N

N
N

HAL

open science

Propagation and satisfaction of flexible constraints

Didier Dubois, Hélene Fargier, Henri Prade

» To cite this version:

Didier Dubois, Hélene Fargier, Henri Prade.

Propagation and satisfaction of flexible constraints.
Yager, Ronald R.; Zadeh, L.A. Fuzzy Sets, Neural Networks and Soft Computing, Chapter 7, Van

Nostrand Reinhold; Wiley, pp.166-187, 1994, 978-0442016210. hal-04054177

HAL Id: hal-04054177
https://hal.science/hal-04054177
Submitted on 3 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04054177
https://hal.archives-ouvertes.fr

e

Propagation and Satisfaction
of Flexible Constraints

Didier Dubois, Héléne Fargier, and Henri Prade

Institut de Recherche en Informatique de Toulouse
Université Paul Sabatier

118 route de Narbonne

31062 Toulouse Cedex, France

Flexible constraints include both soft constraints (e.g., “the deadline is hopefully tomorrow,
but the day after tomorrow is still acceptable™) and prioritized constraints (the idea is then
to satisfy high priority constraints first and to look for the satisfaction of lower priority
constraints only after, if possible). Possibility theory offers a convenient framework for
modeling both types of constraints. This chapter shows how classical constraint satisfaction
problem methods can be extended in a feasible way to flexible constraints. Moreover in
flexible constraint satisfaction problems, solutions can be rank-ordered according to the
preferences induced from the softness and the priorities.

7.1 INTRODUCTION

Many engineering problems such as design, planning, or scheduling may be
modeled as constraint satisfaction problems (CSP) [26,29]. A CSP is defined as
finding any assignment of values to a set of variables ranging on, usually discrete,
domains, so as to satisfy prescribed constraints. Most papers in this framework
try to tackle the highly combinatorial nature (NP hard) of such problems,
considering crisp constraints only [6. 28]. However, the classical CSP framework
does not suit many practical situations, in which flexibility is an intrinsic character-
istic of the information to be taken into account.

The notion of flexible constraint, whereby feasibility is a matter of degree, is
not new [1] neither is the interest in fuzzy optimization problems (e.g., [21, 43].
Dubois [8] gives an example of a problem where fuzzy constraints are propagated
in order to help the optimization procedure that determines design parameters;
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see Wood and Antonsson [39] for another example. It is only recently that flexible
constraints have become attractive in artificial intelligence [4, 16, 32]. Satoh [34]
and Freuder [19] have stressed the flexible aspect of constraint satisfaction
problems, and proposed theoretical frameworks for expressing prioritized con-
straints. Freuder [19, 20] developed general branch and bound techniques for
dealing with these constraints without extending classical constraint propagation
methods to them. Satoh [34] indicates that prioritized constraints modeled by
logical formulas induce preferences among interpretations. Lang [24] handles
prioritized constraints also, in the framework of possibilistic logic, a logic based
on possibility theory, whose semantics rely on the notion of preference [14]. Other
papers suggest that possibility theory [42] may be a suitable framework for the
representation of prioritized constraints [35] and soft constraints [27]; moreover,
they suggest new algorithms to handle such “fuzzy constraint satisfaction prob-
lems” (FCSP). Taking this a step further, we propose an approach, based on
possibility theory, for representing and solving problems involving both prioritized
constraints and soft constraints expressing preferences between values. We claim
that both types of constraint can be regarded as local criteria inducing total
orderings over tuples of values and can be represented by fuzzy restrictions [40].

The difficulty is then to compute the global ordering induced over solu-
tions—and to choose the best one(s). Finding the (ordered) set of all the solutions
becomes a problem of fuzzy restriction calculus. This problem is highly combina-
torial when solved by global combination techniques, but local propagation
algorithms may be applied when the problem presents a hypertree structure, as
proposed by Pearl [30], Shafer and Shenoy [36], Dubois and Prade [12], Kruse
and Schwecke [23] or Fonck and Straszecka [18]. We suggest that local propaga-
tion techniques can also be applied to more general hypergraphs in order to
provide a good approximation to the solution. In the following we present efficient
algorithms inspired by both Zadeh’s principle of combination-projection [41], and
existing techniques in constraint propagation.

The next section deals with representation issues concerning soft constraints.
Section 7.3 then explains how a CSP involving such constraints can be defined
in the framework of possibility theory. In Sections 7.4 and 7.5, we present local
computation schemes based on extensions of the CSP notions of arc consistency
and path consistency, and propose an algorithm for computing the best solution(s).
These techniques are illustrated in Section 7.6 by a simple example. Finally,
nonmonotonic aspects of FCSPs are outlined in Section 7.7.

7.2 REPRESENTATION ISSUES

A hard or crisp constaint C between a set of k variables X = {x,,..., x,} can be
represented by means of a nonfuzzy relation R on U, x *** x U,, U; being the
range of variable xj; R is the crisp subset of Uy x -+ x U, of k-tuples of values
(uy,...,u,) (also called “instantiations” of {x,,..., x,}) that satisfy C. The set
{x;,...,x,} of variables involved in R is denoted V(R).
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7.2.1 Representing Soft Constraints

A soft constraint expresses preferences between k-tuples of values that can be
assigned to a set of variables. In this chapter we assume that these preferences can
be modeled by means of a total order and that this total order is encoded by
means of a fuzzy relation R, that assigns to each k-tuple (uy,...,u,) its level of
preference pg(uy, ..., ) in a totally ordered set L. This set is usually chosen as
the unit interval [0, 1]. pg(uy,...,u) > pg(u), ..., u;) means that (u,,...,u,) is
preferred to (uy,...,u) as a value of (x,,...,%x), and pgu,,...,u)=0 if
(uy,...,u)is a forbidden k-tuple. ug(u, ..., u,) = 1 means that (u,, ..., u,) totally
satisfies the constraint. More generally, pg(u,, ..., u,) can also be interpreted as
degrees of satisfaction of the soft constraint C. pg(u,, ..., u,) > 0 corresponds to
a feasible assignment, even if it only partially satisfies C. Usually, there exists
at Jeast one tuple (uy, ..., ) that totally satisfies the constraint C (feasibility of
the constraint); i.e., I(uy, ..., u), upluy, ..., w,) = 1. R is then said to be normalized.
A fuzzy relation restricts the possible values that can be assigned to the variables
in accordance to the preference criterion C. Hence the concept of a fuzzy restric-
tion, that is “a fuzzy relation which acts as an elastic constraint on the values that
may be assigned to variables” [40], seems to be suitable for capturing such
information. In the terminology of possibility theory, uy acts as a possibility
distribution on U; x U, x **- x U,, which restricts the more or less possible
values of the k-tuple of variables (x,, ..., x,), which are admissible according to C.

7.2.2 Representing Prioritized Constraints

Fuzzy restrictions also offer a suitable formalism for the expression of prioritized
constraints. When it is possible to a priori exhibit a complete order over the
respective priorities of the constraints, these priorities will be represented by means
of levels in the scale [0, 1]: a coefficient o is attached to each constraint C (its
priority degree) and indicates the degree to which C must be satisfied. If O =15
C is an imperative constraint; if ac = 0, it is completely possible to violate C (c
has no importance in the problem). Given two constraints C and C': dc > de
means that the satisfaction of C is more necessary than the satisfaction of C': if
C and C' cannot be satisfied simultaneously, solutions compatible with C are
preferable to solutions compatible with C’.

Priorities on constraints can be transformed, without any loss of information,
into satisfaction degrees on values. Indeed, since o, represents to what extent it
is necessary to satisfy C, 1 — o, indicates to what extent it is possible to violate
C. In other words, any instantiation (uy, ..., u,) satisfies C to a degree greater than
or equal to 1 — ac. Hence, the pair (C, ac), where C is a crisp constraint, can be
modeled as a soft constraint represented by the fuzzy relation S on Ui e U,
(see Fig. 7.1):

I

Us(yy ..o, u) =1 if (uy, ..., u,) satisfies C

il

1 —ac if (uy, ..., u,) violates C
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FIGURE 7.1. A crisp constraint C with priority a.

More generally, if C is a soft constraint modeled by the E.NNV. relation R whose
priority is a¢, (C, ac) is represented by the fuzzy relation S:

EMAQT..::Q = BNX—HH - ¢, txﬁtt...« :rvu

These definitions are in accordance with the treatment of certainty-qualified
assertions in possibility theory, and the principle of minimum specificity, interpret-
ing priority levels as degrees of necessity [15]. Moreover they are, when R is crisp.
in full agreement with possibilitic logic [19].

It should be noticed that a soft constraint C with preferences described by
a fuzzy relation R involving a finite number of satisfaction degrees 0 =
% <oy <a, y <a,=1 can be represented by a finite set of prioritized
constraints {C’,0 < j < p}, following a remark in Prade, [31] (see Fig. 7.2);

%cj=1—a;and R’ = crisp set of k-tuples satisfying C/

{ltiys o s, pgliye.oyu) > %7

7.2.3 Operations on Fuzzy Relations

Operations of conjunctive combination and projection can be extended to fuzzy
relations [40, 41].

Given W = {x,;,..., X} and Y = {x,,..., x,,} two subsets of {x,,...,x,}
such that W c Y, and a fuzzy relation T restricting the possible values of Y, the
projection (or the marginalization) of T on W is a fuzzy relation R = (T)"
restricting the possible values of W It is defined on U, x - x U, by

txAEx; $helsrey) ::.L = mﬁU::_._..:.:.,..E:.‘_.:..:_AL._= H.:..._...::..,—:EN.A:‘_.— s ey :E.v

where (uy,, ..., u,)*" denotes :.n. Rmin.nmus oLy, o MO W it o )
estimates to what extent the instantiation (u,.,, ..., U, which is a partial
instantiation of ¥, can be extended to a complete instantiation of Y that satisfies T,
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FIGURE 7.2.  Decomposition of a soft constraint into a family of prioritized constraints.

The conjunctive combination of two fuzzy restrictions R and S restricting the
possible values of two sets of variables X and Y is a fuzzy restriction over the
possible values of W = X' U Y. It is defined by T= R® S:

}N.A:x.—, RO Ex.»v s BWBM\»ZQES.T SRy QELTJ, t.thx.T s :x.»v:\vu

Hrltigy ..., u,,) estimates to what extent the variable instantiation (u
of W satisfies both R and S.

Note that the use of the combination rule underlies an assumption of commen-
surability between preference levels pertaining to different constraints. In other
words the user who specifies the constraints must describe them by means of a
unique preference scale L. Moreover, priority levels must be chosen on the dual
scale ({c(/),/ € L} where ¢ is an order-reversing mapping) so as to acknow-
ledge the transformation of priority levels on constraints into preference degrees
on solutions. Although natural and often implicit, these assumptions must be
acknowledged when fuzzy set-based approaches are used.

Besides soft constraints differ from criteria (or objective functions) by the fact
that no compensation of the extents to which they are satisfied is allowed among
them. as modeled by the min operation (which is a purely logical conjunction
operation that retains the least degree of satisfaction).

iy i)
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7.3 THE FUZZY CONSTRAINT
SATISFACTION PROBLEM

An FCSP is defined by a set of m, possibly fuzzy (soft or prioritized), constraints
P ={Ry,..., R,} restricting the possible values of n variables, say {x,, ..., Xuls
each x; ranging on a domain U; here supposed to be finite.

Given an FCSP P={R,,...,R,} restricting the possible values of
X ={x,,...,x,}, the definition of conjunctive combination states that
HR,®.-@Rr,(U1,-..,U,) estimates to which extent the variable instantiation
(uy,...,u,) satisfies all the constraints. That is to say, g g...g (41, ..,14,) is the
satisfaction degree of P by (uy, ..., u,). It is equal to the satisfaction degree of the
constraint that is the least satisfied by (u,,...,u,). Thus, the best solutions of P
are the instantiations whose satisfaction degree of the least satisfied constraint is
maximal. The combination of preference is noncompensatory for flexible con-
straints, as opposed to combination modes in multobjective utility theory [22]
where trade-offs are acceptable. The violation of one constraint is not supposed
to be counterbalanced by the full satisfaction of other constraints.

MR, & @R, (U5 ..., U,) is the membership degree of (uy,...,u,) to the set of all
the solutions, which is the fuzzy set p = R; ® -** ® R,,. The membership degrees
to the fuzzy set of solutions discriminate the potential solutions since they induce
a complete order over the instantiations; under the commensurability assumption,
this order does not depend on whether L is a numerical scale. In other terms, the
FCSP approach to flexibility is more qualitative than quantitative. Actually,
solving a classical CSP means separating the set of all instantiations into two
classes: the instantiations that are solutions to the problem and those that are
not. Introducing flexibility just refines this ordering.

Conversely, the set of fuzzy restrictions {R,,..., R,} can be regarded as a
decomposition [40] or a factorization [36] of a global fuzzy relation p =
R, ® - ® R, restricting the combinations of values that may be assigned to
Oy, wix )

Even if each constraint is generally normalized in practice, p may be sub-
normalized if some constraints are conflicting, i.e., the problem can be partially
or even totally inconsistent. The height of p is in fact the consistency degree of
the'FCSP:

Cons(P) = Height(p) = sup e R L VR e )

is the consistency degree of P. It is equal to the extent to which an instantiation
exists that satisfies the set of constraints. If Cons(P) < 1, it is not possible to totally
satisfy all the constraints. A best solution in this case implicitly involves the
relaxation of some constraints. This relaxation is automatically done, and guided
by the preference levels. By complementation we define the inconsistency degree
of P

Incons(P) = 1 — Height(p) = 1 — sup

i e
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7.3.1 Using Combination/Projection Principle
to Make Induced Constraints Explicit

Since R, ® "® R;® - ® R,, S R, (where < is the fuzzy set inclusion defined
by the inequality < between the membership functions), the inclusion p! V&) < R;
holds, which means that R; may not explicitly account for all the dependencies
between the variables it relates. Indeed, further restrictions may be induced by
other constraints. For instance, the problem P = (R, R,), where Ryiixy= %"
and R,: “x, = x,,” induces a restriction Ry: “x, = x," that is not expressed in P,

The induced constraints may be computed according to the combination/pro-
jection principle [40,41]: the constraint R induced by a set of constraints
{Ri»...» R} = {Ry,..., R,} on a set of variables BHoele b ) B
defined by R = (R;, ® *-* @ R, )} (- eo3mi,

It should be pointed out that

QN: ®® z:v:n:...:xi ®Ax: ®® %...v = w_._ ®® w:

according to the properties of projection and combination, especially the idem-
potence of the combination. Hence, problems P = {Ry,...,R,} and P'=
{Ris.-.» R} U{R} have the same fuzzy set of solutions. They are said to
be equivalent.

In other words, there may be several decompositions of the same fuzzy relation
p corresponding to equivalent FCSP in which the constraints are more or less
explicit. A problem can be transformed into an equivalent one by making induced
constraints explicit.

7.3.2 Interactivity and Separability

Even if not stated explicitly in {R,,..., R,}, p also induces a fuzzy relation on
each variable x,..., x,: p*™* is the (explicit) restriction of possible values that
can be assigned to x; in accordance with P no matter what values are assigned
to the other variables. Most of the time values that can be assigned to one variable
are not independent of the values that can be assigned to the others, i.e.,
b:a..u: o~ btk; ® b:x\._.

In case of equality, both variables are said to be noninteractive [41]. If all the
variables are noninteractive, p = X<y, p*™ and p is said to be separable.
FCSP are seldom separable since constraints express dependencies at least between
pairs (or more generally k-tuples) of variables. In the general case we have:
pE ®mn_.....= B

The concept of separability can be generalized using the following definition of
k-decomposability: a relation p is k-decomposable if it can be decomposed into a
set of relations {R,,...,R,} such as p=Qi=1..m R; and Card[V(R)] <
k,i =1, m. One-decomposability is equivalent to separability.
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7.3.3 Fuzzy Constraint Satisfaction Problems

In summary, an FCSP is defined by a set of m fuzzy relations P = Biv . R
restricting the possible values of n variables {x,, ..., x,}, and represents a global
restriction p = (X);=,..... R; on the values that can be assigned to the variables
in accordance with P. The following classical problems in the constraint satisfac-
tion framework have equivalent counterparts in the flexible setting:

Determine the existence of a solution <> compute Cons(P) = Height(p).

e Find one of the best solutions <> determine any instantiation @y i)
such that p,(uy, ..., u,) = Cons(P). m\x\;,.\. ALsy) R%C‘w

e Determine the relation restricting®™> compute p! i+ xu) PR

the values of {x;;,..., xy}.

Find all the possible values for variable x;<>compute p* <,

Hence FCSP reduce to fuzzy restriction calculus problems.

7.3.4 FCSP vs. Other Approaches to Flexibility
in CSP

Freuder [19] and Satoh [34] devised theoretical foundations for the treatment of
flexibility in CSPs. Satoh tries to apply results on circumscription to the handling
of prioritized constraints so as to induce preference relations on the solution set.
A similar point of view is adopted in Lang [24] where prioritized constraints are
expressed in possibilistic logic. Although in accordance with ours, Satoh's ap-
proach [34] differs in the way priorities between constraints are expressed. Indeed,
Satoh uses second-order logic to describe priorities. Moreover the ordering of
solutions depends on how many constraints are satisfied. In our approach,
solutions that satisfy an FCSP to the same degree are not discriminated, even if
some of them satisfy more constraints. In other terms, the best solutions in the
sense of Satoh are among the best according to the FCSP definition. However, a
lexicographic ordering may be used in FCSP, if needed, to discriminate solutions
sharing the same global satisfaction degree, as proposed by Descottes and
Latombe [7]; the idea is to compare the vectors of the components of the
evaluation rather than the scalar values resulting of the aggregation of the
component values of each vector.

Taking a dual point of view, Freuder [19] regards a flexible problem as
a collection of classical CSPs. A metric can then be defined that evaluates
the distance between them. Then, the question is to “find the solutions to
the closest solvable problem.” The FCSP approach is perfectly in accordance
with this view of constraint relaxation by partial satisfaction, as soon as a
weight is associated with each possible weakening of each constraint C; and
the metric defined by the maximum of the weights of the relaxations performed.
Indeed, an FCSP involving p different satisfaction levels is equivalent to p CSPs:
for each level a; >0, a;€ L, a CSP P* is constituted by the set of hard constraints
Cy containing the tuples that satisfy C; to a degree greater than or equal to g;.
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The set of best solutions to the flexible problem is the set of solutions of the
consistent P¥ of higher «; (the closest solvable problem in the sense of Freuder).

Associating priorities to constraints has also been proposed [3,7,17,35];
the aim is still to minimize the maximum of the priority levels of the unsatisfied
constraints. Modeling soft constraints by means of fuzzy sets is a more recent
proposal [4, 5, 27, 32]; besides Faltings et al. [16] present an approach to dynamic
CSP where they distinguish between a set of feasible values and a set of preferred
values, which is a rough version of FCSP. In fact, FCSP is nothing but a
generalization of these two types of approaches (priorities as well as soft con-
straints).

Moreover, the FCSP approach departs from probabilistic or cost-based ap-
proaches, where the best solutions are those for which the sum of satisfaction
degrees is maximal [33]. In these approaches the violation of a constraint can be
counterbalanced by the satisfaction of other constraints. In an FCSP, as soon as
an instantiation violates a hard constraint, it is totally inconsistent:

MR, @ @R, MUy, ., U,) =0.

Thus, we are in accordance with the following constraint satisfaction principle:
no constraint can be violated—except in the limits of its relaxation possibilities,
which are expressed in the FCSP formalism by means of soft constraints.

7.4 LOCAL COMPUTATION SCHEMES

Computing p = X);=,...... R; or some of its projections is an NP-hard problem
when using a global combination technique. These tasks can be approximated
using local computation techniques, whose aim is to transform the problem into
an equivalent one in which some induced constraints have been made explicit
(in the best case, they are equal to the appropriate projection of p).

To graphically represent the structure of the problem, a hypergraph is often
defined whose nodes are the variables {x,,...,x,} and hyperedges represent
constraints R; relating a subset of variables. An unary restriction A; is supposed
to be associated with each variable x;; by default, 4; stands for “x;e U;” (no
unary constraint). A; is an upper approximation of the fuzzy set of possible values
of x; according to the global problem: 4;2 p'™. The two following local
computation schemes will improve this approximation.

7.4.1 Making Unary Restrictions Explicit by
Ensuring Arc Consistency

The fuzzy unary restriction A; of the possible values of a variable x; is said
to be consistent with the hyperedge R; relating x; to variables V(R) — {x;} =
(xpyocx) = {x)if 4; € [Ri® (=1, 112y AD] ™ where < is the fuzzy set
inclusion.
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An FCSP is said to be arc consistent if, for each variable x;, the associated
unary restriction is consistent with all the restrictions relating this variable to some
others; formally, if Vx;, YR; € {Ry,..., R} st.x;€ V(R) = {x,,...,x,},

L5
A S|R® 00 A )

I=1,....k1#j

In other terms, a problem is arc consistent if the neighbors of each x; do not
induce on x; other restrictions than those already described by the unary constraint
Aj associated with x;, i.e,, if these induced restrictions are explicit in A;. We will
define a new local propagation scheme that transforms a fuzzy CSP into an
equivalent one verifying the property of arc consistency.

Arc consistency of the FCSP is ensured by changing all A4 restricting
variables x; into 4= A4;®R;., for each R, iteratively, where Riey =
[R: ® (V¥ ry.1+; A)]* . Note that 4; = [R; ® (Rseviry 4)]* . Since making
a constraint explicit does not change the set of solutions, we can update the
problem by replacing 4; by A;. The modified problem is equivalent to the previous
one, but x; is now consistent with the hyperedge R;. After being updated by arc
consistency, A; is a better approximation of p!* than A4;.

For instance, let 4, (resp. A,) be a fuzzy set restricting the values of x,
(resp. x,) and R models the fuzzy rule “if x, is C, then x, is D™: pg(u,, u,) =
pe(xy) = pp(x,) for some implication function —. The restriction induced via
arc consistency on x, is B'=(R® A; ® A4,)*™?; clearly, (R® A4,)'"*? com-
putes the generalized modus ponens with fuzzy fact 4, and fuzzy rule R, while
(R ® A,)*™" computes the generalized modus tollens.

Combination being associative, commutative, and idempotent, we can compute
an equivalent problem that is arc consistent using a local propagation scheme.
First consider each pair (R;, x;) and update 4; if A; has been modified, propagate
the modification on all the variables depending on xj, i.., consider each pair
(R, x,) such that R, relates x, to x;. If 4, has been modified, propagate the
modification similarly. The process is repeated until no modification occurs.
This procedure has been implemented by means of an algorithm (F-AC3) that is
an extended fuzzy version of the classical AC3 algorithm [26], which is itself more
efficient than the original Waltz’ [38] algorithm. Note that the classical AC3
algorithm handles only binary relations. Here F-AC3 deals with relations of any
arity. It improves the arc consistency of fuzzy CSP with fuzzy relations involving
any number of variables.

F-AC3 {R,,...,R,}
1) Q:={(R;,x))}/R;€ {Ry, ..., R,} and x; restricted by R}
2) While Q # &, do
2.1 Choose and remove a pair (R;, x;) from Q
2.2 Compute the restriction induced on x; via R;: 4; = Revise(R;, x))
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2.3 if height(4)) = 0, stop/* Cons(P) = 0: a contradiction is detected */
Else
if 4; # Aj,
update A;: A;:= Aj
propagate the new restriction on x; to all the neighbors:
For all R, relating x; to other variables,
for all x, restricted by R,, x; # x;, add (Ry, x;) to Q
Revise(R;, x))
QN_. ® A®k;;. xeV(R)) \ALVh e

Since each variable x; ranges on a discrete set of values U;, this algorithm stops in
a finite number of steps: its worst-case complexity is O(pmrd"**), m being the
number of constraints, p the number of distinct satisfaction degrees effectively used
to describe the preferences, r the maximal arity of the constraints, and d the
maximum cardinality of sets of possible values U;. Indeed, the cost of procedure
is O(d"). Initially, Q contains m - r pairs. New entries are made in Q when a call
to revise has succeeded. In classical CSP, revise (R, x;) is called with success at
most d times. In an FCSP, revise(R;, x;) is called with success at most p - d times
since each possible value for x; may have its degree diminished at most p times:
combination is idempotent, decreasing (when combining more and more rela-
tions) and does not generate other levels than the original ones. Successful calls
of “revise” concern at least one of the d possible values for x;. Hence, theoretical
complexity of FAC3 is O(prd"™* 'm).

The result does not depend on the order in which constraints are examined.
However, the choice of this order may enhance the efficiency. For instance, if the
hypergraph is a hypertree, we can take advantage of this structure and propagate
first up from the leaves to the root and then backward from the root down to the
leaves, as proposed in Shafer and Shenoy [36]. In hypergraphs, some heuristic
orders of propagation may be used, depending either on the domain or on the
formal characteristic of the problem: propagate first the more restrictive unary
relations, propagate first through the tightest constraints, etc.

In fact, our hypergraph representation is similar of the one proposed by Shafer
and Shenoy [36] or Dubois and Prade [12] and differs from Pearl’s [30] or Fonck
and Straszecka’s [18] in the sense that edges are not supposed to be directed and
may represent dependencies other than causal ones. Contrary to algorithms
proposed by Pearl [30], Shafer and Shenoy [36], Fonck and Straszecka [18], or
Kruse and Schwecke [23] our propagation scheme is not limited to hypertrees.
However, it just computes, for each variable, an upper approximation of the
marginalization of p to each variable. Moreover, the approximation is exact if the
hypergraph is in fact a hypertree (proof is similar of the one given by Kruse and
Schwecke [23] since our propagation scheme is an extension of theirs from
hypertree to hypergraphs).

Contrary to these algorithms, F-AC3 does not control the propagation of the
fuzzy unary restrictions. As a consequence, a piece of information A j or R; may
be combined with itself, for instance after being propagated via a circuit. Hence,
the property of idempotence plays a great role in ensuring that propagation does
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not generate meaningless information. Moreover, the result of conjunctive combi-
nation can only decrease in the sense of fuzzy set inclusion and no new level of
satisfaction can appear. These properties ensure the termination of the algorithm,
In fact, other formalisms that use combination operations that do not verify these
important properties (for instance, Dempster rule of combination) cannot be
addressed as simply by local propagation algorithms in structures other than
hypertrees.

7.4.2 Making Induced Restrictions Explicit by
Ensuring Path Consistency

Path consistency addresses the problem of computing the restrictions induced over
pairs of variables by the global problem. This kind of computation may be useful,
e.g., in problems involving temporal constraints [11].

For instance, consider the problem P = {R,,, R,,, R,,}, restricting the possible
values of variables {x,, x,, x;}: :

x:“x_mf xuu”xumf Rizixy 2 x4
Constraints R;, and R, induce a restriction on x, and x,: X; < Xx3; therefore. the
constraint between x, and x; becomes “x, < x;and x, > x,,"ie, Rigstat ey

The concept of path consistency introduced in classical CSP literature by
Montanari [29], captures this notion of transitivity in constraint graphs where
restrictions are unary or binary. Let us denote R;; the fuzzy restriction linking X
and x;, and R; = 4; the unary restriction on x;. In terms of fuzzy constraint
networks, the original definition can be extended as follows: a problem P is “path
consistent™ if and only if every pair of values (u;, u;) allowed by a direct constraint
R;; for the pair of variables (x;, x;) with the satisfaction degree pp (u;, u)). is also
allowed with a degree at least equal by every path from x; to x;. That is, all the
restrictions induced by these paths are subsumed by the direct constraints.

Moreover, the graph can always be considered as complete, adding noninforma-
tive restrictions between pairs of variables that are not linked. Under this
assumption, the consistency of each direct constraint with every path of length 2
implies path consistency. This condition, which is one of transitive closure, is
formally expressed by

X f

5 i (g ’ o (v - - JER ]
i) & WL N e D = D

ir

A;®R;®A4; ﬁx;®.\~»®x:u:u..£ (2

This result is due to Mackworth [26] when relations are crisp and may be
easily extended to fuzzy binary relations (by straightforward induction on the
length of the path). Hence, a procedure that considers the graph as complete and
transforms the problem into an equivalent one that verifies property (2) ensures
path consistency. Such a procedure is similar to a shortest path procedure.
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Going back to our example, R, ; has been replaced by R’ ;. This new restriction
can be propagated: the restriction x, > x, is induced from R}, and R,,.
Intersecting with R,,, we obtain R{,: x, = x,. Repeating the process, we obtain
R53:x, = x;. That is, P has been transformed into an equivalent problem
P’ = {R},, Ry, R};} in which all the constraints are explicit.

The following algorithm which is a generalization to fuzzy restrictions of PC2
[26] ensures both arc and path consistency in graphs of binary fuzzy restrictions.
Since it takes more induced restrictions into account than a simple arc consistency
algorithm, each unary constraint 4; is a better approximation of p* .,

F-PC2
{number all the variables from 1 to n)
Q « {(i, k. j)fi <J, not(i = j = k)}
While 0 # & do:
{choose and remove (i, k, j) in Q)
Modified := false
Rij:=R;® [Ry ® 4, ® R, ] =
If height(R};) = 0, stop/* Cons(P) = 0: a contradiction is detected*/
else if R;; # R;;, do
Ryi= Ry
Modified := true
If Modified, then Q « Q U related-paths (i, k, j).
Related-paths (i, k, j):
bl <j (@ j,mfi<mm#jlo{mij)m<jm#i}u
(Ui, myf < m} o {(m, j, iyim < i}
else if i = j, {(p, i, m)/p < m, not(p = i = m), not(p = m = k)}

As for F-AC3, some heuristics on the ordering of nodes may be used for
improving F-PC2. The complexity of the classical PC2 algorithm, which takes
advantage of the finite character of variable domains is O(d°m3) [26]. The
complexity of F-PC2 is thus bounded by O(d*m3p), since, like F-AC3, the F-PC2
algorithm is directly inspired from the corresponding classical CSP algorithm.

Note that the updating pattern Rj;:= R;;® [Ry ® 4, ® R;]*™*' encodes
modus ponens, modus tollens, and a form of resolution principle (i.e., involving
only three variables). Indeed, if i = j, the updating pattern becomes Aj:= 4, ®
[Riu ® 4,1, which is nothing but the inference pattern of arc consistency that
encodes both modus ponens and modus tollens. On the other hand, suppose that
p. q. and r are three boolean variables restricted by the following constraints:

Apipe it [} Aqiqe {t,f}: Arire {t,[} are crisp constraints.
Rpg:*"p or —q (priority a) “represented by
Hrpgp-@) =1 —ail p= fand q =1, ug,(p, q) = 1 otherwise;

Rqr: “q or r (priority b)” represented by
Hpelg 1) =1~=bif g = fand r = f, fig,(q,r) = 1 otherwise;

i
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[Ry ® A, ® R,j]*** is the fuzzy restriction corresponding to the fuzzy set
defined by pg, (p,r) = max(l —a, 1 — b) if p=fandr=f ug,(p,r)=1 other-
wise. In other words, path consistency computes the resolution pattern in possibi-
listic logic, namely

(pvga);(gvrb)
(p v r min(a, b))

a, b being lower bounds of necessity degrees [9].

7.5 FINDING THE BEST SOLUTION

The previous algorithms calculate upper approximations of p**! which can be
exact under some structural conditions. If the approximation is exact, the minimal
height of all the constraints is equal to the consistency of the problem:
Cons(P) = min; height(R’;) where the R’; are the relations explicated after applying
arc and/or path consistency, and defining a problem equivalent to P. Otherwise,
it is only an upperbound of Cons(P) and computing the problem consistency
requires the determination of a best solution, i.e., an instantiation (u,, ..., u,) such
as p,(uy, ..., u,) = height(p). Indeed, variables are generally interactive. In fact, the
problem of computing Cons(P) reduces to a sup/min optimization problem of the
form (in the formula below, some R; may be unary):

. gl
SUP, el x - x U, (Mg cip oo (g (g, ..o, u) YR

Following Lang [24] or Schiex [35], such a problem may be solved in the
finite case using classical tree-search algorithms, namely Depth first, Branch and
Bound, a-f, SSS*, beam search, etc.

Using a classical tree search algorithm, variables are instantiated in a prescribed
order say (xy, ..., x,). The root of the tree is the empty assignment. Intermediary
nodes denote partial instantiations. Leaves represent complete instantiations of
(xy,-...,x,), 1.e, potential solutions. In a depth-first exploration of the tree, we will
keep track of the current leaves that maximize p,.

The use of flexible constraints makes it possible to prune each branch that will
necessary lead to complete instantiations whose degree of satisfaction is worse
than that of the best of the already evaluated solutions. In other terms, it is useless
to extend intermediary nodes u, ..., u, such that gy, i..ety, . . ., ) < a, « being
the current lower bound of Cons(P). Threshold o may be initialized by 0 and
updated when a solution (u,, ..., u,) such as u,(u,,...,u,) > « is reached.

The computation of pp ..ty ..., 4) is too costly [since it requires the
computation of all the extensions of (u,, ..., u) to (x,,..., x,)]. So in practice, we
compute an upper bound of py,i...saytty, . . ., 4,) instead. We call this upper bound
the “consistency” of the partial instantiation (u,,...,u,). The consistency of
(uy,...,u,) considers only the restrictions pertaining to the variables instantiated
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in (uy,...,u), ie, constraints R, such that WR)E (x, L)
ﬁo:m?: ey Up) = B..:»_m.i;_.m? b C:r::: . :»i Ex.i

This bound decreases when extending the nodes and becomes exact for complete

instantiations. Moreover, it may be incrementally computed as the tree is explored
downward:

Cons(u,, ..., u,, U +1) = min(Cons(y,, . .., u),

MR, |\ MRYandNR)< (x,... . LY (2 T ML) )

It is interesting to notice that the incremental computation of Cons(u,,...,u,)
considers each constraint only once.

Let (u,,...,u,) denote the current partial instantiation, o the current lower
bound of Cons(P), and g an upper bound of the satisfaction degree of the solution
searched for [generally £ is an upper bound of cons(P), § = 1 by default]. Node
(uy, ..., ) is extended as follows for all Uery. Cons(uy, ..., u, u,, ) is computed.
Only the nodes (u,, ..., u,, U+ 1) such that Cons(u,, ..., U, Uy 4 1) = o are created,
and the next to be developed is the one such that Cons(u,, ..., w,) is maximal.

Extend ((uy,...,u,), «, )
If k = n,/* a solution with satisfaction degree 8 has been reached*/
best-current-solution := ((uy, ..., u), B)
return f
Else,/* extend current instantiation*/
forall u,,, in U,,, do
p=p

for all R; such as V(R)) < W By Loand 2., 2 V(R,) do

B'+= min(f’, Hr((uy, ..., Uy + Lh Sx;:

if B> «a, do/
f':= (min f, extend((uy,...,u., ), %, f)

a:= max(x, f)

ifa = freturn f/* « may not be > f: one of the best sons has been extended */
return x

The search stops when no more node can be created. It is successful if a
complete instance has been reached. and the best among those that have been
reached is optimal [« = Cons(P)]. If no complete instance has been reached,
Cons(P) = 0 and the problem is unfeasible.
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Moreover, the search stops as soon as a solution of a degree greater than or
equal to § is obtained. Therefore, if a satisfaction level b is considered as sufficient
for the solution you fix § = b. Notice that the best the bounds « and B, the more
efficient the search. Moreover, some heuristics may be applied to this tree search,
namely on the order of instantiation (instantiate first the more restricted variables,
€.g., the variables connected to many others or those having a fuzzy set of possible
values with minimal cardinality, ie., giving preference to the most restricted
variables). In fact, it is possible to develop a large class of tree search algorithms
(e.g., beam search) based on the same principle and integrating different heuristics
or variants.

7.6 EXAMPLE

A tutorial is supposed to be made of lectures on topics P and O, plus training
sessions and computer sessions for topic P. Each type of activity must not involve
more than 5 sessions. There should be approximately 8 lectures overall, and the
person in charge of lectures and computer sessions on topic P proposes about 6
sessions overall. There should be about two more computer sessions than training
sessions, and exactly as many lectures on P as training sessions. The FCSP is
defined in Figure 7.3. A 5-level satisfaction scale is used L = {04, b, ¢, 1. Re-
presenting fuzzy sets by pairs (u, ug(u)), we have the following representations of
“about 8" (E), “about 6" (B). and “about 2" (C): E = (6.a). (7,¢), (8 1)
(9, ¢),(10,a)}; B = {(5,b), (6, 1).(7, b)}; C = {(1,b),(2,1),(3, b)}: ] = {0, 1, 2. 3, 4. 5.
With the following understanding of the variables, x (resp. v): number of lectures
on P (resp. @); w: number of computer sessions on P; z: number of exercise sessions.
the constraints write Ax:xel; Ay:yel: Az:zel; Awiwel: Rxy:x + yeE:
Rxw:x + weB; Rwziw —zeC; Rxz: x = z. [Here the sign € means that the
(fuzzy) subset, which is after the sign, restricts the possible values of the variable
written before the sign.]

Arc consistency performed on x via Rxy leads to HRey—olUt) =
max, - s pg(u+ ), Vu, which gives I n Rxy — x={(1, a), (2, ¢), (3, 1), (4, 1. (51)) =
A. Clearly more precision has been obtained on x since only 3, 4, 5 remain totally
possible values: for instance the satisfaction degree of value 2 have been reduced

FIGURE 7.3.  The constraints in the example.
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Ax, Az
c Ay

FIGURE 74.  Results using arc consistency only.

since the best assignment of y (v = 5) corresponding to x = 2 satisfies Rxy only
at degree c.

Note that the computation of Rxy — x could be done via fuzzy arithmetics
(10]: the restriction Rxy — x = (Ry ® Rxy)**! induced on x is in fact: xe EO I,
© denoting the substraction of fuzzy quantities.

Applying FAC-3 to this example (see Fig. 7.4), we discover that the height of
each unary restriction is ¢, ie., that constraints are conflicting [c is an upper
approximation of Cons(P)]. Note that the unary restrictions are only upper
approximations of the marginals of the global relation. For instance, x = 4 is
allowed with degree b, although there is in fact no assignment of x, y, z, w with
x = 4 satisfying all the constraints even partially.

Consider now arc + path consistency instead of arc consistency only. Rxz
states that x =z The path x,w,z states that Rxw: x + weB and Rwz:
w —ze C. Combining these restrictions, we obtain the induced restriction
(Rxw ® Rwz ® Aw)*™*2 Because of Aw, this restriction is more restrictive than
x+:eBOC=(Rxw ®Rwz)!"™ In this example, path consistency performs
nothing but variable elimination. Intersecting this restriction then with the set Rxz
of possible pairs of values for x and z, we get for R'xz: pg..(2,2) =1,
Hrollo 1) = pg (3, 3) = b, g .(x. z) = 0 otherwise. The new restriction is then
propagated on x by arc consistency: pig(2) = ¢, pg,(x) = 0 otherwise (note that
value x = 1 is ruled out). Applying F-PC2 instead of FAC-3 to the example (see
Fig. 7.5). the restrictions obtained for x, v, and  are tighter. Moreover, they are
equal to the marginals of the global relation. Again the minimal height of the
constraints (c) provides an upper bound of Cons(P).

The search algorithm is then applied, with f# = ¢: we take advantage of the
results of FPC-2 to accelerate the search giving an upper-bound of Cons(P). Ten
nodes are generated (see Fig. 7.6) and the best solution is x = 2, y=5,2=2
w = 4. In fact, there is no assignment satisfying completely all the constraints;
thus. constraint Rx) is “relaxed” according to the preferences: one accepts to
reduce the number of lectures to 7 since no plan with § lectures is feasible.

Note that if the FPC-2 algorithm is not applied before the search, reaching the
best solution requires 18 nodes. The first reason is that the upper bound of Cons(P)
provided by FPC-2 allows the search to stop immediately after the discovery of
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Ax, Az
c Ay

b Aw

Y

FIGURE 7.5. Results using arc and path consistency.

the solution. Moreover, the problem obtained by FPC-2 contains more explicit
constraints than the original one; thus, the consistency of a partial instantiation
is a better upper bound of the satisfaction level of its best extension: more useless
branches are pruned.

The previous example involves imperative constraints only. Let us study a case
in which a constraint has less priority than the others: suppose that the constraint
relating x and z (“exactly as many lectures on P as training sessions”) has a priority
d < a = 1 — c; the fuzzy relation modeling this constraint is

Rxz: ppo(x,2) =1if x = z: pg,.(x,2) =1 — d otherwise

The FCSP is still partially inconsistent but may be solved by relaxing Rxz: the
consistency of the problem is 1 —d and the best solution is an instantiation
satisfying all the constraints but Rxz (x =3, y =5, z = 1, w = 3). Note that the
weakening of the priority of Rxz, i.e., the constraint x = z leads to a solution with
x quite different from z; this exemplifies the distinction between prioritized and
soft constraints; only soft constraints guarantee a progressive degradation of the
global satisfaction.

7.7 NONMONOTONICITY IN FCSPs

Using the classical CSP approach, the set of solutions diminishes when new
constraints are added, and eventually becomes empty in case of conflicting

X y Z w
1 5 2 4
(a) (a) (a) (a)
O 5 2 3
(© () (c) (b)
4
©

FIGURE 7.6.  Search tree in the example.
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constraints. In the FCSP framework, adding a new constraint to a problem I’ may
rule out the previous best solutions if they satisfy the new constraint to a degree
lower than Cons(P). But as long as the new problem (say P’) is not totally
inconsistent, a new set of best solutions appears that satisfies the new problem to
a degree Cons(P’) < Cons(P). Indeed, we have

x_ ®...®zi®m~i+_ =3 NN» ®®~NE
where < stands for the fuzzy set inclusion, but generally

{lu g W)l @ -or,ok,, (U1 ...\ U,)

= noa%@ﬂ {(wys o w)ure... gr (s, ..., u,) = Cons(P)}

Hence, the set of best solutions does not decrease monotonically when new
constraints are added. The nonmonotonic behavior of soft constrainst has been
noticed by Satoh [34]. The type of nonmonotonicity at work here is the same as
the one captured by possibilistic logic and appears only in the presence of
inconsistency. It has been precisely characterized by Benferhat et al. [2] as the
class of preferential inferences satisfying the rational monotony property of
Lehmann [25]. In fact, adding a new constraint may lead to four situations:

1. The new constraint is redundant: R, ® - ®R,, < R, +,; the set of best

solutions remains unchanged.

The new constraint is totally compatible with P: Cons(P) = Cons(P’); the set

of best solutions is included in the previous one but may remain unchanged.

3. The new constraint is partially inconsistent with P: Cons(P’) < Cons(P); con-
straints are implicitly relaxed according to their flexibility and the set of best
solutions is not generally included in the previous one.

4. The new constraint is totally incompatible with P: Cons(P’) = 0; the set of (best)
solutions is empty.

2

As a consequence, the problem of solution maintenance in dynamic CSPs appears
to be more complex than in classical CSPs: pruned branches of a previous search
in the tree have to be developed contrary to the method proposed by Van
Hentenryck [37].

The question of relaxing or deleting a constraint is not separately considered
in the FCSP model, since the relaxation capacities of the constraints are supposed
to be explicitly represented by means of preferred values and priority degrees. In
other terms, constraints can be only added or strengthened, i.e., the priority of a
constraint (resp. the satisfaction degree of a value) may dynamically increase (resp.
decrease) but not decrease (resp. increase). As seen in the example of Section 7.6,
the decrease of the priority of constraint Rxz from 1 tod <1 —¢ opens the door
to a completely different solution, since we then have to deal with a different
problem.
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7.8 CONCLUSION

Flexible constraints have two advantages over crisp ones: the different solutions
are rank-ordered in accordance to their degrees of feasibility and the search
algorighm takes advantage of this flexibility to efficiently focus on the best
solutions. Moreover, the FCSP approach may handle partial inconsistencies
between constraints and provides a solution (the best one) as long as the problem
is not totally inconsistent.

Thus the FCSP framework seems to be a suitable approach to handle both
soft constraints, i.e., constraints involving preferences as well as prioritized con-
straints—and more generally problems involving fuzzy relations. It marries possi-
bility theory and classical CSP theory. Possibility theory offers its rich and
powerful setting for the representation of soft and prioritized constraints: more-
over, the classical operations of combination and projection of fuzzy restrictions
present a low computational cost, and properties (especially idempotence) allow
the use of local computational schemes on general structures. Moreover, the CSP
literature provides theoretical results as well as efficient algorithms of constraint
propagation, which can be easily adapted to the treatment of fuzzy restrictions.
Finally, this formalism suggests a nonmonotonic framework for dynamic pro-
blems, for instance, the use of default constraints.

In terms of applications, FCSP seems particularly promising in areas such as
scheduling, planning, and design, which often make use of classical CSP techniques
mixed with informal approaches to flexibility (see for instance Descottes and
Latombe [7]). Note that the framework we have described handles only variables
ranging on discrete domains; in order to handle some of these applications, it
must be extended to continuous domains (see Davis [5]).

On the other hand, the FCSP approach may be regarded as a problem-solving
paradigm for every application involving a set of fuzzy restrictions, especially
problems of combination of vague information, fuzzy relational databases. or
qualitative reasoning (e.g., [13]). In particular, it should be noticed that flexible
constraints are coherent with possibilistic logic: FCSP may be a semantic
approach to possibilistic logic. Indeed. a necessity-valued formula may be regarded
as an elastic constraint on the possible boolean values that can be assigned to
boolean variables [15].
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