties
of widely separated sequences of sub-probability measures.

Lemma 2.3. Let (αn) and (βn) be two widely separated sequences in M(2)
≤1. Then,

(1) For every W ∈ F4,

(2.7) lim
n→∞

∫
W (u1, v1, u2, v2)αn(du1, dv1)βn(du2, dv2) = 0 .

(2) For every k ≥ 2 and every f ∈ F2k,

(2.8) lim
n→∞

|Λ(f, αn + βn)− Λ(f, αn)− Λ(f, βn)| = 0.

Proof of Lemma 2.3. Let W ∈ F4 be arbitrary and let V ∈ F4 be the positive function
from (2.6). Then, since V (0, v1, u2, v2) is bounded from below by a positive constant on
compact sets, for every ε > 0 there exists a constant Cε such that for any v1, u2, v2 ∈ Rd,

(2.9) |W (0, v1, u2, v2)| ≤ CεV (0, v1, u2, v2) + ε .

Thus
(2.10)

lim sup
n→∞

∫
|W (u1, v1, u2, v2)|αn(du1,dv1)βn(du2,dv2)

≤ Cε lim sup
n→∞

∫
V (0, v1 − u1, u2 − u1, v2 − u1)αn(du1,dv1)βn(du2,dv2) + ε

= ε ,

and (1) follows. To see that (2) holds as well, we first note that the case k = 2 is a direct
consequence of the first part of the lemma. The case k ≥ 3 follows easily: w.l.o.g, any
cross-term in the expansion of Λ(f, αn + βn) may be written as

(2.11)

∫
f(u1, v1, u2, v2, . . . , uk, vk)αn(u1, v1)βn(u2, v2)

∏
3≤i≤k

γn,i(ui, vi),

where γn,i is either αn or βn. Using translation invariance and repeating the argument
used at the beginning of the proof, we see that for every ε > 0, there exists Cε > 0 such
that for all v1, u2, v2, . . . , uk, vk ∈ Rd,

(2.12) |f(0, v1, u2, v2, . . . , uk, vk)| ≤ CεV (0, v1, u2, v2) + ε,

which allows to conclude. ■

Here is a sufficient condition for two sequences of measures to be widely separated.

Lemma 2.4. Let (αn) and (βn) be two sequences in M(2)
≤1. If (αn) is tight and (βn)

converges vaguely to zero, then they are widely separated.
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Proof of Lemma 2.4. Let V ∈ F4 and ε > 0. By tightness of (αn) and boundedness of
V , there exists M > 0 such that for all n ≥ 1,

(2.13)

∫
V (u1, v1, u2, v2)αn(du1,dv1)βn(du2,dv2) ≤

∫
|u1|,|v1|≤M

(. . .) + ε∥V ∥∞.

Here, (. . .) stands of course for V (u1, v1, u2, v2)αn(du1,dv1)βn(du2,dv2). We further split
the integral on the right-hand side as

(2.14)

∫
|u1|,|v1|≤M
|u2|,|v2|≤2M

(. . .) +

∫
|u1|,|v1|≤M
|u2|,|v2|>2M

(. . .) .

We claim that we can make the second term smaller than ε by choosing M even larger if
necessary. Indeed, since |u2 − u1| ≥M on the domain of integration and V is vanishing
at infinity the claim follows. As for the first term, it goes to zero as n goes to infinity
since V is bounded and (βn) converges vaguely to zero. ■

2.3. Totally disintegrating sequences. We say that a sequence (µn) inM(2)
≤1 is totally

disintegrating if, for any r > 0,

(2.15) lim
n→∞

sup
x∈Rd

µn(B((x, x), r)) = 0.

From now on and unless stated otherwise the balls are defined with respect to the ℓ∞-
norm. Following [12, Lemma 2.3], we obtain the following result.

Lemma 2.5. The sequence (µn) in M(2)
≤1 is totally disintegrating iff one of the following

equivalent statements holds:

(1) There exists a positive V ∈ F4 such that limn→∞ Λ(V, µn) = 0.

(2) For any V ∈ F4, limn→∞ supx∈Rd

∫
V (0, x, u, v)µn(du,dv).

(3) For any V ∈ F4, limn→∞ Λ(V, µn) = 0.

Proof of Lemma 2.5. We prove that (1) ⇒ (2.15) ⇒ (2) ⇒ (3). Clearly, (3) implies (1).
(i) Let us prove that (1) implies (2.15). Letting

(2.16) δ := min
a,b,c∈B(0,2r)

V (0, a, b, c) > 0,

we get

(2.17)

∫
V (u1, v1, u2, v2)µn(du1,dv1)µn(du2, dv2)

=

∫
V (0, v1 − u1, u2 − u1, v2 − u1)µn(du1,dv1)µn(du2,dv2)

≥ δ

∫
v1,u2,v2∈B(u1,2r)

µn(du1, dv1)µn(du2,dv2)

≥ δ sup
x∈Rd

µn(B((x, x), r))2.
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(ii) From (2.15) to (2). Let x ∈ Rd. Fix M > 0 and write

(2.18)

∫
|V (0, x, u, v)|µn(du,dv)

=

∫
B((x,x),M)

|V (0, x, u, v)|µn(du,dv) +
∫
B((x,x),M)c

|V (0, x, u, v)|µn(du,dv).

The first term on the right hand side goes to zero uniformly in x as n tends to infinity
by the boundedness of V and by (2.15), while the second term goes to zero uniformly in
x as M tends to infinity by the fact that V vanishes at infinity.

(iii) To go from (2) to (3), write

(2.19)

Λ(V, µn) ≤ sup
x,y∈Rd

∫
V (0, y − x, u− x, v − x)µn(du,dv)

≤ sup
y∈Rd

∫
V (0, y, u, v)µn(du,dv) ,

which goes to zero as n→ ∞, by assumption. Here, we used that µn is a sub-probability
measure to obtain the first inequality. ■

As an immediate corollary we obtain the following:

Corollary 2.6. If the sequence (µn) is totally disintegrating then, for any k ≥ 2 and
any V ∈ F2k,

(2.20) lim
n→∞

Λ(V, µn) = 0 .

Proof of Corollary 2.6. Apply Item (3) in Lemma 2.5 to

(2.21) W (u1, v1, u2, v2) := sup
u3,v3,...,uk,vk∈Rd

|V (u1, v1, . . . , uk, vk)|.

■

2.4. Compactification. Let us define

(2.22) F (2) :=
⋃
k≥2

F2k,

for which there exists a countable dense set (under the uniform metric) denoted by

(2.23) {fr(u1, v1, . . . , ukr , vkr) : r ∈ N},

(same arguments as in [12, Section 2.2]). We define

(2.24) X̃ (2) :=
{
ξ = {α̃i}i∈I : αi ∈ M(2)

≤1,
∑
i∈I

αi(Rd × Rd) ≤ 1
}
,

where I may be empty, finite or countable. Recall (2.4) and for any ξ1, ξ2 ∈ X̃ (2), define

(2.25) D2(ξ1, ξ2) :=
∑
r≥1

1

2r
1

1 + ∥fr∥∞

∣∣∣ ∑
α̃∈ξ1

Λ(fr, α)−
∑
α̃∈ξ2

Λ(fr, α)
∣∣∣.

Proposition 2.7. D2 is a metric on X̃ (2).
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Proof of Proposition 2.7. This follows the same line of proof as [12, Theorem 3.1].
Step 1. If D2(ξ1, ξ2) = 0 then for all k ≥ 2 and f ∈ F2k,

(2.26)
∑
α̃∈ξ1

Λ(f, α) =
∑
α̃∈ξ2

Λ(f, α).

We deduce therefore that for every integer r ≥ 1,

(2.27)
∑
α̃∈ξ1

Λ(f, α)r =
∑
α̃∈ξ2

Λ(f, α)r.

Indeed, define the function (for r = 2)

(2.28)
gN (u1, v1, . . . , uk, vk, uk+1, vk+1, . . . , u2k, v2k)

:= f(u1, v1, . . . , uk, vk)f(uk+1, vk+1, . . . , u2k, v2k)φ
(uk+1 − u1

N

)
,

where 0 ≤ φ ≤ 1 is equal to 1 inside a ball of radius 1 and is truncated smoothly to 0
outside a ball of radius 2. Then, gN ∈ F4k and converges pointwise to f ⊗ f as N → ∞.
Hence, using the fact that f is bounded and dominated convergence

(2.29) lim
N→∞

Λ(gN , α) = Λ(f, α)2 .

The general case follows the same idea.
Step 2. Same as in [12].
Step 3. This step is also an adaptation of [12], so we only sketch the arguments.

We want to recover the orbit of α ∈ M(2)
≤1 from the value of Λ(f, α) for f ∈ F2k.

Adapting [12], from these values we get those of

(2.30)
k∏

j=1

ϕ(sj , tj), where ϕ(s, t) :=

∫
ei⟨(s,t),(u,v)⟩α(du,dv), s, t ∈ Rd,

provided
∑

(sj + tj) = 0. Suppose now that

(2.31) ∀k ≥ 1,

k∏
j=1

ϕ(sj , tj) =

k∏
j=1

ψ(sj , tj), whenever
∑

(sj + tj) = 0.

Following [12], we obtain that |ϕ(s, t)| = |ψ(s, t)| and write ϕ(s, t) = ψ(s, t)χ(s, t) when-

ever |ϕ(s, t)| = |ψ(s, t)| ≠ 0. As soon as
∑

(sj+tj) = σ+τ ∈ Rd, we have
∏k

j=1 χ(sj , tj) =

χ(σ, τ), provided that the sj ’s and tj ’s are such that |ψ(sj , tj)| = |ϕ(sj , tj)| ≠ 0 for all j.
In particular,

(2.32) χ(s1 + s2, t1 + t2) = χ(s1, t1)χ(s2, t2),

hence as in [12] we can show that χ(s, t) = ei(⟨a1,s⟩+⟨a2,t⟩) for some a1, a2 ∈ Rd. The fact
that actually χ(s1 + s2 + C, t1 + t2 − C) = χ(s1, t1)χ(s2, t2) for all C ∈ Rd entails that
a1 = a2. This means that α is determined up to shifts by some (a, a) ∈ R2d, which ends
the proof. ■

Proposition 2.8. The space X̃ (2) equipped with D2 is a compact metric space.
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Proof of Proposition 2.8. This proof is an adaptation of the arguments used in [12], so
we only sketch the arguments.

Step 1. Let us first show that M̃(2)
1 is dense in X̃ (2). Let ξ = {α̃i, i ∈ I} ∈ X̃ (2) and

ε > 0. Pick a finite collection {α̃i, 1 ≤ i ≤ k} such that
∑

i>k pi < ε, where pi denotes
the total mass of α̃i. Let αi be an arbitrary member of the orbit α̃i and for M > 0, let
λM be the Gaussian law on R2d with zero mean and covariance matrix M × Id. Pick any
sequence (ai,M )1≤i≤k in (Rd)k such that infi ̸=j |ai,M − aj,M | → ∞ as M → ∞. Finally,
set

(2.33) µM :=
∑

1≤i≤k

αi ∗ δ(ai,M ,ai,M ) +
(
1−

∑
1≤i≤k

pi

)
λM ∈ M(2)

1 .

Since the mutual distances of the centers of masses of the measures in the first sum
increase to infinity, i.e., they are widely separated, see (2.6) and all the mass of λM
vanishes in the limit as M tends to infinity, i.e, λM is totally disintegrating, see (2.15),
we get by Lemmas 2.3 and 2.5 that for all k ≥ 1 and f ∈ F2k,

(2.34) lim
M→∞

Λ(f, µM ) =
∑

1≤i≤k

Λ(f, α̃i).

Since ε > 0 may be chosen arbitrarily small this completes the first step.

Step 2. Let us show that for any sequence (µn) in M(2)
1 , there exists a subsequence

along which (µ̃n) converges to some element of M̃(2)
1 . Together with the first step this

implies the result. We start with some preliminary considerations. We use the following
concentration function:

(2.35) qµ(r) := sup
x∈Rd

µ(B((x, x), r)), r ≥ 0, µ ∈ M(2)
1 .

Let now (µn)n∈N be a sequence in M(2)
≤1. Going over to a subsequence if necessary, we

may define, by Helly’s selection theorem,

(2.36) q := lim
r→∞

lim
n→∞

qµn(r) and p := lim
n→∞

µn(R2d) .

If q = 0, then it follows by Corollary 2.6 that µ̃n → 0 in X̃ (2). If on the other hand q > 0,
then taking a suitable translation vector (an, an) ∈ Rd×Rd we have that for some r > 0
and all sufficiently large n the shifted measure λn = µn ∗ δ(an,an) satisfies
(2.37) λn(B((0, 0), r)) ≥ q/2 .

Choosing a subsequence if needed, we may assume that (λn) converges vaguely to some

α ∈ M(2)
≤1 and by Lemma 2.2 we may further write λn = αn + βn with αn converging

weakly to α, βn converging vaguely to zero and αn and βn having disjoint supports. By
Lemma 2.4∗, for every V ∈ F4,

(2.38) lim
n→∞

∫
V (u1, v1, u2, v2)αn(du1, dv1)βn(du2, dv2) = 0 .

If additionally q = p, then no mass escapes to infinity and one can choose βn to be

zero. In that case it follows that µ̃n → α in X̃ (2), similarly to [12, Theorem 3.2]. To

∗The use of Lemma 2.4 corrects a small gap in [12]. Indeed, the analogous step in the proof of [12,
Theorem 3.2, Step 2] does not seem to follow from Lemma 2.4, as it is claimed therein.
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conclude the result we can now proceed in very much the same way as in [12]. Fix a

sequence (µn)n in M(2)
1 . If q ∈ {0, 1} then the above considerations imply the result.

Otherwise, for some sequence (an, an) ∈ Rd ×Rd, at least along a subsequence, we have
the decomposition µn = αn + βn, where

(1) αn ∗ δ(an,an) → α weakly as n→ ∞;
(2) For every V ∈ F4 the integral∫

V (u1, v1, u2, v2)αn(du1,dv1)βn(du2,dv2)

converges to zero;
(3) limn→∞ qβn(r) ≤ min{1− q/2, q};
(4) αn and βn have disjoint support.

In the last item we used that mass q/2 has been removed from µn, see (2.37). If the above
limit is not zero one can repeat the same procedure with βn, i.e., for an appropriate shift
of βn one decomposes it as a sum of two measures were one converges weakly and the
other converges vaguely to zero and such that additionally the above three items are
satisfied. If this process terminates after some finite number of stages k ∈ N we obtain
the decomposition

(2.39) µn =
k∑

j=1

αn,j ∗ δ(an,j ,an,j) + βn ,

such that αn,j ∗ δ(an,j ,an,j) converges weakly, qβn(r) → 0 for every r and such that for
every V ∈ F4 and 1 ≤ i < j ≤ k,

(2.40)

∫
V (u1 + an,i, v1 + an,i, u2 + an,j , v2 + an,j)αn,i(du1, dv1)αn,j(du2, dv2)

and

∫
V (u1 + an,i, v1 + an,i, u2, v2)αn,i(du1,dv1)βn(du2,dv2)

tend to zero as n→ ∞. If the process does not terminate after a finite number of stages,
then one has a similar decomposition that goes by induction. We refer to the proof of [12,
Theorem 3.2] for details. ■

3. Large Deviation Principles

Let X = (Xi)i∈N0 be a Markov chain in Rd starting from the origin and with a
transition kernel π satisfying the following assumptions:

(1) (Random walk) There exists a function p : Rd 7→ R+ and a reference measure λ
such that π(x,A) =

∫
A p(y − x)λ(dy) for all x ∈ Rd and Borel set A ⊆ Rd.

(2) (Irreducibility) For all Borel set A ⊆ Rd such that λ(A) > 0, there exists k ∈ N
such that πk(x,A) =

∫
A p

∗k(y − x)λ(dy) > 0.

(3) (Tightness) There exists a positive sequence (ρn)n∈N with lim supn→∞
1
n log ρn =

0 such that

(3.1) lim
n→∞

1

n
log P

(
sup

1≤i≤n
|Xi| ≥ ρn

)
= −∞ .
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Theses assumptions include many natural examples such as the simple random walk on
Zd (with the counting measure as reference measure) or the discretized Brownian motion
(Biε)i∈N0 , where ε > 0 and B is Brownian motion (with Lebesgue measure as reference
measure). Assumption (1) implies shift-invariance of the process, see Remark 3.2 below.
Assumption (2) is used at the end of the proof of Proposition 5.1 when applying the
standard large deviation lower bound in the usual weak topology [8, Corollary 3.4 and
Equation (4.1)]. Assumption (3) is used during the proof of Lemma 6.2 .

Let us denote by

(3.2) Ln :=
1

n

n∑
i=1

δ(Xi−1,Xi) ∈ M(2)
1

the pair empirical measure associated to X and L̃n be its orbit in M̃(2)
1 . We obtain the

following:

Theorem 3.1. As n→ ∞, (L̃n)n∈N satisfies a strong Large Deviation Principle on the

compact metric space X̃ (2) equipped with D2, with speed n and rate function J̃ (2), where

(3.3) J̃ (2)(ξ) :=
∑
i∈I

h(αi|αi,1 ⊗ π), (ξ = {α̃i}i∈I),

αi being any representative of α̃i and αi,1 its projection onto the first d coordinates. Here,
h(·|·) is the relative entropy between two measures, i.e.,

(3.4) h(µ|ν) =
∫

log
(dµ
dν

)
dµ ,

with the understanding that the integral is infinite if the Radon Nikodym derivative above
does not exist.

Remark 3.2. We note that the rate function in (3.3) is well defined due to the fact that
the transition kernel π only depends on the difference of its two arguments. Indeed, this
implies that inside the sum in (3.3) the choice of the element αi in the orbit α̃i does not
matter.

Let us recall the well-known fact that the process (Xi−1, Xi)i∈N is itself a Markov
chain on Rd × Rd with transition kernel

(3.5) π(2)(x1, x2, dy1, dy2) := δx2(y1)π(x2, dy2), x1, x2, y1, y2 ∈ Rd.

The proof of Theorem 3.1 is split into three parts: we prove the lower semi-continuity
of the rate function (Proposition 4.1) then the lower bound (Proposition 5.1) and finally
the upper bound (Proposition 6.1).

We end this section with a corollary. To that end define the empirical measure L
(1)
n of

(Xi)i∈N0 via

(3.6) L(1)
n =

1

n

n∑
i=1

δXi .

Note that L
(1)
n is simply the second marginal of Ln. We further denote by L̃

(1)
n the orbit

of L
(1)
n in M̃1(Rd), the space defined in [12, Section 2]. See Remark 2.1 for the difference
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between M̃(2)
1 and M̃1(R2d). We moreover denote by X̃ the compactification of M̃1(Rd),

equipped with the metric D, see [12, Section 3] for details. The following corollary is
then a direct consequence of Theorem 3.1 and the contraction principle.

Corollary 3.3. As n → ∞, (L̃
(1)
n )n∈N satisfies a strong Large Deviation Principle on

the compact metric space X̃ equipped with D, with speed n and rate function J̃ (1) defined
by

(3.7) J̃ (1)(θ) = inf{J̃ (2)(ξ) : ξ1 = θ} ,

where for ξ = {α̃i}i∈I ∈ X̃ (2) we denote by ξ1 the collection {αi,2}i∈I and αi,2 denotes
the second marginal of αi (projection onto the d last coordinates).

Proof of Corollary 3.3. In order to apply the contraction principle [4, Theorem 4.2.1], we

show that the second projection (onto the last d coordinates) from (X̃ (2),D2) to (X̃ ,D)
is continuous. The reader may check that it is actually enough to prove continuity of

the projection from (M̃(2)
≤1,D2) to (M̃≤1,D). Suppose that (ν̃n(du,dv)) is a sequence

of orbits of sub-probability measures on Rd ×Rd that converges to ν̃(du,dv) for the D2

metric. Let k ≥ 2 and f ∈ Fk. We may write f(v1, . . . , vk) = f̂(u1, v1, . . . , uk, vk) where

f̂ ∈ F2k is constant along the u-variables. Then (the choice of elements in the orbits
below is not relevant),

(3.8)

∫
f(v1, . . . , vk)

∏
1≤i≤k

ν(Rd,dvi) =

∫
f̂(u1, v1 . . . , uk, vk)

∏
1≤i≤k

ν(dui,dvi)

= lim
n→∞

∫
f̂(u1, v1 . . . , uk, vk)

∏
1≤i≤k

νn(dui, dvi)

= lim
n→∞

∫
f(v1, . . . , vk)

∏
1≤i≤k

νn(Rd, dvi).

This concludes the proof. ■

4. Lower semi-continuity of the rate function

Proposition 4.1. The function

(4.1) ξ = {α̃i}i∈I ∈ X̃ (2) 7→ J̃ (2)(ξ) =
∑
i∈I

h(αi|αi,1 ⊗ π)

is lower semi-continuous.

Proof of Proposition 4.1. We use the notation J (2)(α) := h(α|α1 ⊗ π), where α ∈ M(2)
≤1

and α1 stands for its projection on the d first coordinates along the proof. Recall (3.5).
We will also use that

(4.2) J (2)(α) = sup
v

∫
log

( v

π(2)v

)
dα,

where the supremum runs over all bounded and Borel-measurable (or continuous and
compactly supported) functions u : Rd × Rd → [1,+∞), see [4, Theorem 6.5.12 and

Corollary 6.5.10]. Let (µn) be a sequence in X̃ (2) converging to ξ = {α̃i}i∈I . Suppose
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that there exists ℓ ∈ (0,∞) such that J̃ (2)(µn) ≤ ℓ for all n large enough and let us

show that J̃ (2)(ξ) ≤ ℓ. We for now restrict to the case where for each n, µn is made of

a single orbit, so that J̃ (2)(µn) = J (2)(µn). Let ε > 0. By the same arguments used in
Proposition 2.8 and possibly restricting to a subsequence, we may write for some k ≥ 1,

(4.3) µn =

k∑
i=1

α(i)
n + βn,

where α
(i)
n (1 ≤ i ≤ k) and βn are sequences of sub-probability measures in Rd×Rd, and

a
(i)
n (1 ≤ i ≤ k) are sequences in Rd. Moreover those sequences can be chosen such that

(4.4)
α(i)
n ∗ δ

(a
(i)
n ,a

(i)
n )

⇒ αi ∈ α̃i, n→ ∞,

lim
n→∞

min
i ̸=j

|a(i)n − a(j)n | = +∞,

and (βn) is widely separated from each (α
(i)
n ), with (recall (2.35))

(4.5) lim sup
n→∞

qβn(r) ≤ ε, ∀r > 0.

Moreover, by Lemma 2.2 and the construction in Step 2 of Proposition 2.8 the supports

of α
(1)
n , α

(2)
n , . . . , βn are all disjoint and for each i there exists a sequence (R

(i)
n )n∈N0

tending to infinity such that Supp(α
(i)
n ) ⊆ B((−a(i)n ,−a(i)n ), R

(i)
n ) and the support of βn

is contained in the complement of
⋃

iB((−a(i)n ,−a(i)n ), R
(i)
n ). We now define

(4.6) u
(n)
i (x, y) = ui(x+ a(i)n , y + a(i)n ), x, y ∈ Rd .

Note that by the compactness of the support of ui the support of each u
(n)
i is contained

in a compact ball in R2d centered around (−a(i)n ,−a(i)n ). In particular, recalling (3.5)
there is R > 0 such that for all 1 ≤ i ≤ k

(4.7)
Supp u

(n)
i ⊆ B((−a(i)n ,−a(i)n ), R) ,

Supp π(2)u
(n)
i ⊆ Rd ×B(−a(i)n , R) ,

hence

(4.8)
( 1 + u

(n)
i

1 + π(2)u
(n)
i

)
(x, y) ̸= 1 ⇒ y ∈ B(−a(i)n , R).

Therefore

(4.9) lim
n→∞

∫
log

( 1 + u
(n)
i

1 + π(2)u
(n)
i

)
dα(j)

n =

{∫
log

(
1+ui

1+π(2)ui

)
dαi (i = j)

0 (i ̸= j).

Finally, letting

(4.10) u(n) =
∑

1≤i≤k

u
(n)
i ,
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we obtain:

(4.11)

ℓ ≥ lim inf
n→∞

J (2)(µn) ≥ lim inf
n→∞

∫
log

( 1 + u(n)

1 + π(2)u(n)

)
dµn

≥ lim inf
n→∞

∑
1≤i,j≤k

∫
log

( 1 + u
(n)
i

1 + π(2)u
(n)
i

)
dα(j)

n

≥
∑

1≤i≤k

J (2)(αi)− ε.

Here, the contribution coming from βn is zero because for sufficiently large n we have

that βn(dx,dy) = 0 for y ∈ B(−a(i)n , R), which together with (4.8) shows that the
contribution is indeed zero. It now remains to send ε to zero and k to infinity. Finally,
to treat the general case, that is when µn has possibly more than one orbit, the idea is
the same as in the last paragraph of [12, proof of Lemma 4.2].

■

5. Lower bound

Proposition 5.1. For any open set G in X̃ (2),

(5.1) lim inf
n→∞

1

n
log P(L̃n ∈ G) ≥ − inf

ξ∈G
J̃ (2)(ξ).

Proof of Proposition 5.1. Let ξ = {αi, i ∈ I} be an element of X̃ (2) such that J (2)(ξ) <
+∞, hence h(αi|αi,1 ⊗ π) < +∞ for all i ∈ I. Let U be any open neighborhood of ξ. It
is enough to prove that

(5.2) lim inf
n→∞

1

n
log P(L̃n ∈ U) ≥ −J̃ (2)(ξ).

We proceed as in [12, Lemma 4.3] and use the density of M̃(2)
1 in X̃ (2), already proven

in the proof of Proposition 2.8 (Step 1). Let k ≥ 1 and consider the sequence (µM )
defined as in (2.33), except that we replace the totally disintegrating sequence (λM ) by
(λM,1 ⊗ π), that is totally disintegrating as well and is such that µ̃M still converges in

X̃ (2) to ξ. Using the sub-additive property of ν ∈ M(2)
≤1 7→ h(ν|ν1 ⊗ π) (straightforward

from (4.2)), we obtain:

(5.3) J (2)(µ̃M ) = h(µM |µM,1 ⊗ π) ≤
∑

1≤i≤k

h(αi|αi,1 ⊗ π) ≤ J (2)(ξ).

Thus, we have shown that there exists a sequence (µM )M∈N0 in M̃(2)
1 which converges

in X̃ (2) to ξ and is such that

(5.4) lim sup
M→∞

J (2)(µ̃M ) ≤ J (2)(ξ) .

The lower bound now follows from the standard Large Deviation lower bound of the pair

empirical measure on M(2)
1 (see [8] and the discussion in Section 1). ■



14 DIRK ERHARD AND JULIEN POISAT

6. Upper bound

In this section we prove the following

Proposition 6.1. For any closed set F in X̃ (2),

(6.1) lim sup
n→∞

1

n
log P(L̃n ∈ F ) ≤ − inf

ξ∈F
J̃ (2)(ξ).

Let U denote the space of non-negative, continuous and compactly supported functions
defined on Rd × Rd. For any k ≥ 1, c > 0, u1, . . . , uk ∈ U and a1, . . . , ak ∈ Rd, let
g = g(u, c,R) : Rd × Rd → (0,∞) be defined by

(6.2) g(x, y) = c+
k∑

i=1

ui(x+ ai, y + ai)φ
(x+ ai

R
,
y + ai
R

)
, x, y ∈ Rd,

where φ is a smooth non-negative function such that 0 ≤ φ ≤ 1, φ = 1 inside the unit
ball and φ = 0 outside the ball of radius two. For all µ ∈ M1(Rd × Rd), define

(6.3) F (u, c,R, µ) = sup
a1,...,ak

mini ̸=j |ai−aj |≥4R

∫
Rd×Rd

− log
(π(2)g(x, y)

g(x, y)

)
µ(dx,dy).

Since F (u, c,R, ·) is invariant under shifts of the form µ → µ ∗ δ(x,x), we may lift it up

to a function F̃ defined on M̃(2)
1 . In the sequel, we write

(6.4) ui,R(x, y) := ui(x, y)φ(x/R, y/R), x, y ∈ Rd.

The proof of the upper bound follows from the following three lemmas:

Lemma 6.2 (Sub-exponential growth). For any choice of (u, c,R), we have

(6.5) lim sup
n→∞

1

n
log E exp(nF̃ (u, c,R, L̃n)) ≤ 0.

Lemma 6.3 (Lower-semicontinuous extension). If the sequence (µ̃n) converges to ξ =

(α̃i)i∈I in (X̃ (2),D2), then

(6.6) lim inf
n→∞

F̃ (u, c,R, µ̃n) ≥ Λ̃(u, c,R, ξ),

where
(6.7)

Λ̃(u, c,R, ξ) := sup
{α̃1,...,α̃k}⊆ξ

k∑
i=1

sup
b∈Rd

∫
− log

{π(2)(c+ ui,R)(x, y)

(c+ ui,R)(x, y)

}
αi(dx+ b,dy + b).

Remark 6.4. Lemma 6.3 is analogous to Lemma 4.6 in [12]. However, the two suprema
in (6.7) are not in the original paper. First, we add the supremum over b ∈ Rd so that the
quantity inside is a function of the orbit α̃i only rather than a function of a particular
member of its orbit. This has however no consequence on the sequel of the argument
in [12], since they later consider a supremum over functions (Lemma 4.7) allowing for
arbitrary shifts. The other supremum is here to stress that an element of ξ is a collection
of sub-probability orbits rather than a sequence.
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Lemma 6.5. We have

(6.8) J (2)(ξ) = sup
c,R>0, k≥1
u1,...,uk∈U

Λ̃(u, c,R, ξ).

Proof of Lemma 6.2. Use that

(6.9) −n
∫
Rd×Rd

log
(π(2)g(x, y)

g(x, y)

)
Ln(dx, dy) = log

n∏
i=1

g(Xi−1, Xi)

π(2)g(Xi−1, Xi)
,

so that

(6.10) E
[
exp

(
n

∫
Rd×Rd

− log
(π(2)g(x, y)

g(x, y)

)
Ln(dx, dy)

)]
= E

[ n∏
i=1

g(Xi−1, Xi)

π(2)g(Xi−1, Xi)

]
.

We write the product as

(6.11)
n∏

i=1

g(Xi−1, Xi)

π(2)g(Xi−1, Xi)
=

g(X0, X1)

π(2)g(Xn−1, Xn)

n−1∏
i=1

g(Xi, Xi+1)

π(2)g(Xi−1, Xi)
,

and since g is bounded from below by c we see that

(6.12) E
[ n∏
i=1

g(Xi−1, Xi)

π(2)g(Xi−1, Xi)

]
≤ sup g

c
E
[ n−1∏

i=1

g(Xi, Xi+1)

π(2)g(Xi−1, Xi)

]
,

and, by the fact that Yi = (Xi−1, Xi) is a Markov chain and an induction argument
the last expectation is one. This shows that the exponential rate of the right-hand side
of (6.10) is zero. It therefore only remains to deal with the case in which in (6.10) an
additional supremum is taken over a1, . . . , ak as in the statement of the result. This
follows via a coarse graining argument. The idea is that by (3.1) it is exponentially
unlikely that X travels in the time interval [0, n] to a distance ρn, which allows one to
restrict the supremum over a1, . . . , ak to balls of radius ρn. In a very similar way as
in [12, proof of Lemma 4.5] one may then conclude, so we omit the details.

■

Proof of Lemma 6.3. As it can be seen from the second step of the proof of Proposi-
tion 2.8, convergence in D2 implies the existence of a decomposition

(6.13) µn =
k∑

j=1

αn,j ∗ δ(an,j ,an,j) + βn,

along subsequences as in (2.39), where, for all 1 ≤ j ≤ k

• (an,j)n≥1 is a sequence in Rd satisfying

(6.14) |an,i − an,j | ≥ 4R

if n large enough and i ̸= j;
• αn,j ∗ δ(an,j ,an,j) converges weakly to αj as n→ ∞, where αj is some element in
the orbit of α̃j ;

• (αn,j) and (βn) are widely separated.
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Recall (6.2). Choosing ai = −an,i in the definition of g, we obtain

(6.15) g(x, y) = c+
k∑

i=1

ui,R(x− an,i, y − an,i).

By (6.14) and our assumption on φ, at most one term in the sum above can be nonzero.
Also,

(6.16) π(2)ui,R(x− an,i, y − an,i) =

∫
ui,R(y − an,i, z − an,i)p(z − y)λ(dz)

is nonzero for at most one value of 1 ≤ i ≤ k which is the same as in the above. We
finally obtain:

(6.17) log
(π(2)g(x, y)

g(x, y)

)
=

k∑
i=1

log
(c+ π(2)ui,R(x− an,i, y − an,i)

c+ ui,R(x− an,i, y − an,i)

)
and we can conclude almost as in [12, Lemma 4.6]. As we already pointed out in Re-
mark 6.4, there is more flexibility in choosing ai (see (6.2)), which explains the additional
supremum (over b) in our statement, compared to [12, Lemma 4.6]. Indeed, let bj ∈ Rd

for all 1 ≤ j ≤ k. Then we may choose ai = −an,i+bi instead of ai = −an,i. If we require
that |an,i − an,j | ≥ 4R + max1≤j≤k |bj | instead of simply |an,i − an,j | ≥ 4R, then we
finally get our claim.To see why the second supremum appears, note that if the number
of elements in ξ is unbounded then in (6.13) we can actually choose the k in the sum
independent of the k in (6.2). Therefore adjusting the choice of a1, . . . , ak we can obtain
any collection {α̃1, . . . , α̃k} in the limit. We therefore can conclude. ■

Proof of Lemma 6.5. As in [12, Lemma 4.7], we get

(6.18) sup
c,R>0 ,

u1,...,uk∈U

Λ̃(u, c,R, ξ) =
k∑

i=1

sup
c>0
u∈U

∫
− log

π(2)(c+ u)(x, y)

(c+ u)(x, y)
αi(dx, dy).

The supremum in the sum actually coincides with J (2)(αi), see [4, Theorem 6.5.12 and
Corollary 6.5.10]. ■

Proof of Proposition 6.1. The proof follows from Lemmas 6.2-6.5 in the exact same way
as Proposition 4.4 in [12] follows from Lemmas 4.5–4.7 therein. ■

7. Adaptation to rescaled random walks

A small adaptation of the proof of Proposition 6.1 yields the same result also for
a rescaled random walk. To precisely formulate the result we need to introduce more
notation. Let (Xi)i∈N0 be a random walk in Zd. Assume that its step distribution is
centered and square-integrable, with (1/d)Id as covariance matrix. Let (an) be a sequence
of positive real numbers converging to +∞ and such that a2n = o(n). Define ℓ := ℓ(ε, n) =
⌊εa2n⌋, M := ⌊n/ℓ⌋ and

(7.1) Xε,n
i :=

Xiℓ

an
, i ∈ N0.
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Denote by Lε
n the corresponding pair empirical measure, that is

(7.2) Lε
n =

1

⌊n/ℓ⌋

⌊n/ℓ⌋∑
i=1

δ(Xε,n
i−1,X

ε,n
i ).

Remark 7.1. The relevant scale for potential applications to the Swiss cheese model [13,

14] corresponds to the choice an := n1/d.

We prove the following:

Theorem 7.2. For any closed set F in X̃ (2),

(7.3) lim sup
n→∞

a2n
n

log P(L̃ε
n ∈ F ) ≤ −1

ε
inf
ξ∈F

J̃ (2)
ε (ξ).

Here,

(7.4) J̃ (2)
ε (ξ) :=

∑
i∈I

h(αi|αi,1 ⊗ πε), (ξ = {α̃i}i∈I),

where πε the denotes the Brownian semi-group at time ε.

Proof of Theorem 7.2. It turns out that only the proof and the statement of Lemma 6.2
need to be adapted. The remaining statements are about the rate function rather than
the Markov chain at hand. To that end we define

(7.5) π(2)n,εg(x, y) = E
[
g(y, y +Xε,n

1 )
]
, and π(2)ε g(x, y) = E

[
g(y, y +Bε)

]
.

With these notations at hand we define F as in Section 6 but with π(2) replaced by π
(2)
ε .

Then, defining M := n
ℓ = n

⌊εa2n⌋
we show that

(7.6) lim sup
n→∞

1

M
log E exp(MF̃ (u, c,R, L̃ε

n)) ≤ 0 .

Note that the result would be immediate from the proof if π
(2)
ε would be replaced by the

transition kernel π
(2)
n,ε of Xε,n. Following the proof of Lemma 6.2, we write

(7.7)
M∏
i=1

g(Xε,n
i−1, X

ε,n
i )

π
(2)
ε g(Xε,n

i−1, X
ε,n
i )

=
M∏
i=1

g(Xε,n
i−1, X

ε,n
i )

π
(2)
n,εg(X

ε,n
i−1, X

ε,n
i )

M∏
i=1

π
(2)
n,εg(X

ε,n
i−1, X

ε,n
i )

π
(2)
ε g(Xε,n

i−1, X
ε,n
i )

.

Since (i) g is positive, continuous and constant outside of a compact set and (ii) Xε,n
1

converges in law to Bε as n→ ∞, it follows that

(7.8) lim
n→∞

sup
x,y∈Rd

∣∣∣∣∣π(2)n,εg(x, y)

π
(2)
ε g(x, y)

− 1

∣∣∣∣∣ = 0 .

The variable x in the supremum plays no actual role and uniformity in y can be deduced
from the uniform continuity of g and a coupling for which Xε,n

1 converges to Bε almost
surely as n→ ∞. The convergence in (7.8) allows to control the rightmost factor in (7.7).
The first factor on the right hand side can be dealt with as in the proof of Lemma 6.2. ■
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