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ABSTRACT

Some data fusion problems seem to be naturally handled in the framework of possibility theory.
As an example, the problem of modelling expert knowledge about numerical parameters in the
field of reliability is reconsidered in that framework. Usually expert opinions about quantities
such as failure rates are modelled, assessed and pooled in the setting of probability theory. In
this paper, we formulate a model of expert opinion by means of possibility distributions that are
thought to better reflect the imprecision pervading expert judgments. They are weak substitutes
to unreachable subjective probabilities. Assessment evaluation is carried out in terms of
accurateness and level of precision, respectively measured by membership grades and fuzzy
cardinality indices. Lastly, elaborating from previous works on data fusion using possibility
theory, we present various pooling modes with their formal model under various assumptions
concerning the sources of information. This framework is particularly suitable when sources are
heterogeneous and statistical data are not available.
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1. INTRODUCTION

The problem of combining pieces of evidence issued from several sources of information can be
encountered in various fields of application, particularly in i) sensor fusion, i.e., when pieces of
information coming from different sensors are to be aggregated, ii) multiple source interrogation
systems where each of the sources can provide precise, imprecise or uncertain information
about values of interest, iii) expert opinion pooling, when different individual statements have
to be synthesized. Our basic claim is that there cannot be a unique mode of combination, which
would be satisfactory in any situations, even when the framework for representing information
is chosen.

Various combination problems exist, especially, i) preference aggregation versus information
aggregation and ii) the combination of information coming from parallel sources versus the
revision of already available information. In the preference aggregation problem it makes sense
to find the opinion of the "average man" in an homogeneous group of individuals, to look for
trade-offs between preferences, while on the contrary, if the information aggregation is a matter
of truth and reliability, logical combinations are natural candidates. In this latter case conjunctive
combinations apply when all the sources are reliable, while disjunctive combinations deal with
the case of unreliable sources hidden in a group of other reliable ones. Obviously weighted
logical combinations may be considered in particular when the sources are not equally reliable.
Averaging operations in information aggregation can be justified when the set of sources can be
viewed as a single random source producing different inputs. In that case, indeed, the set of
data to be fused can be interpreted as standard statistics. For instance several successive
measurements from a single sensor can be viewed as the result of a random experiment. Then
the discrepancies between the sources can be explained in terms of random variability. However
in the case of unique measurements issued from distinct sensors, or in the case of expert
opinions, it is not clear that averaging combination modes make sense. Besides we oppose the
case of merging information from parallel sources to the problem of belief revision where
sources do not play a symmetrical role. In the first situation, all the sources provide information
simultaneously, while in the revision process there is a chronological ordering between the
source which represents the present state of belief and the source which issues the new
information. In each case the pooling obeys different requirements, for instance belief revision
is generally not commutative.

In this paper we consider the information aggregation problem in the case of distinct parallel
sources, and with no a priori knowledge. The typical example of such a problem is the pooling
of expert judgments in the field of reliability. In the field of reliability and safety analysis of
newly designed installations, statistical data are not always available, especially regarding rare
or destructive events, or for devices whose novelty implies a scarcity of experimental data at the
time when the safety analysis must be carried out. In such cases the knowledge of experts is
very useful for evaluating unknown parameters, typically the number of times a given event
occurs within a given period, or the number of hours needed to repair some equipment, etc.
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In order to get useful information from the experts, several problems must be solved. The first
one is a proper modeling of the pieces of data supplied by a single expert about a given
parameter. This type of data is almost never precise and reliable because the expert only
possesses a rough idea of the value of quantitative parameters, due to limited precision of
human assessments and to the variability of such values (e.g., failure rates). In most studies the
expert's response is represented by a probability distribution. The reason for that is often that
probability theory is the only well-known framework for modelling uncertainty. In this paper
we argue that a pure probabilistic model of expert knowledge is not so satisfactory, and that
possibility theory is a more natural framework. The second task to be solved is to assess the
quality of the expert, namely his calibration, and the precision of his response. In the case of
probabilistic modeling, scoring rules have been devised for this purpose. See Cooke (1991) for
a survey. Here we suggest a rating index which may act as a scoring rule for the case of
possibilistic modeling. Lastly when several expert responses are available, they must be
combined so as to yield a unique, hopefully better response. This problem is also addressed
here.

The next section contains a short discussion of the probabilistic approach and its limitations
when pooling evidence stemming from heterogeneous incompletely informed sources. Section
3 addresses the representation of expert imprecise data by means of possibility distributions.
Section 4 describes numerical indices for expert response assessment and outlines an
experiment that aims at assessing the quality of experts. Section 5 deals with the pooling of
uncertain pieces of information. This paper borrows from a case study whose preliminary
results appear in (Kalfsbeek, 1990; Dubois and Kalfsbeek, 1990) and in more details in
(Sandri, 1990, 1991; Sandri et al., 1993). It also freely uses material from a previous survey
paper (Dubois and Prade, 1992b) on possibilistic combination rules.

2. SOME LIMITATIONS OF THE PROBABILISTIC APPROACH

Typically, an expert is asked about the value of some parameter x by specifying fractiles of a
probability distribution function (pdf), for instance the 5% and the 95% fractiles. In other
words, the expert supplies values xe and xu such that P(x ≤ xe) = 0.05 and P(x ≤ xu) = .95

respectively. Moreover some information about the mode, or the mean, or else the median of
the distribution is often asked. Based on these values, and on the choice of a parametrized
family of distribution functions, (for instance a beta-distribution), a given distribution function
is chosen that supposedly best represents the available information. The nature of the
probabilities appearing during the elicitation is sometimes controversial. Some authors call them
"subjective probabilities". This term is ambiguous insofar as it may mean the numerical estimate
of a feeling of certainty, or a subjectively assessed objective frequency. In reliability
applications the second interpretation sounds more instrumental. Note that in some approaches,
experts are only asked for point values of x, as in the Bayesian method of Mosleh and
Apostolakis (1984).
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When several experts supply this kind of information, their responses are pooled so as to derive
a single distribution that reflects the opinion of the group. However it is clear that the opinion of
reliable experts should be more important than the one of unreliable ones. There are two main
approaches to the pooling of probability distributions: the consensus method justified by
Wagner and Lehrer (1981), used by Cooke (1988), and the Bayesian approach, examplified by
the works of Mosleh and Apostolakis (1984). In the consensus method each expert Ei supplies
a pdf pi, and the resulting distribution is a weighted average p = ∑i wipi where the weights wi
reflect the reliability of experts. Cooke (1988) has developed a theory of weights that act as
scoring rules. They tend to force experts to be calibrated and informative. In the Bayesian
method, the a priori opinion of the analyst about the true value of x is revised on the basis of
expert opinions, expressed as point-values. The credibility of experts, from the standpoint of
the analyst, is modelled by conditional probabilities of what an expert will claim the true value
of x is, given this true value. Once the expert point-values are known, the a priori probability
distribution of x, as possessed by the analyst is revised through Bayes theorem. The model by
Mosleh and Apostolakis (1984) tries to account for the dependence between experts via a
correlation coefficient.

The probabilistic approaches can be criticized for several reasons:

– First, the identification of a probability distribution requires more information than what an
expert is able to supply. There are many distribution functions corresponding to given .5 and
.95 fractiles and prescribed mode. The choice of a parametrized family of distribution
functions is basically a matter of making calculations simple. As a consequence the
faithfulness of the modeling of the expert opinion can be questioned. The expert is not asked
about the shape of his pdf, and anyway he might be at a loss to produce any one.

– Experts better supply intervals rather than point-values because their knowledge is not only
of limited reliability but also tainted with imprecision. Probability theory is not concerned
with the modeling of imprecision but rather captures the notion of random variability, or in
the case of subjective probabilities, betting odds.

– The consensus method has a basic flaw in the context of reliability: it is a voting-like
procedure. Indeed if two reliable experts have conflicting opinions about the value of x, such
that one gives a small value to x, and the other gives a high value to x, the consensus method
will supply a probability distribution whose mean value is medium, i.e., a value on which
both expert agree as not being the true one. What is needed is a method which in the best
case, guesses the true value and discards the wrong expert, or in the worst case, proposes a
cautious response that fits the available data (e.g., x is either small or large, but certainly not
medium). The weighted average method sounds more natural when expert opinions express
preference but does not seem to be adapted when a true answer is to be determined instead of
a preferred one.

– Another interpretation of the consensus method comes down to considering the expert data as
issued from a single random source. The underlying homogeneity assumption is questionable
in the case of experts some of which are wrong, or multiple sources, some of which are
erratic or erroneous. Moreover the weighted average method may affect the variance, in the
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sense that the variance of the result may become smaller than the one of any input
distributions. This phenomenon is acceptable in the scope of independent experts. However
experts often share a lot of technical background, and the expert independence assumption
which underlies the single random source model is highly questionable.

– The main drawback of the Bayesian method seems to be, as usual, the need for a priori
knowledge about the value of x. In other words the analyst that looks for expert advice must
be an expert himself. However in many cases the analyst has no idea about the value of x and
all that he may learn is about the reliability of experts, by a technique as the one by Cooke
(1988), that inspired the one described below. The Bayesian method cannot update from the
state of complete ignorance. Moreover, in the case of several conflicting experts, voting-like
effects resulting in values that no expert supplies can be observed with the Bayesian method
(see Dubois and Prade, 1992a).

The possibilistic approach that is proposed in this paper tries to cope with most of the
difficulties faced by the probabilistic approach on the problem of pooling imprecise information
coming from heterogeneous sources; its main features are: faithfulness of the representation of
subjective data, no need for a priori knowledge, and a variety of pooling methods whose choice
depends about the reliability of experts or sources and the level of conflict between their
opinions.

3. IMPRECISE DATA AS POSSIBILITY DISTRIBUTIONS

A possibility distribution πx (Zadeh, 1978) can be viewed as the membership function of the

fuzzy set of possible values of a quantity x. These values are assumed to be mutually exclusive,
since x takes on only one value (its true value), that belongs to a set S which is considered here
to be a closed, bounded real interval [s0,sm]. The actual value of x is unknown. But, since one

of the elements of S is the true value of x, πx(s*) = 1 for at least one value s* ∈ S. This is the

normalization condition that claims that one value is viewed as totally possible. When unique,
s* is the most plausible value of x. If s and s' are such that πx(s) > πx(s'), s is considered a
more plausible value than s'. When πx(s) = 0, s then x cannot take on value s.

Knowing a possibility distribution, the likelihood of events can be described by means of two
set-functions: the possibility measure and the necessity measure (Dubois and Prade, 1988b),
denoted ∏ and N respectively. When π is the membership function of a crisp set E, it expresses
that the value of parameter x certainly belongs to E. Then, an event B is said to be possible if
and only if E ∩ B ≠ Ø, and certain if and only if E ⊆ B; by definition we let ∏(B) = 1 and

N(B) = 1 in these respective situations. When ∏(B) = 1, there is a value s of x in B, considered
as totally possible (since B and E intersect). When N(B) = 1 no possible value of x lies ouside
B and it is thus certain that x lies in B. In the general case where πx is the membership function

of a fuzzy set, the possibility and necessity measures are defined as follows.

∏(B) = sups∈B πx(s) (1)
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N(B) = infs∉B 1 – πx(s) (2)

= 1 – ∏(äB)

where äB is the complement of B with respect to S. This duality expresses that B is all the more
certain as äB is impossible. These evaluations only exploit the ordinal part of the information,
not its quantitative contents since only the plausibility ordering is involved in (1) and (2).

The simplest form of a possibility distribution on S is a membership function of a sub-interval
[L,U] of S, i.e., πx(s) = 1 if x ∈ [L,U], 0 otherwise. This type of possibility distribution is

naturally obtained from experts claiming that "x lies between L and U". This way of expressing
knowledge is more natural than giving a point-value s* for x right away, because it allows for
some imprecision: the true value of x is more likely to lie between L and U than to be equal to
s*. Allowing for imprecision reduces uncertainty. However this representation is not entirely
satisfactory for two reasons. First, claiming that πx(s) = 0 for some s means that x = s is

impossible. This is too strong for the expert who is then tempted to give wide uninformative
intervals (e.g., L = s0, U = sm). Moreover, it is more satisfactory to ask from the expert

several intervals with various levels of confidence, and to admit that even the widest, safest
intervals do not rule out some residual uncertainty, denoted e, that the value of x lies outside.

A possibility distribution πx can represent a finite family of nested confidence ("focal") subsets

{A 1, A2,…, Am} where Ai ⊂ Ai+1, i = 1,m – 1 as soon as the set of possibility values {π(s) |

s ∈ S} is finite. Each confidence subset Ai is attached a positive confidence level λi. The level

of confidence λi can be conveniently interpreted as a lower bound on the probability that the

true value of x hits Ai. The links between the confidence levels λi 's and the degrees of

possibility are defined by postulating λi = N(Ai) the degree of necessity of Ai (Dubois and

Prade, 1988b, 1992c). This entails that λ1 ≤… ≤ λm due to the monotonicity of N. The

possibility distribution equivalent to the family {(A1, λ1), (A2, λ2),…, (Am, λm)} is defined

as the least specific (see, e.g., Yager, 1992) possibility distribution π that obeys the constraints
λi = N(Ai), i = 1,n as per equation (2). It comes down to maximizing the degrees of possibility

π(s) for all s in S, subject to these constraints. The solution is unique and is

∀s, πx(s) = mini max(1 – λi, µAi(s)) (3)

= 
1 if s ∈ A1
mini:s∉Ai

 (1 – λi) otherwise

where µAi is the characteristic function of Ai. This solution is the least committed one with

respect to the available data, since by allowing the greatest possibility degrees in agreement with
the constraints, it defines the least restrictive possibility distribution. Conversely, the family
{(A 1, λ1), (A2, λ2), …, (Am, λm)} of confidence intervals can be reconstructed from the
possibility distribution πx. Namely it can be proved that if the set of possibility values πx(s) is

{ α1 = 1, α2 ≥ α3… ≥ αm}, and letting αm+1 = 0 we have
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Ai = {s | πx(s) ≥ αi} ; λi = 1 – αi+1, ∀ i = 1,m. (4)

In particular λm = 1 and Am is the subset which for sure contains x; we may have Am = S if no
strict subset of S can be ascertained as including x. Note that there is a set of weights p1, p2,
…, pm summing to one, such that (Dubois and Prade, 1988a)

∀s, πx(s) = ∑i:s∈Ai pi. (5)

Namely pi = αi – αi+1, ∀ i = 1,m. Hence the possibility distribution can be cast in the setting

of random sets. From a mathematical point of view, the information can be viewed as a nested
random set {(Ai,pi), i = 1,m}, which allows for imprecision (the size of the Ai 's) and
uncertainty (the pi's). And pi is the probability that the expert would supply exactly Ai as a a
faithful representation of his kwowledge of x (it is not the probability that x belongs to Ai). In

such a context ∏(B) and N(B) are expected possibility and certainty degrees in the usual
probabilistic sense since we have:

∏(B) = ∑i=1,m pi ∏i(B) (6)
N(B) = ∑i=1,m pi Ni(B) (7)

= 1 – ∏(äB)

where ∏i and Ni are the {0,1}-valued possibility and necessity measures induced by the set Ai
(i.e., ∏i(B) = 1 iff Ai ∩ B ≠ Ø, Ni(B) = 1 iff Ai ⊆ B).

The expert is supposed to be capable of supplying several nested intervals A1, …, Am directly,

together with levels of confidence λ1, …, λm (e.g., from the point of view of the expert, the

best lower bound of the proportion of cases where x ∈ Ai from his experience). In practice

(Sandri et al., 1993), three intervals only have been kept and the confidence levels have been
predefined: A1 with λ1 = 0.05, A2 with λ2 = 0.5, and A3 with λ3 = 0.95. A1 corresponds to
the "usual values" of x, and there is a 0.05 probability (= e) that x misses A3, i.e., the residual

uncertainty of the conservative evaluation. Finally, the focal subset Am = A4 (with λ4 = 1) is

always S itself, due to the residual uncertainty. The following table summarizes the data
supplied by one expert.

The three first lines of Table 1 correspond to specific questions asked to experts (see Kalfsbeek,
1990). Although no exact counterparts of intervals [Ce,Cu], [Me,Mu], [L,U] are actually used

in the probabilistic approaches, these intervals can be interpreted in terms of fractiles of a
probability distribution, e.g., [L,U] corresponds to the range between the 2.5% and the 97,5%
fractiles. In terms of fuzzy sets, [Ce,Cu] corresponds to the core of the fuzzy set with

membership function πx since ∀ s ∈ [Ce,Cu], πx(s) = 1. The obtained possibility distribution

is pictured in Figure 1. The possibilistic representation is more faithful than the use of a single
probability distribution since it exactly accounts for the supplied data and encompasses a family
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of probability distributions (due to equating necessity degrees and lower probability bounds).
Possibility distributions are  here simple ways of encoding sets of probability distributions
when one wishes to refrain from selecting one (Dubois and Prade, 1992c). See Coolen (1994)
for the use of imprecise probabilities in the modeling of expert opinions.
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Table 1  Data supplied by experts
(L, U, Me, Mu, Ce, Cu) (in the bold-face rectangle)
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Fig.1. Expert-originated possibility distribution

4. ASSESSMENT OF EXPERT JUDGMENT

In order to assess the quality of experts, the latter are asked questions whose answers are
known, and they are rated on the basis of these results. The questions pertain to the true values
of a series x1, x2,…, xn of "seed" variables; the values of these parameters are either known by

the analyst and not known by the experts, or more often can be determined afterwards by means
of physical experiments, or other means. In order to build a meaningful rating system, one must
first identify the type of deficiencies experts may be prone to, and then define indices that enable
the true answer and the expert answer to be compared and take these deficiencies into account.
This program has been carried out in the probabilistic setting by Cooke (1991). Note that the
true value of a seed-variable may be ill-known itself, sometimes because the state-of-the-art in
the field does not allow for its precise evaluation, or because the available information consists
of some histogram.

Experts can be deficient with regard to three aspects
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– inaccuracy: values given by the expert are inconsistent with the actual information about the
seed variables. For instance, he always underestimates the true value. The expert is then said
to be inaccurate.

– overcautiousness: the expert is too cautious because the intervals he supplies are too large to
be informative, although he is not inaccurate. The expert is said to be underconfident.

– overconfidence: the value of the seed variable is not precisely known to-date but the expert
supplies intervals that are too narrow (or point-values). He is then said to be overconfident.

In order to build scoring indices that reflect these issues, let us first consider a seed variable x
whose value s* is precisely known, and let E be the fuzzy set supplied by the expert, in order to
describe his knowledge about x. Let µE be the membership function of E (so that µE = πx). In

this situation overconfidence does not appear. It is easy to see that

– the greater µE(s*), the more accurate is the expert. Indeed if µE(s*) = 0, E totally misses s*
while if µE(s*) = 1, s* is acknowledged as a usual value of x. Hence µE(s*) is a natural

measure of accurateness.

– if E is a crisp interval [a,b] the wider E, the more imprecise (hence under-confident) the
expert. The width of E is then |E| = b – a. When E is fuzzy the width of E is generalized by

|E| = ∫S µE(s) ds. (8)

This is a generalized fuzzy cardinality (where cardinality is changed into the Lebesgue
measure). Other extended cardinalities exist to evaluate imprecision (see Klir and Folger,
1988). In our situation, where E is a finite nested random set, the equality |E| = ∑i=1,m |Ai|pi
can be established. This evaluation must be rescaled so as to account for the ever present
residual uncertainty e = pm and so that it rates 1 when L = U (precise response) and 0 when
L = s0, U = sm (empty response). A reasonable underconfidence index is then

f(|E|) = 
|S| – |E|

(1 – e) · |S|
. (9)

On the whole, the overall rating of the expert regarding a single seed-variable can be defined as

Q(E,x) = µE(s*) · f(|E|) (10)

that requires him to be both accurate and informative in order to score high. One may admit that
by convention, Q(E,x) = 0 if s* ∉ [L,U] instead of e · f(|E|), if we do not want to account for

the residual uncertainty in the calibration index. In the probabilistic approach (Cooke, 1991) the
expert data is modelled by means of a probability distribution function, and the rating of the
expert combines a degree of calibration and a degree of informativeness. The latter is based on
entropy instead of cardinality. Probabilistic calibration is quite different from accurateness
because it is a conjoint evaluation pertaining to several seed variables simultaneously while
accurateness deals with single seed variables. Calibratedness can go along with significant
inaccurateness (see Sandri et al., 1993)
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When the seed variable is not precisely known, the index Q(E,s*) can be extended as follows:

• if the seed variable value is described by a histogram leading to a probability distribution P
then

Q(E,x) = P(E) · f(|E|) (11)

where P(E) is the probability of the fuzzy event E (Zadeh, 1968), i.e., P(E) = ∫S µE(s)d P(s).

• if the seed variable is described by a possibility distribution π*x = µF then

Q(E,x) = ∏*(E) · f(|E ∆ F|) (12)

where ∏* is the possibility measure attached to π*x and ∆ is the symmetric difference of
fuzzy sets. More specifically, ∏*(E) = sups min(π*x(s), µE(s)) is the possibility of the fuzzy
event E (Zadeh, 1978), and µE∆F(s) = |µE(s) – µF(s)| (see Dubois and Prade, 1988b).

∏*(E) evaluates to what extent the expert's response is consistent with the available
information about x, and f(|E ∆ F|) penalizes both underconfidence and overconfidence of the
expert. When the possibility (or the probability) distribution of x reduces to deterministic
information (x = s*) then the above indices collapse into the first definition when the support
of E is a continuum.

Thus an expert j is rated by the set {Q(Eji ,xi) | i = 1,m} of evaluations. Ranking of experts can

be obtained based on the average rating of each expert. The standard deviation is also useful to
check the significance of the gaps between average ratings of experts. Based on these
evaluations a set K of experts can be divided into groups of unequal reliability. Moreover the
fuzzy set R of reliable experts can be defined by the membership function

µR(j) = 1/m · ∑i=1,m Q(Eji ,xi), j = 1,k

if there are k experts. The cardinality of R, say

|R| = ∑j=1,k µR(j)

gives a good idea of the number of reliable experts in the group. However it is not clear that the
coefficients µR(j) have probabilistic significance such as the probability that the expert is right.

Rather, these coefficients indicate a ranking of experts, suggesting who seem to be the most
credible ones in the concerned domain.
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5. THE POOLING OF POSSIBILITY DISTRIBUTIONS

5 . 1 . A Logical View of the Combination of Uncertainty

The general ideas of the possibilistic approach to the aggregation of information issued from
several distinct sources are first that there is no unique combination mode, and second that the
choice of the combination mode depends on an assumption about the reliability of sources, as
formulated by some analyst. No a priori knowledge about the inquired parameter is needed, and
the sources, viewed in parallel, are to be combined in a symmetric way if all sources are equally
reliable. There are basically two extreme modes of symmetric combination: the conjunctive
mode when all sources agree and are considered as reliable; and the disjunctive mode when
sources disagree so that at least one of them is wrong. These modes are implemented
respectively in terms of fuzzy set intersections and fuzzy set unions. Indeed in order to clarify
the situation it is useful to look at combination from a set-theoretic (or logical) point of view
(see, e.g., Dubois and Prade, 1988a). Set-theoretic operations such as unions and intersections
(expressing disjunction and conjunction) are the basic consensus rules in set theory. Consider
the case of two sources of information giving evidence about the value of some variable x under
the form of a set. Namely

Source 1 x ∈ E1 ⊆ S

Source 2 x ∈ E2 ⊆ S

What should be said about x?

We claim that the choice of a type of pooling rule that solves this problem is a matter of context.
There is no theory liable of prescribing a universal pooling method for these two pieces of
information, that would apply to all situations. The chosen pooling scheme depends not only of
formal properties the method should fulfil, but also on how much the sources agree, and what
is known about their reliability. It means that a panoply of combination schemes together with
underlying assumptions must be laid bare and used in an adaptive way. In the above case if E1
∩ E2 is not empty the assumption that both sources overlap is tenable and the combination rule

can be the intersection, i.e., x ∈ E1 ∩ E2. Otherwise at least one of the sources is necessarily

wrong, and a more natural combination rule is the union, i.e., x ∈ E1 ∪ E2, which assumes

that the other source is not wrong. This rule does not require to identify what is the right
source. This view, introduced by Dubois and Prade (1987) has been applied to multiple source
interrogation systems (Sandri et al., 1989), to expert opinion pooling (Sandri et al., 1993) and
to data fusion in computer vision (Deveughèle and Dubuisson, 1993). In the case of expert
knowledge the pooling mode depends upon the results of the assessment step and the extent to
which experts responses on the inquired parameter value agree with one another.
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5.2. On Some Properties of Combination Rules

Several authors (e.g., Cheng and Kashyap, 1989; Hajek, 1985), not necessarily in the
framework of fuzzy set and possibility theory, have discussed combination operations in terms
of requested algebraic properties only. Indeed, a combination law looks all the better if it
possesses such nice algebraic properties. Let us discuss them briefly.

Closure: The closure property is one that is often used without being explicitly stated. It says
that if we use some representation framework then the result of the combination should also
belong to that framework. For instance any probability theory tenant would assume that pooling
two probability measures should produce a probability measure. Similarly, in proposing fuzzy
set-theoretic operations, Zadeh (1965) took the natural requirement that the intersection or the
union of two fuzzy sets is still a fuzzy set. This kind of closure assumption is natural once we
want to stay within a given mathematical framework.

Note that the closure property can be expressed at two levels in the possibilistic framework,
namely pointwisely on the possibility distributions (or if we prefer on the fuzzy sets) or
eventwisely on the possibility (or equivalently on the necessity) measures. Both closure
properties are not equivalent as shown by the following result (Dubois and Prade, 1990). The
only way of combining possibility measures ∏1, …, ∏n into a possibility measure ∏, in an

eventwise manner (i.e., ∀A, ∏(A) = f(∏1(A), …, ∏n(A))), is a max-combination of the form

∀A, ∏(A) = max(f1(∏1(A)), …, fn(∏n(A))) (13)

where fi is a monotonically increasing function such that fi(0) = 0, ∀i and ∃j, fj(1) = 1 which
modifies the shape of the possibility distribution πi underlying ∏i. An example of eventwise

possibility consensus function is the weighted maximum operation, i.e.

∀A, ∏(A) = maxj=1,n min(λj, ∏j(A)) (14)

with maxj=1,n λj = 1, where λj represents the relative importance of the source yielding ∏j; see

(Dubois and Prade, 1986) on weighted maximum and minimum operations. However, in (14),
the minimum can be changed into a product, or into the linear operation max(0, a + b – 1), and
more generally into any operation ∗ increasing in both places and such that 1 ∗ 1 = 1, 0 ∗ 1 = 0

= 1 ∗ 0. In fact, the weighted max-combination is the counterpart in possibility theory of the

linear convex combination in probability theory; the weighted max-combination can be
interpreted in the possibilistic framework as a median value, just as the convex combination can
be interpreted in terms of probabilistic expectation. Note that the eventwise closure property
may invalidate useful combination modes such as set intersection, in the above elementary
example, since only the set union is coherent with (14). The eventwise combination rule (13)
expresses that what can be "logically" inferred from a set of distinct knowledge bases, is only
the common part which can be inferred from each of them, taking into account the relative
reliability of each base (Dubois et al., 1992). Indeed x ∈ E1 ∪ E2 is a valid conclusion which
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can be both derived from a source asserting x ∈ E1 and from a source asserting x ∈ E2 (E1 ∪
E2 is even the smallest set which contains both E1 and E2).

Commutativity and associativity: Commutativity is good when sources of information are
exchangeable. Associativity is not absolutely required. For instance the averaging combination
rule underlying the Kalman filtering technique is not right away associative since it accounts for
an ordering of the sources. A weaker property such as quasi-associativity is often sufficient
(Yager, 1987): a combination operation f is quasi-associative if and only if there is an
associative operation ∗ and an invertible function φ such that f(a1, a2, …, an) = φ(a1 ∗ a2 ∗… ∗
an). Then the main advantage of associativity, i.e., modularity of the combination when

integrating the information from a (n + 1)th source, remains. Namely if êa = f(a1, a2, …, an)

then f(a1, …, an, an+1) = φ(φ–1(êa) ∗ an+1). This is what happens in Kalman filtering-based

fusion where pieces of information arrive in sequence, and are absorbed one after the other.

Idempotence: That means that if two sources supply the same data the result of the combination
should not alter these data. This property is not always to be accepted. Indeed if each source
regards an alternative as surprizing for independent reasons, it seems natural to conclude that
the alternative should be very surprizing since we have different reasons for considering it as
such. When the information about independence is not available, an idempotent rule appears to
be more cautious. Indeed an idempotent operation can even cope with redundant information.
Concludingly, adopting idempotence is really a matter of context. It looks natural with expert
opinion pooling where experts often have common background.

Auto-duality: Cheng and Kashyap (1989) have defended the auto-duality property, namely
operations t that satisfy:

E1 t E2 = (E1) t (E2). (15)

The meaning of (15) is a neutrality property with respect to the membership scale that contains
membership grades µE1(s) and µE2(s). As a consequence, it implicitly rejects conjunctive and

disjunctive modes of combination, since intersection and union exchange under De Morgan law

and (15) express an invariance property under this law. Hence auto-duality cannot be used as a
universal property. It looks natural if the numbers µE1(s) and µE2(s) reflect preference

intensities, in the scope of social choice (Dubois and Koning, 1991), but does not look very

suitable to the problem of information aggregation.

Adaptiveness: The 2-source elementary example in the beginning of this section points out that
the overlap between each piece of information affects the choice of the proper combination rule,
since the absence of overlap prevents the use of conjunctive rules. Particularly, when E1 ∩ E2
≠ Ø, the assumption that both sources are reliable becomes less and less plausible, as the
overlap between E1 and E2 becomes small. Hence one might request that such an overlap be
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evaluated and be used as a source of information of its own. The advantage is to obtain an
adaptive combination rule that gradually turns from a conjunctive combination into a disjunctive
one as the disagreement between the sources increases. This practical requirement may be
incompatible with formal ones such as associativity, for instance. It seems more suitable for
sources with common background, whose almost disagreement suggests that one of them is
wrong. When sources refer to different backgrounds, the reasons why source 1 supplies E1
and source 2 supplies E2 might be distinct; computing E1 ∩ E2 then legitimately produces a

significant improvement of the precision of the information.

5.3. Basic Combination Modes in the Possibilistic Setting

Since a particular case of possibility distribution is the characteristic function of a set, the basic
combination modes in the possibilistic setting are conjunctions and disjunctions. There exist
several possible choices among pointwise fuzzy set-theoretic operations for defining
conjunctive and disjunctive combinations of possibility distributions. Let πi be the possibility

distribution supplied by source i, i = 1,n. Define

∀ s ∈ S, π∧(s) = ∗i=1,n πi(s)

(fuzzy set intersection) (16)

and ∀ s ∈ S, π∨(s) = ⊥i=1,n πi(s)

(fuzzy set union) (17)

where ∗ and ⊥ are [0,1]-valued operations defined on [0,1] × [0,1] which enjoy the duality

relation a ⊥ b = 1 – (1 – a) ∗ (1 – b) in order to express De Morgan's law. Candidates for ∗ and

⊥ are so-called triangular norms and co-norms; i.e., ∗ is an operation which is associative,

commutative, increasing (in the wide sense) in both places and such that a ∗ 1 = a and 0 ∗ 0 = 0

(Schweizer and Sklar, 1983). The main continuous solutions are a ∗ b = min(a,b), a ∗ b = a ⋅ b
(product) and a ∗ b = max(0, a + b – 1), which leads to a ⊥ b = max(a,b), a ⊥ b = a + b – a ⋅
b, and a ⊥ b = min(1, a + b); see Dubois and Prade (1988b) for details.

As already said, the conjunctive aggregation makes sense if all the sources are considered as
equally and fully reliable, while the disjunctive aggregation corresponds to a weaker reliability
hypothesis, namely, in the group of sources there is at least one reliable source for sure, but we
do not know which one. In the conjunctive case, the min operation corresponds to a purely
logical view of the combination process: the source which assigns the least possibility degree to
a given value is considered as the best-informed with respect to this value. Note that with min,
when all sources perfectly agree (∀ i ≠ j, πi = πj), there is no reinforcement effect. Generally,

agreement between experts is due to common background, and the idempotence of min deals
with such a kind of redundancy. On the contrary if ∗ = product, if all the sources agree that a

value s is not fully possible, this value will receive a possibility degree strictly smaller than
mini=1,n πi(s), i.e., the lack of complete possibility is reinforced; a necessary condition for
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choosing such an operation is the independence of the sources. This assumption may be more
adapted to sensor fusion problems. The min and the product operations can be justified in the
setting of upper and lower probability as best approximations respecting the closure property
(Dubois and Prade, 1992c).

An important issue with conjunctive combination as defined by (16) is the fact that the result
may be subnormalized, i.e., it may happen that ds, π∧(s) = 1. In that case it expresses a

conflict between the sources. Clearly the conjunctive mode makes sense if all the πi
significantly overlap, i.e., ∃s, ∀i, πi(s) = 1, expressing that there is at least a value of s that all

sources consider as completely possible. If ∀s, π∧(s) is significantly smaller than 1 this mode

of combination is debatable since in that case at least one of the sources or experts is likely to be
wrong, and a disjunctive combination might be more advisable.

When (16) provides subnormal results (sup π∧ < 1), we may think of renormalizing π∧, thus

leading to the new rule (here written for n = 2 for simplicity)

∀ s ∈ S, π(s) = 
π∧(s)

h(π1,π2)
(18)

where π∧(s) = π1(s) ∗ π2(s) and h(π1,π2) is the height of the intersection of π1 and π2 defined

by

h(π1,π2) = sups∈S π1(s) ∗ π2(s) = sup π∧ (19)

h(π1,π2) is a natural measure of overlap between two possibility distributions. It is called a

consistency index. A similar behavior can be obtained if we use a Jacquard index 
|F1 ∩ F2|

|F1 ∪ F2|
instead of h(π1,π2), where µF1 = π1, µF2 = π2, and |F| = ∑s∈S µF(s).

The normalized conjunction enforces the assumption of full reliability of the sources since all
values that are considered impossible by one source but possible by the other are rejected. This
normalized rule is very analogous to Dempster's rule of combination of Shafer (1976)'s belief
functions, which, from a random set point of view is nothing but a normalized random set
intersection under a stochastic independence assumption. Moreover for ∗ = product, (18)

coincides (up to the normalization factor) with Dempster's rule applied to consonant belief
functions (which are mathematically the same as necessity measures), for the computation of the
plausibility of singletons. It has been also pointed out (Dubois and Prade, 1988a) that on a
binary frame, i.e., a 2-element set S = {s,äs}, if we interpret the MYCIN certainty factor CF(s)
as π(s) – π(äs), (18) yields MYCIN rule of combination (Buchanan and Shortliffe, 1984), for ∗
= product. Moreover for ∗ = product, the normalized rule of combination (18) is associative,

otherwise it is only quasi-associative. These remarks indicate that most if not all pooling
operations commonly used in the expert system literature are conjunctive. Note that the
operations min and max, when applied to possibility distributions only exploit the ordinal part
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of them, and assume that levels of possibility used by the various sources are commensurate.
On the contrary, the use of product and its De Morgan dual assumes that possibility degrees are
genuine numbers. In any case, the results of the pooling should be interpreted in an ordinal
way, i.e., as a ranking of the values of the parameter x under study, in terms of their respective
plausibility. It is more difficult to interpret the resulting degrees of possibility with a frequentist
approach. However ordinal information is often sufficient for practical purposes.

5.4. Towards Adaptive Rules of Combination

Clearly the renormalization erases the conflict between the sources as expressed by the
subnormalization. Even if it is good that the result of the combination focuses on the values on
which all the sources partially agree (in the sense that none of them gave to these values a
possibility equal to 0), it would be better that the result also keeps track of the conflict in some
way. Also, as pointed out in (Dubois and Prade, 1988a), the normalized rule may be very
sensitive to rather small variations of possibility degrees around 0; indeed the rule is not
continuous in the vicinity of the total conflict expressed by h(π1,π2) = 0. A natural idea for

keeping track of a partial conflict is to discount the result given by (18) by a weight
corresponding to the lack of normalization, i.e., 1 – h (π1,π2). Namely 1 – h (π1,π2) is
viewed as the degree of possibility that both sources are wrong since when h (π1,π2) = 1,the

two sources are supposed to be right. As an example of such a discounted conjunctive
combination rule we have

∀ s ∈ S, π'(s) = max(π(s), 1 – h(π1,π2))

= max
π1(s) ∗ π2(s)

h(π1,π2)
, 1 – h(π1,π2) . (20)

The amount of conflict 1 – h(π1,π2) induces a uniform level of possibility for all values outside
the ones emerging in the subnormalized intersection of π1 and π2, i.e., the result of the
combination (18) is not fully certain. Clearly, limh(π1,π2)→0 π'(s) = 1, so that the discontinuity

effect is coped with, resulting in total ignorance.

When h(π1,π2) is low, we could be more optimistic and assume that the discrepancy between

the sources is due to one of them being wrong, not both. Then, instead of transferring the
amount of conflict as a uniform degree of possibility on the whole referential S, we may limit
ourselves to the union of F1 and F2 (π1 = µF1, π2 = µF2), considering that there is no reason

to put a non-zero possibility degree on values that both sources agree to consider as impossible.
Hence the more elaborated adaptive rule (Dubois and Prade, 1992b)

∀ s ∈ S, πAD(s) = max
min(π1(s),π2(s))

h(π1,π2)
, min max(π1(s),π2(s)), 1 – h(π1,π2) . (21)
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πAD(s) evaluates at x = s the fuzzy logic expression: "the two sources are reliable and claim that

x = s, OR (they are not both reliable AND one of them is reliable and claims that x = s)", where
h(π1,π2) evaluates to what extent both sources are reliable, AND and OR being expressed by

min and max.

The kind of result obtained by this adaptive rule is given on Figure 2. The pooling rule tries to
keep the assumption that both sources are reliable as long as can be, i.e., the area where the two
sources agree is always preferred. This rule has been tested in the setting of computerized image
processing by Deveughèle and Dubuisson (1993).

The extension of this rule to more than two sources is not obvious because of its lack of
associativity and even of quasi-associativity. This is the price paid for adaptiveness. An obvious
extension to k > 2 sources would mean changing min(π1,π2) and max(π1,π2) into min(π1,…,
πk), and max(π1,…, πk) respectively in (21). But this extension, if natural, will not be

efficient because it only considers the two assumptions "all sources are right" and "one source
is right", among which it builds a trade-off. Clearly the more sources, the more likely they will
supply scattered information so that most of the time, the agreement index h(π1,π2,…, πk) =
sups mini πi(s) = 0, while maxi πi will yield a very uninformative result, i.e., the rule will

behave disjunctively. Other intermediary assumptions about the sources can be envisaged as
considered in the sequel.

1

0

π1 π2

1 – h(π1,π2)

h(π1,π2)

πAD

S

Fig. 2. Adaptive conjunctive/disjunctive pooling rule

5.5. Pooling Based on Numerical Quantifiers

An intermediary mode of pooling the πi's ranging between the conjunctive and the disjunctive

modes consists in assuming that j experts out of k = |K| are reliable. The pooling method then
consists in selecting a subset J ⊆ K of experts such that |J| = j, assume that they are reliable and

combine their opinions conjunctively. Then, considering that it is not known which one of these
subsets J contain reliable experts, combine the intermediary results disjunctively. The following
formula is obtained (Dubois, Prade and Testemale, 1988).

π(j)(s) = mini∈Jmax
J⊆K
|J|=j

 πi(s). (22)
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Clearly, π(k) = π∧ (for ∗ = min) and π(1) = π∨ (for ⊥ = max) i.e., this mode of aggregation

subsumes the conjunctive and disjunctive ones. The above combination rule is equivalent to
some also proposed by Yager (1985), and can be easily calculated, as follows for each value of
s:

i) rank-order the πi(s) such that πi1(s) ≥ πi2(s) ≥…≥ πik(s)

ii) then π(j)(s) = πij(s).

This scheme can be extended to fuzzy quantifiers, in order to model assumptions such as "most
experts are reliable", "approximately j experts are reliable", etc. (Dubois et al., 1988; Yager,
1985).

The choice of the number j of supposedly reliable sources can be guided by the scalar
cardinality |R| obtained by the assessment step. But a more interesting idea is to extend the
adaptive rule (21): one may derive two values m and n representing a pessimistic and an
optimistic evaluation of the number of reliable experts. Let T ⊆ K be a subset of experts and
h(T) = sups mini∈T πi(s) be the index of agreement among experts in T. Then define

m = sup{|T|, h(T) = 1} ; n = sup{|T|, h(T) > 0}.

Then it is plausible to assume that at least m sources among K are reliable (since there is a fully
agreeing subset of m experts) and at most n are reliable (since there is a total conflict within all
groups of more than n experts). It can be shown that generally m < n. Then a natural extension
of the adaptive rule (21) to the case of k > 2 sources is

πAD(s) = max
π(n)(s)

h(n)
, min π(m)(s), 1 – h(n) (23)

where h(n) = max{h(T), |T| = n}. It can be checked that when |K| = 2, (23) coincides with (21).
Indeed if h(π1,π2) = 1, then n = m = 2 and π(2) = min(π1,π2). If h(π1,π2) ∈ (0,1), m = 1,
n = 2, π(1) = max(π1,π2), π(2) = min(π1,π2).

For instance, consider the three possibility distributions on Figure 3. It can easily be checked
that m = 2, n = 3, π(3) = mini=1,3 πi , π(2) = max(min(π1,π2), min(π2,π3), min(π3,π1)).

The resulting distribution may have a complex shape; however it highlights which values are
most plausible for the parameter. On Figure 3, one immediately sees that the most plausible
values are the ones where all experts partially agree (between s2 and s3) and to a lesser extent,
the ones where two experts strongly agree (between s4 and s5).

5.6. Prioritized Aggregation of Expert Opinions
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As pointed out earlier, the fuzzy set R of more or less reliable experts obtained from the
assessment procedure is useful to partition the set K of experts into classes K1, K2,…, Kq of
equally reliable ones, where Kj corresponds to a higher reliability level than Kj+1, for j = 1,q.
Then the above symmetric aggregation schemes can be applied to each class Kj. The
combination between results obtained from the Kj's can be performed upon the following
principle: the response of group K2 is used to refine the response of group K1 insofar as it is
consistent with it. If π1 is obtained from K1 and π2 from K2, the degree of consistency of π1
and π2 is again h(π1,π2) = sups min(π1(s),π2(s)) and the following combination rule has been

proposed (Dubois and Prade, 1988c; Yager, 1991):

1

0

π1 π2 π3

1 – h(3)

h(3)

π(3) the resulting distribution

s1 s2 s3 s4 s5
π(2)

S

Fig. 3. The adaptive rule with n sources

π1–2 = min(π1, max(π2, 1 – h(π1,π2)).(24)

Note that when h(π1,π2) = 0, K2 contradicts K1 and only the opinion of K1 is retained (π1–2
= π1), while if h(π1,π2) = 1 then π1–2 = min(π1,π2).

(24) is easily interpreted as the conjunctive combination of the information supplied by source 1
and the information supplied by source 2, the latter being discounted by a certainty coefficient
h(π1,π2), such that the degree of possibility that source 2 is wrong is 1 – h(π1,π2). π1–2(s)

evaluates, in the sense of fuzzy logic, the expression "x = s is possible for source 1 and either x
= s is possible for source 2 or source 2 is wrong (with certainty h(π1,π2) that source 2 is not
wrong)". As suggested by Figure 2, π1–2 is subnormalized when it differs from min(π1,π2).

Hence a renormalization, as in (18) can be used. Moreover (24) is a conjunctive prioritized rule.
Its disjunctive counterpart has been proposed by Dubois and Prade (1988d) and Yager (1991)

π1–2 = max(π1, min(π2, h(π1,π2)). (25)
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The effect of this rule is to truncate the information supplied by the less prioritary source, while
disjunctively combined with source 1. Again if the two sources disagree (h(π1,π2) = 0) then
π1–2 = π1; if h(π1,π2) = 1 then π1–2 = max(π1,π2). Rather than choosing between (24) and

(25) it seems more promising to integrate these expressions in the adaptive rule (21) in place of
symmetrical conjunctive and disjunctive combinations.

1

0

π1 π2
h(π 1,π2)

prioritized conjunction prioritized disjunction

1 – h(π 1,π2)

S

Fig. 4. Prioritized conjunctive and disjunctive rules

6. CONCLUSION

The framework proposed in this paper for data fusion makes sense when it seems difficult to
represent the information supplied by the sources by means of single probability distributions,
due to imprecision and/or lack of statistical evidence. Regarding the conjunctive and disjunctive
pooling modes that possibility theory provides, they are particularly suitable when sources are
heterogeneous, i.e., cannot be viewed as instances of a single random source. The proposed
combination rules are optimistic in the sense that they always try to assume that as many
sources as possible are reliable, as usually found conjunctive rules (like Dempster rule, MYCIN
rule) do. However when the assumption that all sources tell the truth is not tenable, it is
possible to express that a certain proportion of the sources are faithful, without being forced to
point them out. The disjunctive rule, for instance, systematically assumes that at least one
source is right. This optimistic prejudice in the combination modes tries to extract the most
useful part of the data, by remaining as informative as possible, while avoiding the systematic
use of a conjunctive rule. An adaptive rule has been proposed, and extended to multiple
sources, in order to achieve a balance between the conjunctive and the disjunctive combination
modes, the trade off being driven by the amount of consistency between the sources.

In this paper, the possibility distribution synthesized from the information given by an expert is
supposed to restrict for sure all the possible values of the variable to estimate (up to the residual
uncertainty when the support of the possibility distribution is the whole variable domain S). In
this perspective the conjunctive aggregation is natural when there is no conflict between the
expert opinions. However we may also imagine situations where experts do not intend to
provide a whole range of possible values but only point out some plausible (usually small)
subsets of values for the variable; then two experts may provide disjoint subsets without being
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necessarily in conflict (they just did not give the same subset of the set of plausible values) and
then disjunctive combination is very natural.

The probabilistic setting (at least the Bayesian one) is not very well adapted to the expression of
conjunctive and disjunctive combination modes. This is no longer true when upper and lower
probabilities are allowed (e.g., Chateauneuf, 1991). Contrastedly, the possibilistic setting does
not lend itself very easily to averaging combination modes. Possibilistic data fusion is much
more related to logical approaches which cope with inconsistency in multiple source databases
using notions of maximal consistent subbases (see Dubois et al., 1992; Cholvy, 1993, among
others). For instance rule (23) involves maximal subsets of coherent sources. Our approach
looks promising in problems such as knowledge base aggregation, expert judgment pooling,
and data fusion with heterogeneous sensors.

As an example, a procedure for processing human-originated information has been devised,
based on the above described principles (Kalfsbeek, 1990), implemented on a computer
(Sandri, 1991) and tested on actual reliability data (Sandri, 1990; Sandri et al., 1993). Its basic
steps go as follows:

i) elicitation of seed variables by experts and assessment using the Q(E,x) indices;

ii) comparison of the performance of pooling methods on seed variables;

iii) elicitation of unknown parameter values by experts;

iv) pooling of these pieces of information using the best pooling method.

Some of the combination rules (especially conjunction and disjunction) have been tested. Due to
the lack of space it is not possible to present the results obtained by this method on the analysis
of actual reliability data. Such results appear in a report (Sandri et al., 1993) to be published
elsewhere. It turns out that the proposed method seems to compare favorably with respect to
purely probabilistic approaches on the studied examples: all methods give similar results when
experts agree, and our method does somewhat better when experts considered as reliable
disagree, because the combination rules proposed here are more flexible and avoid the
averaging effect.
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