
HAL Id: hal-04054238
https://hal.science/hal-04054238

Submitted on 31 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardness of Balanced Mobiles
Virginia Ardévol Martínez, Romeo Rizzi, Florian Sikora

To cite this version:
Virginia Ardévol Martínez, Romeo Rizzi, Florian Sikora. Hardness of Balanced Mobiles. 34th Inter-
national Workshop on Combinatorial Algorithms (IWOCA 2023), Jun 2023, Tainan, Taiwan. �hal-
04054238�

https://hal.science/hal-04054238
https://hal.archives-ouvertes.fr

Hardness of Balanced Mobiles

Virginia Ardévol Mart́ınez1[0000−0002−3703−2335], Romeo
Rizzi2[0000−0002−2387−0952], and Florian Sikora1[0000−0003−2670−6258]

1 Université Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016 Paris,
France {virginia.ardevol-martinez,florian.sikora}@dauphine.fr

2 Department of Computer Science, University of Verona, Italy
romeo.rizzi@univr.it

Abstract. Measuring tree dissimilarity and studying the shape of trees
are important tasks in phylogenetics. One of the most studied shape
properties is the notion of tree imbalance, which can be quantified by
different indicators, such as the Colless index. Here, we study the gener-
alization of the Colless index to mobiles, i.e., full binary trees in which
each leaf has been assigned a positive integer weight. In particular, we fo-
cus on the problem Balanced Mobiles, which given as input n weights
and a full binary tree on n leaves, asks to find an assignment of the
weights to the leaves that minimizes the Colless index, i.e., the sum of
the imbalances of the internal nodes (computed as the difference between
the total weight of the left and right subtrees of the node considered). We
prove that this problem is strongly NP-hard, answering an open question
given at IWOCA 2016.

Keywords: Phylogenetic trees · Colless Index · Balanced Mobiles·
Strong NP-hardness.

1 Introduction

Phylogenetics is the study of evolutionary relationship among biological entities
(taxa). Its main task is to infer trees whose leaves are bijectively labeled by
a set of taxa and whose patterns of branching reflect how the species evolved
from their common ancestors (phylogenetic trees). The inferred trees are often
studied by comparing them to other phylogenetic trees or to existing models.
Thus, it is important to be able to formally quantify how different trees differ
from each other and to have measures that give information about the shape of
the trees. With respect to the latter, one of the most studied shape properties of
phylogenetic trees is that of tree balance, measured by metrics such as the Sackin
index [12] or the Colless index [3] (see also the survey of Fischer et al. [6]). The
Colless index is defined for binary trees as the sum, over all internal nodes v
of the tree, of the absolute value of the difference of the number of leaves in
the two children of v. It is one of the most popular and used metrics, see for
example [1,11,5,2,13].

2 V. Ardévol et al.

The natural generalization with weights on the leaves has later been studied
within mobiles3, defined as full binary trees with positive weights on their leaves.
In particular, given a set of n integer weights {w1, . . . , wn}, the problem Bal-
anced Mobiles asks to find a mobile whose n leaves have weights w1, . . . , wn,
and which minimizes the total Colless index (i.e., the sum of the imbalances
|x − y| of every internal node, where x and y represent the total weight of the
leaves on the left and right subtrees of the node considered) [9]. Despite being a
natural generalization, the complexity of this problem is still not yet known. In
fact, it was proposed as an open problem by Hamoudi, Laplante and Mantaci in
IWOCA 2016 [8].

Still, some results are known for some specific cases. For example, if all the
leaves have unit weight, it is known that building a partition tree or a left
complete tree are both optimal solutions, and their imbalance can be computed
in polynomial time using a recursive formula. On the other hand, if all the
weights are powers of two or if a perfectly balanced mobile can be constructed,
the well known Huffman’s algorithm [10] is optimal. This algorithm recursively
builds a mobile by grouping the two smallest weights together (where the weight
of the constructed subtree is added to the list of weights in each step).

With respect to the complexity, it is only known that the problem is in the
parameterized class XP, parameterized by the optimal imbalance [9] (i.e. it is
polynomial for constant values of the parameter). This result was obtained by
using a relaxation of Huffman’s algorithm, which gives an algorithm of complex-
ity O(log(n)nC∗

), where C∗ is the optimal imbalance. An ILP is also given to
solve the problem [9]. However, no polynomial time approximation algorithm has
been proposed for this problem, although it is known that Huffman’s algorithm
does not construct an approximate solution in the general case, being arbitrarily
far away from the optimum for some instances [9].

In this paper, we shed some light into the complexity of the problem by
showing that Balanced Mobiles is strongly NP-hard when both the full binary
tree and the weights are given as input.

2 Preliminaries

We first give the necessary definitions to present the problem.

Definition 1. A full binary tree is a rooted tree where every node that has at
least one child has precisely two children. A full binary tree is said to be perfect
when all its leaves are at the same depth. The depth d(v) of a node v is defined
by

d(v) :=

{
0 if v = r, the root,
1 + d(F (v)) otherwise,

3 The term ”mobile” comes from what can be found in modern art (e.g. the ones of
Calder, well known in TCS being the illustration of the cover of the famous book
CLRS’ Introduction to Algorithms [4]) or the toy above toddler beds [9].

Hardness of Balanced Mobiles 3

where F (v) denotes the father of node v. Also, for every non-leaf node v, L(v)
(resp., R(v)) denotes the left (resp., right) child of node v.

Definition 2. A binary tree is said to be leaf-weighted when a natural number
w(v) is assigned to each one of its leaf nodes v. Then, the recurrence w(v) :=
w(L(v)) + w(R(v)) extends w defining it also on every internal node v as the
total weight over the leaves of the subtree rooted at v. A leaf-weighted full binary
tree is also called a mobile.

In this paper, we focus only on the Colless index to measure the balance of
mobiles. Thus, we will just refer to the cost at each node as imbalance, and to
the total Colless index of the tree as the total cost.

Definition 3. The imbalance of an internal node v is defined as imb(v) :=
|w(L(v)) − w(R(v))|. The total cost of a leaf-weighted full binary tree (mobile)
is the sum of the imbalances over the internal nodes. If the total cost is equal to
0, the mobile is said to be perfectly balanced.

We can now define the problem Balanced Mobiles studied in this paper.

Balanced Mobiles
Input: n natural numbers and a full binary tree T with n leaves.
Task: Assign each number to a different leaf of the given full binary tree
in such a way that the sum of the imbalance over the internal nodes of the
resulting leaf-weighted binary tree is minimum.

3 Balanced Mobiles is NP-hard in the strong sense

We prove thatBalanced Mobiles as formulated above is NP-hard in the strong
sense.

To do so, we will reduce from ABC-partition, a variant of the problem
3-partition which we define below.

ABC-partition
Input: A target integer T , three sets A,B,C containing n integers each such
that the total sum of the 3n numbers is nT .
Task: Construct n triplets, each of which contains one element from A, one
from B and one from C, and such that the sum of the three elements of each
triplet is precisely the target value T .

The ABC-partition problem is known to be strongly NP-hard, that is, it is
NP-hard even when restricted to any class of instances in which all numbers have
magnitude O(poly(n)). This fact is reported in [7], where the problem, labeled
as [SP16], is also called Numerical 3-D Matching, as it can also be reduced
to the 3-Dimensional Matching problem.

4 V. Ardévol et al.

3.1 Preliminary steps on the ABC-partition problem

As a first step in the reduction, given an instance of ABC-partition, we will
reduce it to an equivalent instance of the same problem with some specific prop-
erties that will be useful for the final reduction.

A class of instances is called shallow when it comprises only instances all
of whose numbers have magnitude O(poly(n)). Since we aim at proving strong
NP-hardness of the target problem, we need to make sure that, starting from
any shallow class of instances, the classes of instances produced at every step
remain shallow.

We start with some easy observations.

Observation 1 For any natural constant k, we can assume that all numbers
are divisible by 2k, simply by multiplying all of them by 2k.

Note that, since k is a constant, after this first reduction we are still dealing
with a shallow class of instances.

For the next step, we assume all numbers are greater than 1, which follows
from the above with k = 1.

Observation 2 We can then assume that n is a power of two, otherwise, let h
be the smallest natural such that 2h > n, we can just add 2h − n copies of the
number T −2 to the set A, and 2h−n copies of the number 1 to both sets B and
C.

Note that we are still dealing with a shallow class of instances.
The next step requires to be more formal. Assume the three given sets of

natural numbers to be A = {a01, a02, . . . , a0n}, B = {b01, b02, . . . , b0n} and C =
{c01, c02, . . . , c0n}, the target value to be T 0 and let M0 be the maximum number
in A∪B ∪C. Here, M0 = O(poly(n)) since this generic instance is taken from a
shallow class. Consider the instance of the problem where the n input numbers
and the target value T 0 are transformed as follows:

a1i := a0i + 8n2M0 for every i = 1, 2, ..., n

b1i := b0i + 4n2M0 for every i = 1, 2, ..., n

c1i := c0i + 2n2M0 for every i = 1, 2, ..., n

T 1 := T 0 + 14n2M0

M1 := T 1

Notice that the new M1 does not represent any longer the maximum value of
the numbers of the input instance because it is equal to T 0+14n2M0, while the
value of ever number is bounded above by a0i +8n2M0. The role that parameter
M1 plays in our reduction will be seen only later.

Clearly, this new instance is equivalent to the previous one in the sense that
either both or none of them are yes-instances of ABC-partition. Moreover, this

Hardness of Balanced Mobiles 5

reduction yields a shallow class of instances C1 when applied to a shallow class
of instances C0. Therefore, thanks to Observation 2 and this transformation, we
can assume that we are dealing with a shallow class of instances each of which
satisfies the following two properties:

n is a power of two (1)

b > c and a > b+ c for every a ∈ A, b ∈ B and c ∈ C. (2)

3.2 ABCDE-partition problem

Once Properties (1) and (2) are in place, we create a next equivalent instance
through one further reduction, this time yielding an instance of a slightly differ-
ent version of the multi-dimensional partition problem, the ABCDE-partition
problem, which we define below.

ABCDE-Partition
Input: A target integer T , five sets A,B,C,D,E, with n integers in each,
such that the sum of the numbers of all sets is nT .
Task: Construct n 5-tuples, each of which contains one element of each set,
with the sum of these five elements being precisely T .

If not known, the next transformation in our reduction proves that this vari-
ant is also strongly NP-hard. In fact, where a1i , b

1
i , c

1
i ,M

1, T 1 comprise the modi-
fied input of the ABC-partition problem after the last transformation detailed
just above, consider the equivalent instance of the ABCDE-partition problem
where the input numbers and the target value are defined as follows:

ai := a1i + 8n2M1 for every i = 1, 2, ..., n

bi := b1i + 4n2M1 for every i = 1, 2, ..., n

ci := c1i + 2n2M1 for every i = 1, 2, ..., n

di := n2M1 for every i = 1, 2, ..., n

ei := n2M1 for every i = 1, 2, ..., n

T := T 1 + 16n2M1

M := M1

Notice that, once again, the new M parameter does not represent the max-
imum value of the numbers comprising the new input instance. In fact, it is
significantly smaller.

Thanks to this last transformation, we see that the ABCDE-Partition
problem is NP-hard even when restricted to a shallow class of instances each of
which satisfies the following three properties:

6 V. Ardévol et al.

n is a power of two (say n = 2h) (3)

the numbers in D ∪ E are all equal (4)

c > d+ e, b > c+ d+ e and a > b+ c+ d+ e,

for every (a, b, c, d, e) ∈ A×B × C ×D × E (5)

This instance also possesses other useful properties that we will exploit in the
reduction to the Balanced Mobiles problem we are going to describe next.

3.3 Reduction to Balanced Mobiles

To the above instance (T,A,B,C,D,E) of ABCDE-Partition, we associate
the following instance (T ,W) of Balanced Mobiles:

Weights (W). Besides the weights ai, bi, ci, di, ei defined above for every i =
1, 2, ..., n, we also introduce n = 2h copies of the number T . Notice that all these
numbers have magnitude O(poly(n)) since it was assumed thatM = O(poly(n)).

Full binary tree (T). Before describing how to construct the tree T , which
completes the description of the instance and the reduction, we still have one
proviso.

While describing how to obtain the instance of the target problem from the
instance of the source problem, it often helps to describe simultaneously how to
obtain a yes-certificate for the target instance from a hypothetical yes-certificate
for the source instance. Hence, let σB and σC be two permutations in Sn meant
to encode a generic possible solution to the generic ABCDE-partition problem
instance (since all the elements in D and E are equal, it is enough to consider
these two permutations). The pair (σB , σC) is a truly valid solution, i.e., a yes-
certificate, iff ai + bσB(i) + cσC(i) + di + ei = T for every i = 1, 2, ..., n. We
are now going to describe not only how to construct an instance of the target
problem but also a solution S = S(σB , σC) for it, which depends solely on the
hypothetical yes-certificate (σB , σC).

The tree T and the solution S = S(σB , σC) are constructed as follows:

1. Start with a perfect binary tree of height h+1, with 2n = 2(h+1) leaves. Its n
internal nodes at depth h are called test nodes, denoted ti, i ∈ [n] (also called
r0i). This tree is a full binary tree thanks to Property 3. Moreover, each test
node ti will next become the root of a subtree of depth 5, all these subtrees
having the very same topology, described in the following and illustrated in
Figure 1.

2. For i = 1, ..., n, the left child of the test node ti is a leaf of the subtree
rooted at ti (and hence also of the global tree under construction). The
certificate assigns one different copy of T to each left child of a test node.
These n nodes will be the only leaves at depth 2n = 2(h+1) in the final tree
under construction. However, the right child of ti, called r1i , has two children
described next.

Hardness of Balanced Mobiles 7

3. The left child of r1i is a leaf, and the certificate assigns to this leaf the number
ai. On the other hand, the right child of r1i , which we denote r2i , will not be
a leaf, which means that it has two children, described next.

4. In the next step, we also let the left child of r2i be a leaf. The certificate
assigns the number bσB(i) to the left child. On the other hand, the right
child of r2i , called r3i , will have two children, described next.

5. As before, the left child of r3i is also a leaf, and the certificate assigns the
number cσC(i) to it. The right child of r3i , called r4i , will also have two chil-
dren, but, finally, both of them are leaves: to the left (resp., right) child leaf,
the certificate associates the number di (resp., ei).

ti

T r1i

ai r2i

bi r3i

ci r4i

di ei

Fig. 1. Subtree rooted at the test node ti with a canonical weight assignment. Recall
that in the full tree T , a full binary tree connects all the test nodes ti.

The set I of the internal nodes of T partitions into I< and I≥, those of depth
less than h and those of depth at least h, respectively. In other words, all the
strict ancestors of test nodes ti versus I≥ =

⋃
i=1,...,n{ti, r1i , r2i , r3i , r4i }. We also

define I> as the set of internal nodes at depth strictly greater than h.

Definition 4. A weight assignment is called canonical if it is of the form S(σB , σC)
for some pair (σB , σC). Equivalently, the canonical assignments are those where
all 2n leaf nodes at depth h+ 5 have been assigned one different copy of weight
Mn2, and all n leaf nodes at depth h+1 (resp., h+2, h+3, or h+4) have weight
precisely T (resp., falling in the interval (8n2M, 8n2M+M), (4n2M, 4n2M+M),
or (2n2M, 2n2M +M)).

8 V. Ardévol et al.

The NP-hardness result now follows from the following discussion.

Lemma 5. The total imbalance cost of S(σB , σC) in the nodes I<∪{ti | i ∈ [n]}
is equal to 0 if and only if S(σB , σC) encodes a yes-certificate.

Proof. First of all, the imbalance at the internal node ti is equal to 0 if and only
if

T = ai + bi + ci + di + ei

or equivalently,
T 1 = a1i + b1i + c1i

for every i ∈ [n]. That is, every 5-tuple (resp., every triplet) needs to sum up to T
(resp., T 1), the target value. To complete the proof, we just need to observe that
nodes at depth h− 1 have as children two test nodes. Thus, their imbalance is 0
if and only if the two test nodes have exactly the same weight (equivalently, the
triplets associated to them sum to the same value). Going up the (full binary)
tree, it is easy to see that we need all the test nodes to have exactly the same
weight, i.e., all the 5-tuples to sum up to the same value. ⊓⊔
Lemma 6. The total imbalance cost of S(σB , σC) is greater or equal to

∑n
i=1(a

1
i−

c1i) and equality holds if and only if S(σB , σC) encodes a yes-certificate.

Proof. We have already seen in Lemma 5 that
∑

v∈I<∪{ti} imb(v) = 0 if and only

if S(σB , σC) encodes a yes-certificate. We will now prove that
∑

v∈I>
imb(v) =∑n

i=1(a
1
i −c1i) for canonical assignments, from where the result follows. First, for

any canonical assignment, imb(r4i) = n2M −n2M = 0 for every i = 1, . . . , n. We
will next see that, for every canonical assignment,

∑
v∈{r1i ,r2i ,r3i : i=1,...,n} imb(v) =∑n

i=1(a
1
i − c1i).

First of all,

n∑
i=1

imb(r3i) =

n∑
i=1

|ci − w(r4i)| =
n∑

i=1

|(c1i + 2n2M)− 2n2M | =
n∑

i=1

c1i

Similarly,

n∑
i=1

imb(r2i) =

n∑
i=1

|bi − w(r3i)| =
n∑

i=1

|b1i − c1i | =
n∑

i=1

(b1i − c1i)

where the last equality follows from the property that bi > ci. Finally,

n∑
i=1

imb(r1i) =

n∑
i=1

|ai − w(r2i)| =
n∑

i=1

|a1i − (b1i + c1i)| =
n∑

i=1

(a1i − b1i − c1i)

where again we use the property that a1i > b1i + c1i . Thus, summing all the costs
below every test node, we get that the total cost is

n∑
i=1

((a1i − b1i − c1i) + (b1i − c1i) + c1i) =

n∑
i=1

(a1i − c1i)

⊓⊔

Hardness of Balanced Mobiles 9

Before continuing, note that
∑n

i=1(a
1
i − c1i) ≪ n2M . Indeed,

n∑
i=1

(a1i − c1i) ≤
n∑

i=1

(M0 + 8n2M0 − 2n2M0) ≤ nM

The last inequality follows since M = T 0 +14n2M0, which is clearly greater
than the term in the sum.

Lemma 7. Any assignment f of cost less than n2M is canonical.

Proof. Let f be any assignment of cost less than n2M . Notice that the con-
structed tree has precisely n internal nodes whose two children are both leaves
(those labeled r4i). At the same time, we have 2n weights of value n2M , whereas
all other weights exceed 2n2M . Therefore, all copies of weight n2M should be
assigned to the leaves that are children of some r4i , that is, to the 2n nodes of
largest depth h+ 5. Indeed, if at least one of the copies of weight n2M were as-
signed to a node which is not at largest depth, then the imbalance at its parent
node would be |n2M − wr|, with wr being the weight of the right child, which
is always greater or equal than 2n2M . Thus, the imbalance would be already at
least n2M .

After this, we can go up the tree. The n nodes of weight in the interval
[2n2M, 2n2M +M] are mapped to nodes that are left children of r3i nodes (all
leaf nodes at depth h+4). Otherwise, the weight of that node would be at least
4n2M , yielding an imbalance of at least 2n2M . Similarly, the n nodes of weight
in the interval [4n2M, 4n2M +M] are mapped to nodes that are left children of
r2i nodes (all leaf nodes at depth h+3), and the n nodes of weight in the interval
[8n2M, 8n2M +M] are mapped to nodes that are left children of r2i nodes (all
leaf nodes at depth h+2). Finally, the n nodes of weight T are mapped to nodes
that are left children of test nodes ti (all leaf nodes at depth h+ 1).

This shows that if we want an assignment of cost less than n2M , then every
weight, while it can be assigned to the leaves of a subtree rooted at any of the
test nodes ti, it has to be assigned to a leaf node of the right depth/category.
But then f is a canonical assignment. ⊓⊔

Theorem 8. Balanced Mobiles is strongly NP-hard.

Proof. We have described a log-space reduction that, given a generic instance I
of ABCDE-partition yields an instance (T ,W) of Balanced Mobiles and
a lower bound L :=

∑n
i=1(a

1
i − c1i) such that:

1. Every possible solution to (T ,W) has total imbalance cost at least L.
2. (T ,W) admits a solution of cost L iff I is a yes-instance of the ABCDE-

partition problem.

This already shows that the Balanced Mobiles optimization problem is NP-
hard. TheBalanced Mobiles problem is strongly NP-hard because theABCDE-
partition problem is strongly NP-complete, and when the reduction is applied
on top of any shallow class of instances of ABCDE-partition, it yields a shal-
low class of instances of Balanced Mobiles. ⊓⊔

10 V. Ardévol et al.

Note that this implies that the decision version of the problem is (strongly)
NP-complete. Indeed, one can check that the problem is in NP because given a
potential solution, it can be verified in polynomial time whether it is valid or
not.

4 Conclusion

We have shown that Balanced Mobiles is strongly NP-hard when the full
binary tree is given as input. However, note that the complexity when the tree
is not given remains open. Indeed, our reduction cannot be directly extended
to this case since then, there is no structure to ensure that weights of set A
are grouped with weights of sets B and C. On the other hand, the complexity
when the weights are constant is also unknown, as in our proof, the constructed
weights depend on n. Finally, with respect to the parameterized complexity, as we
mentioned before, it is only known that the problem is in the parameterized class
XP, parameterized by the optimal imbalance [9], so other future work includes
to study whether there exists a fixed parameter algorithm or not.

Acknowledgements Part of this work was conducted when RR was an invited
professor at Université Paris-Dauphine. This work was partially supported by
the ANR project ANR-21-CE48-0022 (“S-EX-AP-PE-AL”).

References

1. K. Bartoszek, T. M. Coronado, A. Mir, and F. Rosselló. Squaring within the
Colless index yields a better balance index. Mathematical Biosciences, 331:108503,
2021.

2. M. G. Blum, O. François, and S. Janson. The mean, variance and limiting dis-
tribution of two statistics sensitive to phylogenetic tree balance. The Annals of
Applied Probability, 16(4):2195–2214, 2006.

3. D. H. Colless. Phylogenetics: The theory and practice of phylogenetic systematics.,
1982.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, 3rd Edition. MIT Press, 2009.

5. T. M. Coronado, M. Fischer, L. Herbst, F. Rosselló, and K. Wicke. On the mini-
mum value of the colless index and the bifurcating trees that achieve it. Journal
of Mathematical Biology, 80(7):1993–2054, 2020.

6. M. Fischer, L. Herbst, S. Kersting, L. Kühn, and K. Wicke. Tree balance indices:
a comprehensive survey, 2021.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

8. Y. Hamoudi, S. Laplante, and R. Mantaci. Balanced mobiles, 2016. www.iwoca.org,
Problems Section.

9. Y. Hamoudi, S. Laplante, and R. Mantaci. Balanced mobiles with applications
to phylogenetic trees and Huffman-like problems. Technical report, 2017. https:

//hal.science/hal-04047256.

https://hal.science/hal-04047256
https://hal.science/hal-04047256

Hardness of Balanced Mobiles 11

10. D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

11. A. Mir, L. Rotger, and F. Rosselló. Sound Colless-like balance indices for multi-
furcating trees. PloS one, 13(9):e0203401, 2018.

12. M. J. Sackin. “Good” and “bad” phenograms. Systematic Biology, 21(2):225–226,
1972.

13. K.-T. Shao and R. R. Sokal. Tree Balance. Systematic Biology, 39(3):266–276, 09
1990.

	Hardness of Balanced Mobiles

