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JOINT NEURAL REPRESENTATION FOR MULTIPLE LIGHT FIELDS

Guillaume Le Guludec and Christine Guillemot

Inria Rennes-Bretagne Atlantique, Rennes, France

ABSTRACT

Neural implicit representations have appeared as a promising
technique for representing a variety of signals, among which
light fields, offering several advantages over traditional grid-
based representations, such as independence to the signal res-
olution. While some work has been done to find good initial
representations for a given type of signal, usually via meta-
learning approaches, exploiting the features shared between
different scenes remains an understudied problem. We pro-
vide a step towards this end by presenting a method for shar-
ing the representation between thousands of light fields, split-
ting the representation between a part that is shared between
all light fields and a part which varies individually from one
light field to another. We show that this joint representation
possesses good interpolation properties, and allows for a more
light-weight storage of a whole database of light fields, ex-
hibiting a ten-fold reduction in the size of the representation
when compared to using a separate representation for each
light field.

Index Terms— Light fields, Neural Implicit Representa-
tions, Singular value decomposition.

1. INTRODUCTION

Compared to traditional two-dimensional images, light fields
provide a richer modelling of natural visual scenes by dis-
criminating the received intensities not only spatially, but
also angularly, meaning that different radiances are recorded
for different directions of incident rays. Light fields, when
viewed as collections of sub-aperture images, are therefore
very costly to store, as the number of pixels grows quadrat-
ically in both the spatial and the angular resolution. While
signals are traditionally represented as discrete arrays of data
points, neural implicit representations have recently gained a
lot of attention as efficient alternative means for representing
and storing signals.

Since their success in the context of view synthesis [1]
and shape representation [2, 3], neural implicit representa-
tions have been applied to a great variety of tasks for many
types of signals, including to light field representation [4, 5,
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6]. Those methods typically rely on some encoding of the in-
put coordinates [7], followed by a multi-layer perceptron that
predicts the value of the signal at the given coordinate. Feng
et al. were able to achieve excellent representation quality
of dense light fields using an architecture which they dubbed
SIGNET [4]. Their method, however, can only be used to rep-
resent a single light field at a time. Building upon their ar-
chitecture, we show that it is possible to jointly represent an
entire database of dense light fields, and demonstrate our ap-
proach on a collection of two thousand light fields of natural
scenes captured using a Lytro Illum.

2. LIGHT FIELD REPRESENTATION

2.1. Light fields parameterization

A light field (LF) can be viewed as a function that associates
a radiance in each of the color channels of interest to any
geometrical ray in space. We consider the widespread fwo-
plane parameterization of light fields. In this parameteriza-
tion, each ray in space is uniquely characterized by the coor-
dinates of its intersection with two fixed planes, the spatial
and angular planes, corresponding usually (albeit not neces-
sarily) to the plane of the camera sensor and the plane of the
camera aperture respectively. In such a parameterization, il-
lustrated in Fig. 1a, any ray is described by a tuple (z, y, u, v).
We consider RGB light fields; a LF is thus simply a function
L : R* — R3 from the space of coordinates to the space
of color values. In the remainder of the article, for the sake
of brevity, we use the symbol x to denote the 4D vector of
spatio-angular coordinates. We denote the space of spatio-
angular coordinates for which data is available by X.

2.2. Representing a single light field

We seek to approximate a LF using a synthesis network f(.; 9)
parameterized by some 6 € R?, called a representation of the
LF. The quality of the representation depends on a chosen
metric; in our experiments we choose to use the pixel-wise
mean squared error as an objective metric to measure the dis-
tortion of the signal. Our goal of finding a good representa-
tion therefore comes down to solving the following regression
problem:

min Y [|f(x:6) = L(x)||” (1
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Fig. 1: (a) Two-plane parameterization of a LF. (z,y) and (u,v) parameterize the intersection of the ray with the spatial
and angular planes respectively. (b) Representation pipeline: the synthesis network f computes the RGB value y from ray
coordinates x for a given LF, using the LF representation § = (91, ..., 0%). The representation 6" of layer k is produced by

the representation provider P* . o*

is a tensor of size (/, r) that denotes the concatenation of the 0'5” for all LFs; b* is a tensor

of size (J, m) concatenating the biases for all LFs; select denotes the operation of selecting a given row; * denotes broadcast
multiplication of a vector by a matrix, while x denotes matrix multiplication.

This problem is efficiently solved using a stochastic gradient
descent solver, such as ADAM [8], combined with standard
backpropagation for computing the gradient of the objective
with respect to the representation 6.

2.3. Architecture of the representation network

Feng et al. [4] were able to obtain a good neural implicit
representation of LFs by combining a fully connected multi-
layer perception with sinusoidal activation with a polynomial
positional encoding. We briefly present here the architecture,
which is based on the SIREN architecture [9]. The layers of
their network are defined by:

a’ = Encode(x) 2)
y* = sin(a"*W* + bF) (3)
7" =y" +af (4)
a**! = LayerNorm(z") Q)

where Eq. 4 holds for all layers k except for the first and last
ones, for which z¥ = y* and Eqn. 5 holds for all layers k
except for the last one, which satisfies akt1 = zF instead.
In our experiments, we reuse their architecture without any
change, except for the last layer, in which the activation is
replaced by a sigmoid. We have therefore § = (W* b*),< .

2.4. Positional encoding

In [4], the authors use the Gegenbauer polynomials G, up to
a certain order as the positional encoding (Eq. 2) and show
that « = 0.5 is empirically optimal, which corresponds to
using the Legendre polynomials.

We found that replacing this polynomial positional encod-
ing scheme with a random Fourier encoding [7] did not hurt
the ability of the model to fit the LFs and reduces some arti-
facts, provided the (integer) input coordinates x are normal-

ized to an appropriate scale. Formally, we use an encoder
with trainable parameters W and b defined by:

Encode(x) = sin((x — xg)W + b) (6)

where X is the mean coordinates. W is a 4 X n matrix in
which the elements in the two first rows (corresponding to the
spatial coordinates x and y) are randomly initialized by sam-
pling the uniform distribution /(—s, s), while the elements
in the last two rows (corresponding to the angular coordinates
u and v) are initialized from a uniform distribution U(—t,t).
We found that using s = 0.2 and ¢ = 0.06 yielded good
results. The elements of b are obtained by sampling from
U(—m,m).

3. REPRESENTING MULTIPLE LIGHT FIELDS

3.1. Problem formulation

Let us now consider the more general case in which we have
a collection of LFs (L;) indexed by some j € J. We call
representation provider a function P(j; ¢) parameterized by
some vector ¢, that maps the index j of a LF to a representa-
tion 6 of that LF. The goal of the joint representation is to find
a representation provider by learning the parameters ¢, such
that P(j; ¢) provides on average a good representation of L.
In other words, we want to minimize the following loss:

L(¢) =D D IIf(x: Plis¢) — L;(x)|? (7)

jeJxeX

The rationale for finding a joint representation relies on
the notion that all representations 6 lie on the same manifold.
Since light fields of natural scenes share some common fea-
tures (e.g parallax and laws of optics, common shapes, etc.), it
is natural to expect some structure on this manifold. One ap-
proach is thus to learn this structure by training from a dataset
of various LFs.



3.2. How to parameterize the representation manifold?

Hypernetworks [10] could be used as a means to parameter-
ize this manifold. The hypernetwork might be used to map
a discrete representation of a LF to a neural representation 6,
e.g. using a CNN. It could also be an auto-decoder [3, 11]
mapping some latent code z of a given LF, to a neural repre-
sentation 6.

However, while this approach might be yielding good re-
sults in the case of simple signals such as low-resolution 2D
images, it becomes intractable in practice when working with
light fields even of average resolution. Indeed, representing
a LF usually requires a larger network when compared to
a 2D image due to a higher complexity. The output of the
hyper-networks therefore becomes very large, potentially sev-
eral millions, which makes the approach intractable.

As an alternative, FiLM conditioning [12, 13] is an ap-
proach that modulates the pre-activations in an affine man-
ner using a scaling and offset coefficient. In the same vein
as FiLM, we first designed an approach that shared the same
weight matrices W* between all LFs, while learning individ-
ual biases for each LF. While we found that this yields good
results when the number of LFs in the dataset is small, as the
number of LFs increases, the faithfulness of the reconstruc-
tion degrades.

In order to mitigate this problem, we increased the capac-
ity of the representation provider by allowing the weight ma-
trix in the representation to vary between LFs. In the follow-
ing sections, we describe the structure of the representation
provider.

4. PROPOSED REPRESENTATION

4.1. Structure of the joint representation

A joint representation ¢ is obtained by solving Eqn. 7 using
stochastic gradient descent and gradient back-propagation.
As f is a neural network, each forward and backward pass is
costly. Therefore we want the representation provider to be
as light-weight as possible.

The first idea is to split the parameterization ¢ of the rep-
resentation provider into two parts: a shared part ¢*" and in-
dividual part (¢'®) je ;. For a LF of index j, the two parts are
combined by a simple procedure described below to provide
the representation 6.

In our approach, the shared part of the joint representa-
tion is composed, for each layer k in the synthesis network
with input dimension m and output dimension n, of a pair of
matrices:

o™ = (UK, V9)), (8)

where U* has size m x r and V* has size r x n, m and n being
respectively the input and output dimensions of the layer; r is
a hyper-parameter controlling the trade-off between the num-

ber of parameters and the quality of the joint representation.
The individual parts of the representation are given by:

(61), = (o, b8)),, forall j € J) ©)

where o* and b;? are vectors of size r and n respectively. The
full joint representation for the collection of LFs L; is the pair

(5.,

4.2. Representation provider P

The representation provider P(.; ¢) that maps the index j of
a LF to its representation 6 is defined by:

P(j;¢) = (W},b))), (10)
where the weight matrix W? is given by
W/ = Urdiag(o¥)V" forall j € J and layer k. (11)

where diag(x) is the diagonal matrix whose diagonal ele-
ments are those of x. The matrix product deiag(ag?) is

computed by broadcast multiplication of the rows of U” by
the elements of o-f. The complete representation pipeline is
illustrated in Fig. 1b. We motivate our choice of architecture
in the section below.

4.3. Inspiration from the singular value decomposition

Any matrix W of size m X n can be written as its well-known
singular values decomposition (SVD):

W =UZV (12)

where U and V are orthonormal matrices of size m X r and
r X n respectively and X is a diagonal matrix of size r x
r containing the non-zero singular values of W, where r <
min(m, n) is the rank of W, equal to the number of non-zero
elements in 3.

Assuming that we have weight matrix W? for a layer k
and a LF j € J, we could separately apply the SVD to each
matrix as:

Wh =uizhvy (13)
However, this is not going to lead to any joint representation.
Our idea was to assume that the weight matrices can be jointly
decomposed across LFs as

Wh =UsivF (14)

with U* and V¥ now being shared between the different LFs.
Since an arbitrary collection of matrices is unlikely to be
amenable to joint decomposition, we relax the constraint that
7 be less than or equal to min(m, n).

It is worth noting that such a parameterization enforces
the representation manifold to be a vector space. The shared
part of the representation effectively provides a basis for this
space, while the individual parts correspond to coordinates in
the representation manifold.



Algorithm 1 Joint training forward pass

Require: LF index j, coordinates x
a = Encode(x)
for k € [0..K — 1] do
b« b?
W+ deiag(a;?)Vk
a < Layer,(a, W,b)
end for
return a

5. EXPERIMENTS

5.1. Methodology

We performed experiments using the architecture for the syn-
thesis network described in section 2.3 and the representa-
tion provider described in section 4.2. We experimented with
values for hyper-parameter r ranging in {4096, 8192, 16384 }.
Our dataset is composed of the first 2,000 LFs of the dataset
introduced by [14], consisting of 375 x 540 x 8 x 8 RGB
dense light fields of flowers captured using a Lytro Illum.

To be consistent with the singular value decomposition
idea, for each layer k, the matrices U* and V* are initialized
as random orthogonal matrices, while the elements of 0'? are
drawn from the uniform distribution 2/(0, v/6). During train-
ing however, neither U* nor V¥ are constrained to be orthog-
onal, and the elements of a‘? can become negative. We used
K = 10 layers for our synthesis network, with 512 hidden
channels per layer.

We trained each model for 16 million iterations, with
batch size of 4096. This is equivalent to 2.5 epochs of train-
ing; that is, each pixel of each LF is fed on average 2.5 times
to the network. At each iteration, we randomly sample a LF
index j along with a random batch of coordinates x. The
forward pass is described in Algorithm 1. Following [4], we
use a learning rate with cosine decay from 1075 to 1078,
Training the largest model (r = 16384) took 20 days on a
Nvidia RTX 2080 Ti.

5.2. Parameters reduction

To demonstrate the ability of our approach to effectively re-
duce the total number of parameters required to fit an entire
dataset, we separately trained a model (as defined by Egs. 2 to
6) on several LFs of the whole dataset. We considered a ran-
dom subset J’ of 100 LFs and computed the average PSNR
as an estimate of the average PSNR on the whole dataset. We
trained a new set of weights for each LF j € J’ for 3 epochs,
so as to provide a fair comparison with the joint training. We
adjusted the capacity of the individual models so that the re-
construction quality after 3 epochs approximately matches
that of the joint training. To do so, we chose a depth of 5
layers for the synthesis network.

model # parameters / LF PSNR (dB)
joint r = 4096 65K 36.15
joint r = 8192 126K 37.65
joint r = 16384 248K 38.85
separate 1.1IM 37.24

Fig. 2: Reconstruction quality and model size for the different
models.

Fig. 3: Central views along with EPIs for 3 LFs in the Flow-
ers dataset [14]. Top row are the LFs produced by the joint
model with rank r = 16384; bottom row corresponds to a
model specifically fitted for one LF.

5.3. Results

Table 2 shows the average PSNR on the whole dataset for
different values of r, as well as the size of the models per
LF (i.e. the total number of parameters divided by the num-
ber of LFs), and additionally provides a comparison with the
separately trained models. We see that, for the same recon-
struction quality, the joint representation results in a ten-fold
reduction in the number of parameters. Fig. 3 provides a vi-
sual illustration of the reconstruction quality of our joint rep-
resentation. In addition to the central view, we computed in-
terpolated epipolar plane images (EPI) by querying the model
on non-integer coordinates. More precisely, we interpolated
by a factor 8, converting the 8 x 8 LF into a 64 x 64 LF.
The smoothness and quality of the interpolated EPIs show the
ability of the joint representation to capture parallax and per-
form angular interpolation on the learned LFs.

6. CONCLUSIONS

We have presented a method to jointly represent a large col-
lection of light fields using neural implicit representations.
We have shown that our technique yields good reconstruction
quality both visually and in terms of PSNR. Additionally, we
showed that the joint representation greatly reduces the num-
ber of parameters required to represent an entire collection of
light fields when compared a set of scene-by-scene represen-
tations.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

7. REFERENCES

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tan-
cik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng, “Nerf: Representing scenes as neural radiance
fields for view synthesis,” in Computer Vision — ECCV
2020, Andrea Vedaldi, Horst Bischof, Thomas Brox,
and Jan-Michael Frahm, Eds., Cham, 2020, pp. 405-
421, Springer International Publishing.

Jeong Joon Park, Peter R. Florence, Julian Straub,
Richard A. Newcombe, and S. Lovegrove, “Deepsdf:
Learning continuous signed distance functions for shape
representation,” 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 165—
174,2019.

Vincent Sitzmann, Michael Zollhofer, and Gordon Wet-
zstein, Scene Representation Networks: Continuous 3D-
Structure-Aware Neural Scene Representations, Curran
Associates Inc., Red Hook, NY, USA, 2019.

Brandon Yushan Feng and Amitabh Varshney, “Signet:
Efficient neural representation for light fields,” in Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2021, pp. 14224—
14233.

Paramanand Chandramouli, Hendrik Sommerhoff, and
Andreas Kolb, “Light field implicit representation
for flexible resolution reconstruction,” CoRR, vol.
abs/2112.00185, 2021.

Benjamin Attal, Jia-Bin Huang, Michael Zollhéfer, Jo-
hannes Kopf, and Changil Kim, “Learning neural light
fields with ray-space embedding,” in 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2022, pp. 19787-19797.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall,
Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Sing-
hal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren
Ng, “Fourier features let networks learn high frequency
functions in low dimensional domains,” in Proceedings
of the 34th International Conference on Neural Infor-
mation Processing Systems, Red Hook, NY, USA, 2022,
NIPS’20, Curran Associates Inc.

Diederik P. Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization,” in 3rd International Con-
ference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings, Yoshua Bengio and Yann LeCun, Eds., 2015.

Vincent Sitzmann, Julien N. P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein,
“Implicit neural representations with periodic activation

[10]

[11]

[12]

[13]

[14]

functions,” in Proceedings of the 34th International
Conference on Neural Information Processing Systems,
Red Hook, NY, USA, 2020, NIPS’20, Curran Asso-
ciates Inc.

David Ha, Andrew M. Dai, and Quoc V. Le, “Hyper-
networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. 2017, Open-
Review.net.

Jeong Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove, “Deepsdf: Learning con-
tinuous signed distance functions for shape representa-
tion,” 06 2019, pp. 165-174.

Vincent Dumoulin, Ethan Perez, Nathan Schucher, Flo-
rian Strub, Harm de Vries, Aaron Courville, and Yoshua
Bengio, “Feature-wise transformations,” Distill, 2018.

Ethan Perez, Florian Strub, Harm de Vries, Vincent
Dumoulin, and Aaron Courville, “Film: Visual rea-
soning with a general conditioning layer,” 2018,
AAAT 18/TAAT’18/EAATI’ 18, AAAI Press.

Pratul P. Srinivasan, Tongzhou Wang, Ashwin Sree-
lal, Ravi Ramamoorthi, and Ren Ng, “Learning to
synthesize a 4d rgbd light field from a single image,”
2017 IEEE International Conference on Computer Vi-
sion (ICCV), pp. 2262-2270, 2017.



