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Monoidal envelopes and Grothendieck
construction for dendroidal Segal objects

David Kern

31st March 2023

We propose a construction of the monoidal envelope of∞-operads in the
model of Segal dendroidal spaces, and use it to define cocartesian fibrations
of such. We achieve this by viewing the dendroidal category as a “plus con-
struction” of the category of pointed finite sets, and work in the more gen-
eral language of algebraic patterns for Segal conditions. Finally, we rephrase
Lurie’s definition of cartesian structures as exhibiting the categorical fibra-
tions coming from envelopes, and deduce a straightening/unstraightening
equivalence for dendroidal spaces.
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1 Introduction

Any monoidal category V⊗ defines an operad whose colours are the objects of V and
whose multimorphisms C1, · · · , Cn → D are given by the morphisms C1⊗· · ·⊗Cn → D.
The operads which arise in this way are said to be representable; to avoid confusion
— since we shall model operads as certain presheaves — we will call them represent-
ably monoidal. Indeed, the tautological multimorphism C1, · · · , Cn → C1 ⊗ · · · ⊗ Cn

(corresponding to idC1⊗···⊗Cn) carries the universal property that every multimorph-
ism with source (C1, · · · , Cn) must factor through it, by a unique unary morphism of
source C1 ⊗ · · · ⊗Cn. This universal property can be seen as a cocartesianity condition.

Recall indeed that, if p : E → B is an opfibration (or cocartesian fibration), there is
a factorisation system on E whose left class consists of p-cocartesian morphisms and
whose right class consists of purely p-vertical morphisms. One can also define a no-
tion of opfibration of multicategories, as done for example in [Her04] for generalised
multicategories, and more generally of cocartesian (multi)morphisms therein, so that
a multicategory is representably monoidal if and only if its morphism to the terminal
operad is an opfibration. In general, an opfibration of multicagories can be thought
of as a morphism whose fibres are monoidal categories: since the selection of a colour
comes from the operad generated by the nodeless edge η, which only has unary morph-
isms, the vertical arrows are always unary ones, while the cocartesian arrows are those
exhibiting tensor products.

In the homotopical setting, there are various ways of modelling ∞-operads, each
coming with its advantages and drawbacks. The model preferred by [Lur17], which
represents an ∞-operad by its ∞-category of operators, is biased to make cocartesian
fibrations and monoidal envelopes immediately accessible, but requires entangling com-
binatorics to recover an operadic intuition on any construction. On the other hand, the
dendroidal models, based on categories of trees as the shapes for∞-operads, is closer
to the diagramatic operadic intuition, but generally requires more work to make any
construction. For exemple, cocartesian fibrations and their straightening were studied
in [Heu11] in the model of dendroidal sets, a point-set model which is not manifestly
model-invariant.

A more homotopically robust model is that of Segal dendroidal spaces, or more gen-
erally Segal dendroidal objects in any complete (∞, 1)-category. This model makes it
clear that all that is needed to model algebraic objects such as operads is a general
category of “shapes” and their Segal decompositions. This philosophy was realised
in [CH21] which defines a notion of algebraic pattern, a base shape category over which
can be defined Segal presheaves.

Thus one would like to define a notion of cocartesian operations and fibrations for
Segal objects over algebraic patterns, and in addition construct the free fibration gen-
erated by an arbitrary morphism. Here, we will not achieve this generality, but take a
simpler route to defining opfibrations. In [Her04], opfibrations of multicategories were
characterised as the morphisms whose image under the functor taking monoidal en-
velopes is an opfibration (or cocartesian fibration) of underlying categories. We will
follow this idea, and focus on constructing an envelope∞-functor and exploiting it to
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define cocartesian fibrations.

The direction problem and the plus construction

To perform the above requires a notion of direction for the operations of Segal objects:
in categories, there are two directions for cartesianity, from the source or from the target
(giving rise to cartesian and cocartesian morphisms), while for operads or their “many-
objects” generalisation, virtual double categories, the notion of (co)cartesian morph-
isms which has so far been explored looks from the target (as in [CS10, Definition 5.1]),
but we expect that any choice of input to separate may give a notion of cartesianity. Not
all choices of direction, however, are as good as others: for operads, the choice of the
output to keep apart leads to functoriality for composition, while the other choices do
not (due to the absence of a duality operation as for categories). As a consequence, one
may need to restrict the study to “good” orientations; this seems likely to be impossible
to find for modular operads.

In this work, we have elected to eschew the problem by replacing a perhaps more
canonical definition of directibility by a more practical one. The presence of a notion of
direction for operations means that we can think of any composite of them as having
an order of progression. This is what is captured by the objects of the simplex category
∆, chains of morphisms going from a beginning to an end. Hence we will base our
notion of direction on this category, declaring an algebraic pattern to be well-directed if
it can be written as the output of a certain construction involving ∆. The appropriate
construction to consider turns out to be a variant of the plus construction suggested by
Baez–Dolan and studied by, among others, [Bar18] and [Ber22].

The plus construction of a pattern O is characterised by the fact that its Segal objects
are the weak Segal O-fibrations, or “O-operads”. In this language, envelopes for weak
Segal fibrations of patterns have been recently constructed in [BHS22], building on the
construction of [Lur17] and the properties exhibited in [HK21]. While in a context equi-
valent to ours, this construction has orthogonal goals to the one performed here, as we
wish to always remain in the explicit setting of Segal objects.

Idea of the construction

In order to understand the idea of our construction of the monoidal envelope functor,
we describe it here in the case of the pattern Γop, whose Segal objects are the commut-
ative monoids and whose plus construction parameterises operads.

Let O be an operad. Its monoidal envelope is constructed as a monoidal category
Env(O) which has as set of objects the free monoid generated by the colours ofO, whose
elements are denoted as C1 ⊗ · · · ⊗ Cn or simply C1 · · ·Cn. If C1 ⊗ · · · ⊗ Cn is such a
string of colours of O and D is one colour, a morphism C1 ⊗ · · · ⊗Cn → D is given by a
multimorphism C1, . . . , Cn → D in O. If C1 ⊗ · · · ⊗ Cn and D1 ⊗ · · · ⊗Dm are two such
strings of colours of O, to defines a morphism C1⊗· · ·⊗Cn → D1⊗· · ·⊗Dm one needs
to further select of partition of the inputs (C1, . . . , Cn) into m (possibly empty) parts.
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The above is so far just a description of the underlying category Env(O) of the en-
velope of O; to define it as a monoidal category, or representably monoidal operad,
one must also define multimorphisms of higher arity in the operadic structure. Let
(Ci

1 ⊗ · · · ⊗ Ci
pi
)i∈[[1,n]] be n colours of Env(O) and let D1 ⊗ · · · ⊗ Dm be a further col-

our. By the representability condition, a multimorphism (C1
1 · · ·C

1
p1
, . . . , Cn

1 · · ·C
n
pn) →

D1⊗· · ·⊗Dm is given by a morphism C1
1⊗· · ·⊗Cn

pn → D1⊗· · ·⊗Dm, that is a partition
of the entries and a collection of multimorphisms to each Di.

In the dendroidal model, one simply defines the objectEnv(O)(⋆n) of all n-ary morph-
isms without specifying their sources and targets. To describe this, it becomes useful
to reverse the thinking: taking a family of multimorphisms of O, we can ask how to
interpret it as a multimorphism in Env(O). If C1, · · · , Cr is the union of the domains of
the multimorphisms in the family considered, the decomposition in family provides a
partition of p indexed by the targets; however, from the point of view of Env(O), this
partition is completely artificial as it is only used to construct a morphism whose target
may consist of several colours. Thus it must be forgotten. Meanwhile, if the family is
to be interpreted as a multimorphism of specified arity n in Env(O), the set of colours
(Ci)i∈[[1,r]] must be endowed with a partition into n parts.

In a formula, we have that

Env(O)(⋆n) =
∐

r∈N
λ partition of r in n

m∏

i=1

O(⋆λ(i)). (1)

Recall that partitions are the same thing as active morphisms in Γop (which is where
the power of the plus construction, relating Γop to the pattern for operads, comes into
play). We can then interpret the coproduct on partitions as a colimit over morphisms
in (Γ op)act.

Viewed in this way, this formula is very reminiscent to the one computing (pointwise)
oplax extensions1, with one difference: the colimit is taken only of the trees whose
height is that of a corolla, i.e. compatibly with the projection to ∆. To that end, the
notion of extension will need to be refined to a “fibrewise” one.

Outline of the paper

In section 3, we define the plus construction for appropriate algebraic patterns, and
establish its main properties, in a manner very similar to the study of the plus con-
struction of Γ op♮ carried out in [CHH18] or [CH20]. Then, in section 4, we will use
it to construct the “representably monoidal” envelope of a Segal object. While the
construction makes sense for general well-directed patterns, we are only able to ex-
hibit its good monoidal properties by restricting patterns such as the one Ωop♭ for op-
erads. Finally, in section 5 we further use this envelope functor to define a straight-
ening/unstraightening Grothendieck construction for ∞-operads; the results of this

1Oft known as left Kan extensions
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section are not new and are simply variants of results appearing in [Lur17], the com-
binatorics of whose proofs are in fact directly reused, but this language provides a new,
more operadic, point of view on them.
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2 Review of the language of algebraic patterns

2.1 Algebraic patterns and Segal objects

Definition 2.1.1 (Algebraic pattern). An algebraic pattern is an (∞, 1)-category en-
dowed with a unique factorisation system and a selected class of objects called ele-
mentary. The morphisms in the left class of the factorisation system are called inert,
and those in the right class active.

Notation 2.1.2. Inert maps in an algebraic pattern are usually denoted as֌, while active
maps are denoted as .

If O is the underlying (∞, 1)-category of the algebraic pattern considered, one writes
Oinrt and Oact for the wide and locally full sub-(∞, 1)-categories whose morphisms are
respectively the inert and the active morphisms.

We also denote Oel the full sub-(∞, 1)-category of Oinrt on the selected elementary
objects. For any object O ∈ O, we further write Oel

O/
:= Oel ×Oinrt Oinrt

O/
, the (∞, 1)-

category of inert morphisms from O to an elementary object.

Example 2.1.3. Segal’s category Γ , (a skeleton of) the opposite of the category FinSet∗
of pointed finite sets, admits an active-inert factorisation system where a morphism of
pointed finite sets f : (S, s0)→ (T, t0) is inert if for every t ∈ T \ {t0}, the preimage f−1(t)

consists of exactly one element, and active if the only element of S mapped to t0 is s0
— so that, in particular, the subcategory of active morphisms Γopact identifies with the
category of finite sets (by mapping (S, s0) to S \ {s0}).

The induced inert-active factorisation system on Γop gives rise to two algebraic pat-
tern structures, from two choices of elementary objects. The algebraic pattern Γ op♭ has
as elementaries the two-element sets (isomorphic to 〈1〉), while the pattern Γop♮ has as
elementaries the singletons (isomorphic to 〈0〉) and the two-element sets.

Example 2.1.4. The (non-augmented) simplicial indexing category ∆, identified with the
category of ordered non-empty finite sets and order-preserving maps between them,
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admits a factorisation system in which a map is active if it preserves the top and bottom
elements, and inert if it corresponds to the inclusion of a linear subset.

The induced inert-active factorisation system on ∆op gives rise to two algebraic pat-
tern structures: the algebraic pattern ∆op♭ has as elementaries the two-element sets (iso-
morphic to [1]), while the pattern Γop♮ has as elementaries the singletons (isomorphic to
[0]) and the two-element sets.

Example 2.1.5. Of particular interest to us, the dendroidal category Ω of Moerdijk–Weiss
can be described as a category of (non-planar) rooted trees, with morphisms the morph-
isms of free (coloured, symmetric) operads generated by these trees. We shall give an
alternate construction of (a sufficient subcategory of) it in section 3.

Certain particularly interesting trees can be distinguished:

the free-living edge is the tree, denoted η, consisting of one edge but no vertex (so the
operad it freely generates has one colour, and only its identity unary morphism);

the corollas are the trees, denoted ⋆n with n ∈ N, with a single vertex and n + 1 edges
(one of which is the root) attached to it. Note that the corolla ⋆n with n leaves has
as automorphism group the symmetric group Sn.

The category Ω admits a factorisation system in which a morphism is active if it
is boundary-preserving, and inert if it corresponds to a subtree inclusion (which, in
particular, is valence-preserving on the vertices).

The induced inert-active factorisation system on Ωop gives again rise to two algebraic
pattern structures: the algebraic pattern Ωop♭ has as elementaries the corollas ⋆n, while
the pattern Ωop♮ has as elementaries the corollas and the free-living edge η.

Definition 2.1.6 (Morphisms of algebraic patterns). Let O and P be algebraic patterns.
A morphism of algebraic patterns from O to P is an (∞, 1)-functor O → P which
preserves active and inert morphisms and elementary objects.

Example 2.1.7. There is a functor ∆ → Ω which, taking the standard skeleton of ∆,
sends [n] to the linear tree with n nodes and n + 1 edges. One may remark that it is
fully faitful, and can also be identified with the canonical projection functor Ω/η → Ω.
By translating the definition of inert and active morphisms for the given factorisation
system on ∆op, one immediately sees that this functor induces morphisms of algebraic
patterns ∆op♮ → Ωop♮ and ∆op♭ → Ωop♭.

Definition 2.1.8 (Segal objects). Let O be an algebraic pattern. An (∞, 1)-category C is
said to be O-complete if it admits limits of diagrams with shape Oel

O/
for any O ∈ O.

Let C be an O-complete (∞, 1)-category. A Segal O-object in C is an (∞, 1)-functor
X : O → C such that X|Oinrt is a lax extension of X|Oel (along the inclusion). Explicitly,
this means that for any O ∈ O the canonical map

X(O)→ lim
E∈Oel

O/

X(E) (2)
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is invertible.
The (∞, 1)-category SegO(C) of Segal O-objects in C is the full sub-(∞, 1)-category

of CO spanned by the Segal objects.

Example 2.1.9. • A Segal Γop♭-object is a commutative algebra object (or E∞-algebra
object).

• A Segal ∆op♭-object is an associative algebra object (or A∞-algebra object, or E1-
algebra), while a Segal ∆op♮-object is an internal category.

• A Segal Ωop♭-object is an internal monochromatic operad, while a Segal Ωop♮-
object is an internal (coloured) operad.

Remark 2.1.10. Let O be an algebraic pattern such that the inclusion Oel →֒ Oinrt is
codense. Then for any O ∈ O, the corepresentable yOop(O) : O → ∞-Grpd is a Segal
O-∞-groupoid — this is an immediate consequence of the limit-preservation property
of hom∞-functors. It should be viewed as the Segal object generated by O.

Example 2.1.11. Over ∆op, the Segal object y[n] corresponds to the linear category n+ 1

with n successive arrows.

Example 2.1.12. Over Ωop, the Segal object y⋆n generated by the corolla with n + 1

flags is also denoted ⋆n and called the corolla. It corresponds to the operad with n + 1

colours O1, . . . ,On+1 and, for each permutation σ ∈ Sn, a single operation of signature
(Oσ(1), . . . ,Oσ(n);On+1).

2.2 Morphisms of algebraic patterns I: (weak) Segal fibrations

Definition 2.2.1 (Segal morphism of algebraic patterns). A morphism of algebraic pat-
ternsF : O → P is said to be a Segal morphism if “it preserves Segal conditions”, that is
if for any P-complete (∞, 1)-category C, the induced (∞, 1)-functor F∗|SegP : SegP(C) ⊂

CP → CO factors through SegO(C) →֒ CO.

Remark 2.2.2. By [CH21, Lemma 4.5], it is enough to check Segality of a morphism with
C = ∞-Grpd, that is to check preservation of Segal ∞-groupoids. Then the condition
for F to be a Segal morphism can be written in a formula as: for every O ∈ O, for every
Segal P-∞-groupoid X, the morphism of∞-groupoids

lim
Pel
F(O)/

X → lim
Oel

O/

X ◦Fel (3)

induced by the (∞, 1)-functor Oel
O/
→ Pel

F(O)/
is an equivalence.

Construction 2.2.3. Suppose V : O → (∞, 1)-Cat is an O-monoidal (∞, 1)-category.
Passing to the Grothendieck construction of the functor produces a cocartesian fibration∫co

V → O. We shall refer to a cocartesian fibration over O whose associated (∞, 1)-
functor O → (∞, 1)-Cat satisfies the Segal conditions as a Segal fibration over O.
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By [Lur17, Proposition 2.1.2.5], if
∫co

V → O is a Segal O-fibration, the inert-active
factorisation system on O lifts to one on

∫co
V, endowing it with a structure of algebraic

pattern. If P → O is another algebraic pattern over O, we shall define a P-algebra in∫co
V to be a morphism of algbraic pattern over O from P to

∫co
V.

Definition 2.2.4 (Weak Segal fibration). Let O be an algebraic pattern. A weak Segal

O-fibration (also called O-operad) is an (∞, 1)-functor p : X→ O such that:

1. for every object X ∈ X, every inert arrow i : pX → O in O admits a p-cocartesian
lift i! : X→ i!X;

2. for every object O ∈ O, the (∞, 1)-functor XO → limE∈Oel
O/

XE induced by the

cocartesian morphisms over inert arrows is invertible;

3. for every X ∈ X and every choice of p-cocartesian lift of the tautological diagram
i : Oel

pX/
→ O (of inert morphisms from pX) to an i! : (O

el
pX/

)⊳ → X taking the
cone point to X, for every Y ∈ X, the commutative square

X(Y,X) limE∈Oel
pX/

X(Y, i !(E))

O(pY,pX) limE∈Oel
pX/

O(pY, i(E) = E)

(4)

is cartesian.

Example 2.2.5. • A weak Segal Γop♭-fibration is the (∞, 1)-category of operators of
an∞-operad in the sense of [Lur17, Definition 2.1.1.10], while a weak Segal Γop♮-
fibration is a generalised∞-operad in the sense of [Lur17, Definition 2.3.2.1].

• A weak Segal∆op♭-fibration is the (∞, 1)-category of operators of a non-symmetric
∞-operad in the sense of [GH15, Definition 2.2.6, Definition 3.1.3] while a weak
Segal∆op♮-fibration is virtual double∞-category, or generalised∞-operad in [GH15,
Definition 2.4.1, Definition 3.1.13].

Definition 2.2.6 (Morphisms of weak Segal fibrations). By [CH21], the source X of a
weak SegalO-fibration p : X→ O inherits an algebraic pattern structure in which active
morphisms are those lying over an active morphism in O, inert morphisms are the p-
cocartesian morphisms lying over inert arrows of O, and elementaries are the objects
lying over elementary objects.

The (∞, 2)-category of weak Segal O-fibrations WkSegFib/O is the locally full sub-
(∞, 2)-category of (∞, 1)-Cat/O spanned by the weak Segal O-fibrations and Segal
morphisms thereof.

It can be checked directly that any Segal fibration as in construction 2.2.3 is in partic-
ular a weak Segal fibration. In fact Segal O-fibrations are exactly those (∞, 1)-functors
to O which are both weak Segal fibrations and cocartesian fibrations. This provides a
(non-full) inclusion (∞, 2)-functor from the (∞, 2)-category of Segal fibrations into that
of weak Segal fibrations.
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2.3 Morphisms of algebraic patterns II: Combinatorics of enrichable
structures

To finish this preliminary section, we state (a variant of) some definitions2 of the forth-
coming paper [CH22].

Definition 2.3.1 (Combinatorial structure). A combinatorial pattern is an algebraic pat-
tern O equipped with a morphism |−| : O → Γop♮.

When (O, |−|) is a combinatorial pattern, we let O♭ → Γop♭ denote the base-change

O♭ := O ×
Γop♮ Γ

op♭. (5)

Thanks to [CH21, Corollary 5.5], we see that the fibre product appearing in eq. (5)
has a very simple description: it consists of the category O equipped with its same
factorisation system, and the choice of only those elementary objects living over 〈1〉 ∈
Γop (i.e. excluding those over 〈0〉).

Definition 2.3.2 (Enrichable pattern). A combinatorial structure |−| on an algebraic pat-
tern O is enrichable if, for any O ∈ O, the morphism O♭,el

O/
→ Γop♭,el

|O|/ is an equivalence.

Remark 2.3.3. Viewing Γop as (the standard skeleton of) the category of pointed finite
sets, one verifies that any 〈n〉 ∈ Γop admits exactly n inert morphisms to the unique
elementary 〈1〉, the pointed morphisms ρi : 〈n〉 → 〈1〉 mapping i to 1 and every other
element of 〈n〉 to the base-point. The condition of being an enrichable pattern then
means that, for any O ∈ O, the (∞, 1)-category O♭,el

O/
must be equivalent to the discrete

set of the (essentially unique) lifts ρi,! of the ρi. In particular, the O♭-Segal condition for
a precosheaf X on O is constrained to being the finite product condition

X(O) ≃

|O|∏

i=1

X(ρi,!O). (6)

Example 2.3.4. The functor ∗ → Γop picking the object 〈1〉 defines a structure of enrich-
able pattern on the terminal algebraic pattern.

Example 2.3.5. There is a functor ∆op → Γop mapping [n] to 〈n〉 and sending an arrow
of ∆op corresponding to φ : [n]→ [m] in ∆ to |φ| : 〈m〉→ 〈n〉 given by

|φ|(i) =

{
j if φ(j − 1) < i ≤ φ(j)

∗ otherwise.
(7)

It can be checked directly that this is a structure of enrichable pattern on ∆op♮.

Example 2.3.6. A functor Ωop → Γop ≃ FinSet∗ is defined in [CH20, Definition 4.1.16]
in the following way. A tree T with set of vertices V(T) is mapped to the freely pointed
set V(T)+. A morphism T ′ ← T in Ωop is mapped to the pointed morphism V(T ′)+ →

2which were presented in the seminar talk available at https://www.msri.org/seminars/25057

9

https://www.msri.org/seminars/25057


V(T)+ which sends a vertex v ∈ V(T ′) to the unique vertex of T whose image subtree
contains v, or to the basepoint if there is no such vertex. By [loc. cit., Lemma 4.1.18], this
functor preserves the inert-active factorisation system, and thus defines a morphism of
algebraic patterns. One checks by inspection that it is an enrichable structure.

In proposition 3.2.9 we will provide another construction of this enrichable structure
from the point of view of Ω as obtained from the plus construction.

We recall from [Lur17] the definition of semi-inert arrows in Γop. A map of pointed
finite sets f : (S, s0) → (T, t0) is semi-inert if for any t ∈ T \ {t0}, there is at most one
element in f−1(t).

Definition 2.3.7. Let (O, |·|) be a combinatorial algebraic pattern. An arrow f of O is
semi-inert if |f| is a semi-inert arrow of Γop.

Example 2.3.8. In ∆op♮, the semi-inert morphisms are those corresponding to the cellular
morphisms of ∆ as defined in [Hau17] and [Hau16], that is maps of totally ordered sets
f : S→ S′ such that for all s ∈ S, f(succ s) ≤ succ(f(s)).

For the product pattern (∆op♮)n equipped with (∆op♮)n
|−|
−→ (Γop♮)n

∧
−→ Γop♮, we also

recover the cellular morphisms of [Hau17], those maps all of whose components are
cellular in ∆op.

Remark 2.3.9. As observed in [Hau17], an arrow f : O→ O′ of O is semi-inert if and only

if, for any elementary E and any inert morphism k : O′
֌ E, the composite O

k◦f
−−→ E is

semi-inert.

Example 2.3.10. In Γop, any object 〈n〉 admits precisely n active morphisms from the
unique elementary object 〈1〉, the functions λi : 〈1〉  〈n〉 sending 1 ∈ 〈1〉 to i ∈ 〈n〉
for any 1 ≤ i ≤ n. They are semi-inert. Likewise, the unique map 〈0〉 → 〈n〉 is also
semi-inert.

It follows that, in any combinatorial pattern, any active arrow from an elementary
object is semi-inert.

Definition 2.3.11 (Momentous pattern). A combinatorial algebraic pattern (O, |−|) is
momentous if any active morphism from a ♭-elementary admits an essentially unique
inert retraction.

Momentous patterns which are enrichable are closely related to (an ∞-categorical
version of) the hypermoment categories of [Ber22].

Example 2.3.12. The pattern Γop♮ itself is momentous: for any object 〈n〉, the function
λi : 〈1〉 → 〈n〉 of example 2.3.10 admits as unique inert retraction ρi. In fact λi is also
the unique active section of ρi, so there is a one-to-one correspondence between inert
morphisms to ♭-elementaries and (automaticaly semi-inert) active morphisms from ♭-
elementaries.

As a consequence, for any momentous enrichable pattern O and any object O ∈ O,
the (semi-inert) active morphisms from ♭-elementary objects to O can be identified with
a subset of Oel

O/
≃ Γop♮,el

|O|/
.
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3 The plus construction and its Segal objects

3.1 Categories of patterned trees

The following construction is a variant of one due to [Bar18] in the setting of operator
categories, inspired by the plus construction or “slice operads” of [BD98], and which
was also used in [CHH18] and studied in [Ber22] in the setting of hypermoment cat-
egories — as well as [BM21], in a different form, for operadic categories.

Construction 3.1.1. Let O be a combinatorial algebraic pattern. Consider the restriction
y
(∞,1)-Cat

(Oact)|∆ : [n] 7→ Oact[n] to ∆ ⊂ (∞, 1)-Cat of the (∞, 2)-functor represented by

Oact and let ∆
pre
O → ∆ be its Grothendieck construction. Note that ∆

pre
O is equival-

ent to ∆/Oact — where ∆ is seen as a subcategory of (∞, 1)-Cat — or also to ∆/N• Oact ,
where N• : (∞, 1)-Cat →֒ ∞-Grpd∆

op
is a nerve functor (for example incarnating (∞, 1)-

categories as complete Segal∞-groupoids, or as quasicategories, to the reader’s pref-
erence). Thus an

object of ∆pre
O consists of a pair ([n],O•) where [n] ∈ ∆ and O• : [n] → Oact is a linear

diagram in Oact, that is a sequence O0  O1  · · ·  On of active morphisms in
O, while a

morphism ([n],O•) → ([n′],O′
•) consists of a pair (φ, f•) where φ : [n] → [n′] is a map

in ∆ and f• : O• ⇒ O′
φ(•) = O′

• ◦ φ is a natural transformation of [n]-shaped
diagrams in Oact.

We define ∆O to be the wide and locally full (i.e. containing all objects and all higher
morphisms between a selection of 1-morphisms) sub-(∞, 1)-category of ∆pre

O on those
morphisms (φ, f•) such that

• f• is component-wise semi-inert (in addition to active), that is each fi : Oi  O′
φ(i),

for i ∈ [n], is semi-inert, and

• f• is a cartesian (or equifibred) natural transformation, that is for any morphism
i < j in [n] the naturality square

Oi O′
φ(i)

Oj O′
φ(j)

fi

Oi<j O′
φ(i<j)

fj

(8)

is cartesian in Oact.

Remark 3.1.2. Given fixed φ : [m] → [n] in ∆ and ([n], P•) in ∆O over [n], morphisms
(φ, f•) : ([m],O•)→ ([n], P•) in ∆O lifting φ are essentially determined, if they exist, by
their underlying arrow fm : Om → Pφ(m) at the terminal object m ∈ [m]. Indeed, for
each i ∈ [m] the object Oi and arrow fi are required by the pullback condition in eq. (8)
to be the base-change of Om and fm along i ≤ m.

11



Definition 3.1.3. Let O be a combinatorial algebraic pattern. The (∞, 1)-category ∆O is
called the (∞, 1)-category of O-forests.

The full sub-(∞, 1)-category ∆
(1)
O of ∆O on the ([n],O•) such that On ∈ O♭,el is called

the (∞, 1)-category of misodendric O-forests, or O-trees.

Example 3.1.4. For the terminal algebraic pattern ∗, the (∞, 1)-categories of ∗-forests and
of ∗-trees both recover the simplex category ∆.

Example 3.1.5. For Γop♭, we obtain a category of forests, i.e. disjoint unions of trees,
with level structures, whose misodendric subcategory is identified in [Ber22] with a
full subcategory of Ω. Indeed, recalling that the active subcategory of Γop is equivalent
to the category of finite sets, the object On is to be thought of as the set of roots of the
forest, and each Oi is the set of leaves at level n − i. The morphisms in (Γop)act give
partitions of the leaves at levels ℓ corresponding to the node (recognised by its unique
output leaf at level ℓ + 1) to which they lead.

Example 3.1.6. For ∆op♭, we similarly obtain a category of planar trees (or rather, forests
thereof) with level structures.

3.2 The pattern structure on the plus construction

Lemma 3.2.1. The∞-functor dO : ∆O ⊂ ∆
pre
O → ∆ is a cartesian fibration.

Proof. We first observe as in [CHH18] that, due to the pullback condition in eq. (8),
a morphism (φ, f•) : ([m],O•) → ([n], P•) in ∆O is dO-cartesian if and only if f• is a
natural equivalence. Indeed, to say that (φ, f•) : ([m],O•)→ ([n], P•) is dO-cartesian is
to say that

∆O,/([m],O•) ∆O,/([n],P•)

∆/[m] ∆/[n]

(φ,f•)◦−

φ◦−

(9)

is a cartesian square.
Let then ([k], L•) be any object of ∆O, and take the fibre of eq. (9) at ([k], L•), which

we decompose as follows:

∆O

(
([k], L•), ([m],O•)

)
∆O

(
([k], L•), ([n], P•)

)

∆
pre
O

(
([k], L•), ([m],O•)

)
∆

pre
O

(
([k], L•), ([n], P•)

)

∆([k], [m]) ∆([k], [n]).

y iff f• invertible

(10)

Since ∆
pre
O → ∆ is constructed — and described — as a Grothendieck construction,

the lower square is cartesian if and only if f• invertible. It is then enough to observe

12



that the condition for a morphism in ∆
pre
O to be in ∆O is detected by postcomposition

with a componentwise invertible morphism of ∆O, which is clear.
This characterisation now makes it easy to determine cartesian lifts. Let φ : [m]→ [n]

be a morphism in ∆, and let ([n],O•) be a lift of [n] in ∆O. We define a cartesian lift of
([n],O•) along φ to be ([m],Oφ(•)) with (φ, idO•◦φ).

Corollary 3.2.2. Say that an arrow (φ, f•) in ∆O is inert if φ is inert in ∆ and active if φ is
active in ∆ and f• is an equivalence. Then ((∆O

op)inrt, (∆O
op)act) defines a factorisation system

on ∆O
op.

Proof. By [Lur17, Proposition 2.1.2.5], since dO : ∆O ⊂ ∆
pre
O → ∆ is a cartesian fibration,

the factorisation system on its base can be lifted as required.

Definition 3.2.3. Let O be a combinatorial algebraic pattern. Its plus construction

∆O
op♮ is the (∞, 1)-category ∆O

op equipped with the inert-active factorisation of corollary 3.2.2
and as elementary objects those ([n],O•) with [n] ∈ ∆op♮,el (i.e. either [0] or [1]) and
On ∈ O♭,el.

Its misodendric plus construction is the algebraic pattern induced on ∆
(1)
O

op
.

We shall say that an algebraic pattern is well-directed if it can be written as the plus
construction of some combinatorial algebraic pattern.

Example 3.2.4. The main result of [CHH18] shows that ∆
Γop♮

op♮ is Morita-equivalent to
Ωop♮ in the sense that their (∞, 1)-categories of Segal∞-groupoids are equivalent. We
will henceforth conflate operad objects with Segal ∆

Γop♮
op♮-objects.

Scholium 3.2.5. The Segal condition for a Segal ∆O
op♮-object X can be explicitly written as

the following set of conditions:

level decomposition For any ([n],O•), the canonical arrow

X
(
[n],O•

)
→ X

(
[1], (O0  O1)

)
×

X([0],(O1))
· · · ×

X([0],(On−1))
X
(
[1], (On−1  On)

)

(11)
is an equivalence.

root decomposition For any height-0 forest of the form ([0],O0), the canonical map

X
(
[0], (O0)

)
→ lim

E O0

X
(
[0], (E)

)
(12)

is an equivalence (where the limit is taken over Oact
el/O)

shrub decomposition For any
(
[1], (O0  O1)

)
, the canonical arrow

X
(
[1], (O0  O1)

)
→ lim

E O1

X
(
[1], (O0,E  E)

)
(13)

is an equivalence, where O0,E is the fibre product O0 ×
act
O1

E — with ×act indicating that

it is a fibre product in Oact.
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Proof. The only part that bears commenting upon is the shrub decomposition. Recall
that the inert maps in ∆O are simply those whose projection to ∆ is inert, so the relevant
inert morphisms in ∆O are those from the elementaries over [1] ∈ ∆. If we consider such
a morphism, represented by

P O0

E O1,

(14)

the equifibred condition implies that P is the active pullback O0 ×
act
O1

E.

Example 3.2.6. When O is Γop♮, or more generally a momentous enrichable patter, the
limits appearing in the root and shrub decompositions take on a simpler form: the root
decomposition now becomes the condition that

X
(
[0], (O0)

)
→ lim

E O0

X
(
[0], (EO0

i )
)

(15)

be an equivalence (where EO
i  O is the unique lift ofO along the map λi of example 2.3.12,

and we put a trivial factor if this lift is inexistent), and the shrub decomposition is the
condition that

X
(
[1], (O0  O1)

)
→

|O1 |∏

i=1

X
(
[1], (O0,i  EO1

i )
)

(16)

be an equivalence, where O0,i is the fibre product O0×
act
O1

EO1

i , as since O is momentous

and enrichable, E O1 must be one of the lifts EO1

i .

Proposition 3.2.7 ([CHH18, Lemma 2.11]). Forests and trees have the same Segal objects: the
(∞, 1)-functor Seg

∆O
op♮(∞-Grpd) → Seg

∆
(1)
O

op♮(∞-Grpd) of restriction along the inclusion

∆
(1)
O →֒ ∆O is an equivalence of (∞, 1)-categories.

Proof. Let ([n],O•) be an O-forest, and denote the decomposition of |On| into its fibres.
We then write any forest as a union of trees, and use the forest decomposition condition
of scholium 3.2.5.

Construction 3.2.8. We define a corolla of an O-forest F ∈ ∆O to be an equivalence class
of inert morphisms F→ E where E is elementary lying over [1] ∈ ∆.

We can now define a functor |−|
op : ∆O → Γ by counting the numbers of corollas in

an O-forest, as in [CH20, Definition 2.2.10].

Proposition 3.2.9. The functor |−| : ∆O
op → Γop gives a structure of enrichable pattern on

∆O
op♮.

Proof. By direct verification; this follows essentially by definition of corollas.

Proposition 3.2.10 ([Bar18, Theorem 10.16]). There is an equivalence of (∞, 1)-categories

between ∆O
op♭-Segal objects and weak Segal O-fibrations.
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Proof (Sketch of construction). The proof is a direct generalisation of that of [HM22, The-
orem 3.1.1], which is quite technically involved, so we do not reproduce it here. How-
ever, since it will be useful later on, we recall the construction of the adjunction.

We first explain what is, for our purposes, the most important part: how to get from
Segal objects to weak fibrations.

We start by constructing an∞-functor ω∗ : ∞-Grpd∆O
op
→ ∞-Grpd∆/O

op
. Recall that

presheaves on ∆O can be seen equivalently as presheaves on∞-Grpd∆O
op

satisfying the
representability condition of being colimit-preserving. We now define an ∞-functor
ω : ∆/O → ∞-Grpd∆O

op
as the composition i∗ ◦ y∆/O

where i∗ is restriction (or inverse

image) of presheaves along the canonical∞-functor i : ∆O →֒ ∆/Oact
(Oact

→O)!
−−−−−−−→ ∆/O.

We thus get an inverse image ∞-functor ω∗ : ∞-Grpd∞-Grpd∆O
op op

→ ∞-Grpd∆/O
op

,
which we can restrict to the (full) sub-(∞, 1)-category of those presheaves which are
representable and satisfy the Segal condition. To finish, recall also (from [Lur09, Corol-
lary 5.1.6.12]) that∞-Grpd∆/O

op
≃∞-Grpd∆

op

/N• O, so we eventually have

ω∗ : Seg
∆O

op♮(∞-Grpd)→∞-Grpd∆
op

/N• O. (17)

In the case where O = Γop♮, our functor ω corresponds to the one described in [HHM16,
§5.1]. By [HM22, §3.3], this functor does land first in the subcategorySeg

∆op♮(∞-Grpd)/N• O

which we interpret as (∞, 1)-Cat/O, and in fact in the further subcategory of those∞-
functors to O which are weak Segal fibrations.

To go the other way, we consider ̟ : ∆O
y
−→ ∞-Grpd∆O

op
→ WkSegFib/O and the

“conjoint” profunctor it corepresents: then (ω∗)−1 is the∞-functor mapping (E → O)

to the presheaf WkSegFib/O(̟(−),E) : ∆O →∞-Grpd.

Note that — again for O = Γop♮ — an alternate proof, using the monoidal envelope
∞-functor, appears in[HK21, Corollary 4.2.8]. However, this proof uses crucially an
explicit description of the Grothendieck construction of Env(1) seen as a Segal O-∞-
category, which do not have in general.

4 Monoidal envelopes and Grothendieck opfibrations

4.1 Construction of the monoidal envelope functor

As explained in the introduction, we wish to interpret the usual formula computing
monoidal envelopes of operads as a fibrewise oplax extension along a certain func-
tor appropriately mixing in partitions. To define the necessary fibrewise extensions,
we need to briefly work in the generality of formal ∞-category theory introduced
in [RV22], that is in the framework of∞-cosmoi, modelling the (∞, 2)-category of∞-
categories. Recall from [RV22, Proposition 9.1.8, Theorem 9.3.3] that (pointwise) oplax
extensions along an∞-functor can be expressed as colimits weighted by the conjoint of
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this∞-functor. We will define fibrewise extensions similarly, replacing this conjoint by
a relative version.

The reader who wishes to limit their intake of abstract nonsense may use the formula
of eq. (23) as a definition, and take its functoriality properties on faith.

Construction 4.1.1 (Relative comma∞-category). In an∞-cosmos K, consider a cocor-
respondence in the sliced∞-cosmos K/B:

E

F G

B

f g

p q

(18)

We let f ↓/B g denote the comma object in K/B, and call it the relative comma ∞-

category over B.

Remark 4.1.2. By [RV22, Proposition 1.2.22, (iv)–(vi)], the relative comma ∞-category
can be constructed as

f ↓/B g ≃ (F×B G) ×
(E×BE)

(B ×B2 E2) (19)

(where the map B → B2 is the diagonal). That is, informally, an object of f ↓/B g

consists of a triple (F,G,α) where F and G are objects of F and G respectively and
α : f(F) → g(G) is an arrow in E, such that all data live above the same object of B
(i.e. there is an object B ∈ B and isomorphisms pF

≃
−→ B, qG

≃
−→ B, and α

≃
=⇒ idB).

Lemma 4.1.3. The canonical projection f ↓/B g → F × G is a discrete two-sided fibration in
K.

Proof. As in [RV22, Proposition 7.4.6].

Definition 4.1.4 (Fibrewise (op)lax extensions). Let E
p
−→ B and F

q
−→ B be two ∞-

categories defined over a base B, and let K : E → F be an ∞-functor defined over B.
Let D : E→ G be an (∞, 1)-functor, so that we have the solid diagram

E G

F

B

p

K

D

q

(20)
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A fibrewise lax extension of D along K (relative to B) is a limit

LexK/B D :=
{
K

/B
∗ ,D

}
: F→ G (21)

of D weighted by the∞-profunctor K/B
∗ : E −7→ F associated with the relative comma

∞-category idF ↓/B K.
A fibrewise oplax extension of D along K (relative to B) is a colimit

OpexK/B D := K∗
/B ⋆D : F→ G (22)

of D weighted by the∞-profunctor K∗
/B : F −7→ E corresponding to the relative comma

∞-category K ↓/B idF.

Remark 4.1.5. We have the explicit formulae, deduced from [RV22, Lemma 9.5.5], com-
puting fibrewise extensions: the fibrewise oplax extension of D along K, evaluated at
F, is

OpexK/B D(F) = colim
K(E)→F
E∈Eq(F)

D(E), (23)

and the fibrewise lax extension of D along K, evaluated at F, is

LexK/B D(F) = lim
F→K(E)
E∈Eq(F)

D(E). (24)

Definition 4.1.6 (Envelope). Let X : ∆O
op → ∞-Grpd be a precosheaf on ∆O

op. Its
envelope is the precosheaf

Env(X) = i∗ Opexi/∆op X (25)

where i∗ denotes the (∞, 1)-functor of (fibrewise) restriction along i : ∆O
op →֒ (∆

pre
O )

op
,

right-adjoint to fibrewise oplax extension.

Remark 4.1.7. From the formula for fibrewise extensions ( eq. (23)), we see that the value
taken by the envelope of X ∈ Seg

∆O
op♮(C) at an O-tree T• of length [n] is computed by

Env(X)(T•) = colim
B• T•

∈((∆
pre
O )[n])/T•

lim
E Bn

X(B•,E) (26)

where (B•,E)E Bn denotes the forest decomposition in fibres (as in eq. (13)), and where
we denote the indexing arrows for the colimit as to emphasise that we view them as
families of n active arrows of O.

Remark 4.1.8. In the case O = Γop♭, we may understand the envelope in the follow-
ing way. Recall that an active morphism in Γop can be seen as giving a partition of its
source indexed by its target (possibly with empty parts). Then the colimit creates sev-
eral copies of X(⋆n), each equipped with a new partition specifying how to distribute
its inputs.
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To work with envelopes in an intuitive way, it will then be convenient to introduce
the following terminology.

Definition 4.1.9 (O-Partitions). Let O be an algebraic pattern, and let O and P be objects
of O. An O-partition ofO by P, or simply a P-partition ofO when there is no ambiguity,
is an active morphism O P.

Example 4.1.10. If 1 denotes the terminal ∆O
op♮-Segal ∞-groupoid, then its envelope

Env(1) evaluates, on any forest T• of lengthn, the the groupoidal localisation of (∆pre
O )[n]/T• .

Proof. By definition, Env(1)(T•) is given by the colimit

Env(1)(T•) = colim
B• T•

1 (27)

(where the last 1 is the terminal∞-groupoid).
Now Env(1)(T•) is an∞-groupoid so it is equivalent to its localisation, and further-

more the localisation functor L : (∞, 1)-Cat → ∞-Grpd, being left-adjoint to the inclu-
sion I : ∞-Grpd →֒ (∞, 1)-Cat, preserves colimits, so we may compute the colimit on
the right-hand side in (∞, 1)-Cat and then localise.

As a colimit of a constant diagram of (∞, 1)-categories, the colimit in (∞, 1)-Cat

is equivalent to the tensor of the constant value 1 by the indexing (∞, 1)-category
(∆

pre
O )[n]/T• .
From the adjunction L ⊣ I and the tensor-cotensor adjunction, we have that for any

(∞, 1)-category C and any∞-groupoids G and H,

∞-Grpd
(
(LC)⊗G,H

)
≃∞-Grpd

(
LC,HG

)
≃ (∞, 1)-Cat

(
C,I(HG)

)
. (28)

Since functor (∞, 1)-categories between∞-groupoids are automatically ∞-groupoids,
I(HG) is also the cotensor of (∞, 1)-categories (IH)IG, and thus

(∞, 1)-Cat
(
C,I(HG)

)
≃ (∞, 1)-Cat

(
C, (IH)IG) ≃ (∞, 1)-Cat

(
C⊗IG,IH

)

≃∞-Grpd
(
L(C ⊗IG),H

)
,

(29)

which shows that L(C ⊗IG) ≃ (LC)⊗G.
Hence, in our case, we obtain — now writing C[−1] = LC for the total localisation of

an (∞, 1)-category C — the tensor of∞-groupoids (∆pre
O )[n]/T• [

−1] ⊗ 1, which is simply
(∆

pre
O )[n]/T• [

−1].

Definition 4.1.11 (Linearisable pattern). A collection {Ci}i∈I of objects in an (∞, 1)-
category C is mock multiterminal if the projection C/{Ci}i → C is an equivalence.

A combinatorial algebraic pattern O
|−|
−→ Γop♮ is linearisable if the collection of ♭-

elementary objects is mock multiterminal in Oact.

We note that while, obviously, if a collection {Ci}i∈I is multiterminal, it is in particular
mock multiterminal, this is is not the only case: it can also happen if the only morphisms
between objects of {Ci}i are ismorphisms.
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Notation 4.1.12. When O is linearisable, we have a simple classification of the element-
aries of ∆O

op♮. Recall that those were defined to be the trees (i.e. the forests whose final
value is elementary in O♭) of length [0] and [1].

If E• is of length [0], it is simply given by an elementary object of O♭, so we write
those as ηE with E ∈ O♭,el, and call them the edges.

If E• is of length [1], it must be given by a diagram in Oact of the form O E with E ∈
O♭,el. The linearisability condition ensures that for any given O, there is only essentially
one such morphism, and so we denote the corresponding object as ⋆O, and dub such
elementaries the corollas (as they are the elementaries considered in construction 3.2.8).

Proposition 4.1.13. For any combinatorial pattern O, the misodendric plus construction ∆
(1)
O

op♮

is linearisable.

Proof. Let ([n],O•) be an object of ∆O. By the condition for misodendric objects, On

must be in O♭,el. Recall from remark 3.1.2 that a morphism to ([n],O•) is determined by
the data of a morphism to [n] in ∆ and a (semi-inert and active) morphism to On.

Now the elementaries of ∆O
op♭ are of the form ([1], (E0  E1)) with E1 ∈ O♭,el. There

is only one active morphism [1] [n], which is specified by (0 < 1) 7→ (0 < n). Finally,
an active morphism in ∆O

op♭ must have its morphism to On be an isomorphism, so E1

is also forced to be On (while E0 was already seen to be equivalent to O0).

In particular, when O is linearisable, evaluating example 4.1.10 on the elementaries,
we find that:

•
∐

E∈O♭,el Env(1)(ηE) is the localisation of Oact;

• for any corolla CO =
(
[1], (O EO)

)
(with EO the unique elementary receiving an

active morphism from O), an object ofEnv(1)(CO) consists of an active morphism
P0  P1 of O — a P1-partition of P0 — along with an O-partition P0  O (such
that, necessarily, EP1 is also compatibly equivalent to EO).

4.2 Opfibrations and representable monoidality

Proposition 4.2.1. For any Segal ∆O
op♮-object X, its envelope Env(X) is a Segal ∆O

op♮-
object.

Proof. Let T• be an object of ∆O of length [n]. The Segal condition requires comparing

Env(X)(T•) = colim
B•→T•

X(Bn) = colim
B•→T•

lim
B•→E

X(E•) (30)

and
lim

T•→E•

Env(X)(E•) = lim
T•→E•

colim
B0,1→E•

X(B0,1). (31)

Their equality is the condition of distributivity of limits over colimits as made explicit
in [CH21, Definition 7.12], and using [CH21, Corollary 7.17] which shows that∞-Grpd
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is admissible (or even any (∞, 1)-topos when the ∞-category of active maps from a
given object of O to an elementary is finite).

Alternatively, we can use the explicit form of the Segal conditions given in scholium 3.2.5,
which can be checked directly.

For the cocartesian properties of the envelope, we now need to specialise to the case
where O is linearisable. Indeed, following [Her04, Theorem 2.4], we will character-
ise cocartesian fibrations of Segal P-objects (for P = ∆O

op♮ a well-directed algebraic
pattern) in terms of cocartesian fibrations of the underlying PP0/-objects of their envel-
opes. This presupposes having already a good understanding of cocartesian fibrations
of PP0/-objects, which is only the case when PP0/ is ∆op♮, in particular when P = Ωop♮

(and P0 = {η}).

Remark 4.2.2. In a combinatorial pattern O, the ♭-elementaries lie over 〈1〉 ∈ Γop. An
active and semi-inert morphism to 〈1〉 can have as source only 〈1〉 or 〈0〉. So if O is
linearisable, for any object O the unique active morphism to an elementary will only be
semi-inert in |O| is 〈1〉 or 〈0〉, in which case it will be so because there are no non-semi-
inert morphisms 〈0〉→ 〈1〉 or 〈1〉→ 〈1〉.

Lemma 4.2.3. Suppose O is linearisable and O〈1〉 is an ∞-groupoid. The slice (∆O)/η is
equivalent to ∆×O〈1〉, itself equivalent to colimO〈1〉

∆.

Proof. Consider a morphism T → η from some tree T = ([n],O•), consisting of a map
φ : [n] → [0] and a transformation O• → φ∗E where E is an elementary defining the
edge ηE = ([0], (E)). Now φ∗E is a constant diagram, so the equifibred condition for the
transformation implies that all components of O• must be equal to On. By the previous
remark, On only admits a semi-inert active morphism to an E if it lies over 〈1〉 (and it
exists uniquely by the linearisability condition).

By [Bar22, Proposition 2.37], there is a canonical pattern structure on a coslice of a
pattern. The equivalence of categories underlies one of algebraic patterns.

Remark 4.2.4. Since hom∞-functors preserve limits, we have that SegcolimO〈1〉
∆op♮(C) ≃

limO〈1〉
Seg

∆op♮(C). In other words, a Segal (∆O)
op
η/

-object can be seen as a family of
category objects indexed by the∞-groupoid O〈1〉, which we shorten to O〈1〉-category.

Definition 4.2.5 (Underlying O〈1〉-category). Suppose O is linearisable and O〈1〉 is an
∞-groupoid, and denote p : (∆O)

op
η/
→ ∆O

op. The underlying O〈1〉-category, or simply

underlying category, object of a Segal ∆O
op♮-object X is its restriction along p.

If F is the name of a Segal ∆O
op♮-object, we will generally denote its underlying

category object F.

Remark 4.2.6. The functor p clearly admits unique liftings of inert morphisms, and it
is extendable, so by [CH21, Proposition 7.13] the restriction ∞-functor p∗ has a left-
adjoint (given by oplax extension), which is fully-faithful, and has as its essential im-
ages the presheaves with empty value on any non-linear tree.
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Definition 4.2.7 (Cocartesian fibration). A morphism X → B of Segal ∆
Γop♭

op♮-∞-
groupoids is a cocartesian fibration of Segal objects if Env(X)→ Env(B) is a cocartesian
fibration (of (∞, 1)-categories), where Env(X) denotes the underlying (∞, 1)-category
of Env(X).

A Segal object X is representably monoidal if the unique morphism X → 1 is a
cocartesian fibration of Segal objects.

Proposition 4.2.8. For any Segal object X, Env(X) is representably monoidal.

Proof. Since families of cocartesian fibrations can be checked componentwise, we shall
assume that O〈1〉 is comprised of one single ♭-elementary object.

Let φ : O  O′ be a morphism in Env(1), seen as an O-partition of O by O′, and let
C ∈ Env(Env(X)) lying over O. Under the identification

Env
(
Env(X)

)
(η) ≃ colim

P∈Oact
Env(X)([0], P)

≃ colim
P∈Oact

colim
Q P

lim
E Q

X(η),
(32)

where the condition of “lying over O” means that the index P in the first colimit is fixed
to be O, one passes to φ!C over O′ by composing the maps Q O in the second colimit
with O O′.

For clarity, let us write it in the momentous enrichable case, where this simplifies to

Env
(
Env(X)

)
(η) ≃ colim

P∈Oact

|P|∏

i=1

Env(X)(η)

≃ colim
P∈Oact

|P|∏

i=1

colim
Qi∈Oact

|Qi |∏

j=1

X(η),

(33)

and so we write C as

(C1,1 · · ·C1,|Q1 |) · · · (C|O|,1 · · ·C|O|,|Q|O0 |
|) (34)

for some choice of (Qi)
|O|

i=1.
We set

φ!C = (C1,1 · · ·Cn1,in1
) · · · (Cnm−1+1,1 · · ·Cnm,inm

) (35)

which lies over 〈m〉 = |O′|, where (n1, . . . , nm) is the partition of n in m furnished by
|O O′|.

A morphism C → φ!C in Env(Env(X)) is given by a moprhism C1,1 · · ·Cnm,inm
→

C1,1 · · ·Cnm,inm
in Env(X) along with a partition of

∑m
k=1 ink

into n parts. We define the
lift C → φ!C of φ to be given by the identity arrow of C1,1 · · ·Cnm,inm

along with the
partition exhibited in eq. (34). This lift is cocartesian.

Thus the constructionX 7→Env(X)defines an (∞, 1)-functorEnv : Seg
∆O

op♮(∞-Grpd)→
O〈1〉-Mon(∞, 1)-Cat.
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Remark 4.2.9 (Monoidal structure on monoidal∞-categories). Using the idea from the
proof of proposition 4.2.8, we can construct a product on the colours of a represent-
ably monoidal ∞-operad X. First note that (regardless of monoidality) the colours of
Env(X) in the image of the unit map X → Env(X) are exactly those whose image
under the morphism Env(X)→ Env(1) is 1.

Consider an n-uple of colours of X, given by n morphisms C1, · · · , Cn : yη → X.
Those define a morphism (C1, · · · , Cn) : yη → Env(X), whose image lies over the
colour n of Env(1). Now since X is representably monoidal, the morphism n →
1 in Env(1) has a cocartesian lift from (C1, · · · , Cn), whose target is then a colour
C1 ⊗ · · · ⊗Cn of X. Clearly, the same construction can be applied to obtain a product of
morphisms as well, with appropriate functoriality.

Theorem 4.2.10. The (∞, 1)-functor Env is left-adjoint to the inclusion Mon(∞, 1)-Cat →֒
∞-Oprd.

Proof. By the construction of the envelope, we have a unit morphism ηX : X →Env(X)

for any∞-operad X. We need to construct a counit εV : Env(V) → V for any repres-
entably monoidal∞-operad V, which is a morphism of monoidal∞-categories.

This morphism is provided by the construction of remark 4.2.9: since V is represent-
ably monoidal, it admits a monoidal product, and its envelope simply corresponds to
adding a second level a parenthesising to the products.

We will construct εV componentwise, as a natural transformation of ∞-functors
∆
Γop♭

op →∞-Grpd. Let T• be a tree. By the formula eq. (26), giving a mapEnv(V)(T•)→
V(T•) is equivalent to giving, for each morphism B•  T•, a map X(B•)→ X(T•). But
recall that B•  T• can be interpreted as a T•-partition of B•. Following the previous re-
mark, we can use the product to simply reorganise the parenthesising levels according
to the partition, which produces the desired morphism.

Finally, it is directly checked that ε and η satisfy the triangular equalities, so that they
do exhibit an adjunction.

5 Cartesian monoidal structures and application to the

Grothendieck construction

5.1 Cartesian monoidal structures

Defining the monoidal (∞, 1)-category associated with an (∞, 1)-category admitting
finite coproducts is easy enough: by [Lur17, Proposition 2.4.3.9], the∞-functor realising
this construction is right-adjoint to the one taking the underlying (∞, 1)-category of a
unital∞-operad. For cartesian monoidal∞-categories, however, it is not so easy.

We follow here the idea used independently in [BGS20] and [DK19] to define cartesian
monoidal∞-categories: defining them not as∞-operads, but as “∞-antioperads”, the
variant of∞-operads whose operations have one input but many outputs.

Construction 5.1.1 (Anti-plus construction). We let ∆
pre
O denote the Grothendieck con-

struction of y(∞,1)-Cat(O
act)|∆ ◦ (−)op, and define a locally full sub-(∞, 1)-category ∆O
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by imposing the same conditions as in the plus construction.

Scholium 5.1.2. There is an equivalence of (∞, 1)-categories between Segal ∆O
op♮

-objects and
(∞, 1)-functors p : P→ Oop such that pop is a weak Segal fibration.

Definition 5.1.3 (Reduced pattern). A combinatorial pattern O is reduced if Oel
0 is the

terminal∞-groupoid. We denote its (essentially) unique object ∅.

Definition 5.1.4 (Unitality). Let O be a reduced pattern. A ∆O
op♮

-object X is anti-unital

if it is local with respect to the (op-)morphism ⋆∅ ← η.

Remark 5.1.5. The (∞, 1)-category of anti-unital Segal∆O
op♮

-objects in an (∞, 1)-category
C is evidently a localisation of Seg

∆O
op♮(C). It can also be seen a category of Segal ob-

jects for a different pattern.

The pattern for anti-unital ∆O
op♮

-objects is the same as ∆O
op♮

, with ⋆∅ removed from
the elementaries.

Lemma 5.1.6. The restriction morphism Seg
∆O

op♮,unit.(C) → Seg
∆O

op♮
η/

(C) (taking underly-

ing∞-categories) preserves Segal equivalences, and thus admits a right-adjoint (by lax exten-
sion).

We now give an alternate construction of the cartesian structure as a ∆O
op♮-object, in

the spirit of [Lur17].

Construction 5.1.7. Let U≤−1 be the subobject classifier ((−1)-truncated universe) in the
(∞, 1)-topos∞-Grpd∆O

op
. Define a presheaf Ẽnv(C×) over Env(1) by the specification

that hom(K,Ẽnv(C×)) ≃ hom(K ×Env(1) Env(U≤−1),C) for any presheaf K. Note that
the canonical (mono)morphism true : 1֌ U≤−1 induces a transformation Ẽnv(C×)→
C.

When K is yη, and the transformation η → Env(1) selects an object O of Oact, we
obtain functors from the poset of subobjects of O to C. We define Env(C×) to be the
subfunctor of Ẽnv(C×) on the functors as above which exhibit their image as product
of the elementaries in their source.

Proposition 5.1.8. The structure morphism Env(C×)→ Env(1) is the image of a cocartesian

fibration of ∆O
op♮-objects.

Proof. As in [Lur17, Proposition 2.4.1.5.].

5.2 Straightening cocartesian fibrations

Definition 5.2.1 (Weak cartesian structure). Let X be a Segal ∆O
op♮-∞-groupoid, and let

D be a Segal ∆O
op♮

η/
-∞-groupoid. A lax cartesian structure from O to D is a morphism

Env(X)→ D that takes decompositions to products.
It is a strong cartesian structure if it induces an equivalence of underlying (∞, 1)-

categories.
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Lemma 5.2.2. The transformation Env(C×)→ C is a strong cartesian structure.

Proof. As in [Lur17, Proposition 2.4.1.5.].

Proposition 5.2.3. There is an equivalence of (∞, 1)-categories between lax cartesian struc-
tures from X to D and morphisms X → D×.

Proof. As in [Lur17, Proposition 2.4.1.7].

Remark 5.2.4. Consider a lax cartesian structure ϕ : Env(X) → D in the case where D

is (∞, 1)-Cat (or ∞-Grpd). It is classified by a cocartesian fibration p : Φ :=
∫co

ϕ →
Env(X). We will say that a cocartesian fibration over Env(X) is lax cartesian if the
∞-functor Env(X)→ (∞, 1)-Cat that it classifies is a lax cartesian structure.

Lemma 5.2.5. A cocartesian fibration over Env(X) is lax cartesian monoidal if and only if it
is in the essential image of the functor Env.

Proof. By [HK21] or [BHS22], a cocartesian fibration overEnv(X) is in the image ofEnv
if and only if it is equifibred (or cartesian) as a natural transformation.

We thus obtain the following (un)straightening correspondence.

Corollary 5.2.6. For every Segal ∆O
op♮-∞-groupoid X, there is an equivalence of (∞, 1) cat-

egories between cocartesian fibrations over X and morphisms X → (∞, 1)-Cat×.

Remark 5.2.7. The straightening/unstraightening equivalence for Segal∆O
op♮-∞-groupoids

takes as input the one for ∆O
op♮

η/
-∞-groupoids. This is reminiscent of the straightening

correspondence for Segal (∆n)op♮-∞-groupoids of [Nui21] which is inductive on n.

References

[Bar18] Clark Barwick. “From operator categories to higher operads”. In: Geometry
& Topology 22 (4 2018), pp. 1893–1959. DOI: 10.2140/gt.2018.22.1893.
arXiv: 1302.5756 [math.AT].

[Bar22] Shaul Barkan. “Arity Approximation of∞-Operads”. In: arXiv e-prints (2022).
DOI: 10.48550/arXiv.2207.07200. arXiv: 2207.07200 [math.AT].

[BD98] John C. Baez and James Dolan. “Higher-Dimensional Algebra III.n-Categories
and the Algebra of Opetopes”. In: Advances in Mathematics 135.2 (1998),
pp. 145–206. ISSN: 0001-8708. DOI: 10.1006/aima.1997.1695. arXiv: q-alg/9702014 [math.QA]

[Ber22] Clemens Berger. “Moment categories and operads”. In: Theory and Applica-
tions of Categories 38.39 (Dec. 2022). arXiv: 2102.00634 [math.CT]. URL:
http://www.tac.mta.ca/tac/volumes/38/39/38-39abs.html.

[BGS20] Clark Barwick, Saul Glasman and Jay Shah. “Spectral Mackey functors and
equivariant algebraic K-theory, II”. In: Tunisian Journal of Mathematics 2 (1
2020). DOI: 10.2140/tunis.2020.2.97. arXiv: 1505.03098 [math.AT].

24

https://doi.org/10.2140/gt.2018.22.1893
https://arxiv.org/abs/1302.5756
https://doi.org/10.48550/arXiv.2207.07200
https://arxiv.org/abs/2207.07200
https://doi.org/10.1006/aima.1997.1695
https://arxiv.org/abs/q-alg/9702014
https://arxiv.org/abs/2102.00634
http://www.tac.mta.ca/tac/volumes/38/39/38-39abs.html
https://doi.org/10.2140/tunis.2020.2.97
https://arxiv.org/abs/1505.03098


[BHS22] Shaul Barkan, Rune Haugseng and Jan Steinebrunner. “Envelopes for Al-
gebraic Patterns”. In: arXiv eprints (2022). DOI: 10.48550/arXiv.2208.07183.
arXiv: 2208.07183 [math.CT].

[BM21] Michael Batanin and Martin Markl. “Operadic categories as a natural envir-
onment for Koszul duality”. In: arXiv e-prints (May 2021). arXiv: 1812.02935 [math.CT].

[CH20] Hongyi Chu and Rune Haugseng. “Enriched ∞-operads”. In: Advances in
Mathematics 361 (2020). DOI: 10.1016/j.aim.2019.106913. arXiv: 1707.08049 [math.AT]

[CH21] Hongyi Chu and Rune Haugseng. “Homotopy-coherent algebra via Segal
conditions”. In: Advances in Mathematics 385 (2021), p. 107733. ISSN: 0001-
8708. DOI: 10.1016/j.aim.2021.107733. arXiv: 1907.03977 [math.AT].

[CH22] Hongyi Chu and Rune Haugseng. “Enriched homotopy-coherent structures”.
2022.

[CHH18] Hongyi Chu, Rune Haugseng and Gijs Heuts. “Two models for the homo-
topy theory of∞-operads”. In: Journal of Topology 11.4 (2018), pp. 857–873.
DOI: 10.1112/topo.12071. arXiv: 1606.03826 [math.AT].

[CS10] Geoffrey S.H. Cruttwell and Michael A. Shulman. “A unified framework
for generalized multicategories”. In: Theory and Applications of Categories
24.21 (2010), pp. 580–655. URL: http://www.tac.mta.ca/tac/volumes/24/21/24-21ab

[DK19] Tobias Dyckerhoff and Mikhail Kapranov. Higher Segal Spaces. Vol. 2244.
Lecture Notes in Mathematics. 2019. DOI: 10.1007/978-3-030-27124-4.
arXiv: 1212.3563 [math.AT].

[GH15] David Gepner and Rune Haugseng. “Enriched∞-categories via non-symmetric
∞-operads”. In: Advances in Mathematics 279 (2015), pp. 575–716. ISSN: 0001-
8708. DOI: 10.1016/j.aim.2015.02.007. arXiv: 1312.3178 [math.AT].

[Hau16] Rune Haugseng. “Bimodules and natural transformations for enriched∞-
categories”. In: Homology, Homotopy and Applications 18.1 (2016), pp. 71–98.
DOI: 10.4310/HHA.2016.v18.n1.a5. arXiv: 1506.07341 [math.AT].

[Hau17] Rune Haugseng. “The higher Morita category of En–algebras”. In: Geometry
& Topology 21 (3 17), pp. 1631–1730. DOI: 10.2140/gt.2017.21.1631.
arXiv: 1412.8459 [math.AT].

[Her04] Claudio Hermida. “Fibrations for abstract multicategories”. In: Galois The-
ory, Hopf Algebras, and Semiabelian Categories. Vol. 43. Fields Institute Com-
munications, 2004, pp. 281–293. URL: http://sqig.math.ist.utl.pt/pub/HermidaC/fi

[Heu11] Gijs Heuts. “Algebras over infinity-operads”. In: arXiv e-prints (2011). arXiv:
1110.1776 [math.AT].

[HHM16] Gijs Heuts, Vladimir Hinich and Ieke Moerdijk. “On the equivalence between
Lurie’s model and the dendroidal model for infinity-operads”. In: Advances
in Mathematics 302 (2016), pp. 869–1043. DOI: 10.1016/j.aim.2016.07.021.
arXiv: 1305.3658 [math.AT].

25

https://doi.org/10.48550/arXiv.2208.07183
https://arxiv.org/abs/2208.07183
https://arxiv.org/abs/1812.02935
https://doi.org/10.1016/j.aim.2019.106913
https://arxiv.org/abs/1707.08049
https://doi.org/10.1016/j.aim.2021.107733
https://arxiv.org/abs/1907.03977
https://doi.org/10.1112/topo.12071
https://arxiv.org/abs/1606.03826
http://www.tac.mta.ca/tac/volumes/24/21/24-21abs.html
https://doi.org/10.1007/978-3-030-27124-4
https://arxiv.org/abs/1212.3563
https://doi.org/10.1016/j.aim.2015.02.007
https://arxiv.org/abs/1312.3178
https://doi.org/10.4310/HHA.2016.v18.n1.a5
https://arxiv.org/abs/1506.07341
https://doi.org/10.2140/gt.2017.21.1631
https://arxiv.org/abs/1412.8459
http://sqig.math.ist.utl.pt/pub/HermidaC/fib-mul.pdf
https://arxiv.org/abs/1110.1776
https://doi.org/10.1016/j.aim.2016.07.021
https://arxiv.org/abs/1305.3658


[HK21] Rune Haugseng and Joachim Kock. “∞-operads as symmetric monoidal
∞-categories”. In: arXiv e-prints (June 2021). arXiv: 2106.12975 [math.CT].

[HM22] Vladimir Hinich and Ieke Moerdijk. “On the equivalence of the Lurie’s∞-
operads and dendroidal ∞-operads”. In: arXiv e-prints (June 2022). arXiv:
2206.14033 [math.CT].

[Lur09] Jacob Lurie. Higher Topos Theory. Vol. 170. Annals of Mathematics Studies.
Princeton University Press, Princeton, NJ, 2009, pp. xviii+925. ISBN: 978-0-
691-14049-0. DOI: 10.1515/9781400830558.

[Lur17] Jacob Lurie. Higher Algebra. 2017. URL: http://math.ias.edu/~lurie/papers/HA.pdf.

[Nui21] Joost Nuiten. “On straightening for Segal spaces”. In: arXiv e-prints (Aug.
2021). arXiv: 2108.11431 [math.CT].

[RV22] Emily Riehl and Dominic Verity. Elements of ∞-category theory. Vol. 194.
Cambridge Studies in Advanced Mathematics. Cambridge University Press,
2022. ISBN: 9781108936880. DOI: 10.1017/9781108936880. URL: https://elements-boo

DAVID KERN, IMAG, UNIVERSITÉ DE MONTPELLIER, CNRS, MONTPELLIER, FRANCE

Email address: david.kern@umontpellier.fr

URL: https://dskern.github.io/

26

https://arxiv.org/abs/2106.12975
https://arxiv.org/abs/2206.14033
https://doi.org/10.1515/9781400830558
http://math.ias.edu/~lurie/papers/HA.pdf
https://arxiv.org/abs/2108.11431
https://doi.org/10.1017/9781108936880
https://elements-book.github.io/elements.pdf
mailto:david.kern@umontpellier.fr
https://dskern.github.io/

	Introduction
	Review of the language of algebraic patterns
	Algebraic patterns and Segal objects
	Morphisms of algebraic patterns I: (weak) Segal fibrations
	Morphisms of algebraic patterns II: Combinatorics of enrichable structures

	The plus construction and its Segal objects
	Categories of patterned trees
	The pattern structure on the plus construction

	Monoidal envelopes and Grothendieck opfibrations
	Construction of the monoidal envelope functor
	Opfibrations and representable monoidality

	Cartesian monoidal structures and application to the Grothendieck construction
	Cartesian monoidal structures
	Straightening cocartesian fibrations


