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Featured Application: This article presents real-time power management including an optimiza-
tion problem, formulated as mixed-integer linear programming, for a microgrid-based intelligent
infrastructure for recharging electric vehicles (EVs). The DC microgrid includes photovoltaic
sources, stationary storage, a power grid connection, and EV batteries as load. The objective of
the optimization problem is to minimize the total energy cost. Simulation and real-time exper-
imental results under different meteorological conditions prove the feasibility of the proposed
control and its superiority over the storage priority strategy.

Abstract: Electric vehicles (EVs) are expanding quickly and widely, and, therefore, EVs can participate
in reducing direct greenhouse gas emissions. The intelligent infrastructure for recharging EVs, which
is microgrid-based, includes photovoltaic (PV) sources, stationary storage, and a grid connection as
power sources. In this article, the energy cost optimization problem is studied, taking into account
the intermittent arrival and departure of EVs. A mixed-integer linear programming is formulated as
an optimization problem in a real-time operation to minimize the total energy cost, taking into con-
sideration the physical limitations of the system. The interaction with the human-machine interface
provides EV data in real-time operation, and the prediction only communicates the PV prediction
profile provided by the national meteorological institute in France. The optimization is executed at
each EV arrival, with the actualized data in the DC microgrid. Simulation and real-time experimental
results of different meteorological conditions show that the EV user demands are satisfied, proving
the feasibility of the proposed optimization problem for real-time power management.

Keywords: charging station; electric vehicle; energy distribution; energy management; human-
machine interface; microgrid; optimization; photovoltaic; real-time experiment

1. Introduction

CO2 emissions are the major issue of global warming. The transport sector shares
25% of the global energy consumption in the world and therefore contributes to these
emissions [1,2]. Renewable energies can decrease greenhouse gases and, therefore, CO2
emissions due to pollution from the electrical power plants running on fossil fuels. In
this context, the energy transition promotes the growth of renewable energy sources;
however, this transition can introduce new constraints for grid operators in terms of
reliability and quality [3]. Therefore, microgrids are able to balance local production and
consumption of energy and bring benefits to end-user by reducing electricity costs, e.g.,
reduced transmission cost and distribution cost by lowest energy loss in transmission.
Microgrids are based on renewable energy sources such as photovoltaics (PV) and wind,
storage devices, and loads and could have a connection to the grid [4]. Electric vehicles
(EVs) have been a center of attention worldwide due to their merits: zero tailpipe emissions,
noise-free operation, high efficiency of energy use and simple structure [5,6]. The EV market
is constantly growing [1,7,8]. However, the increase in EV charging, seen as loads connected
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to the grid, will have a significant impact on the grid and will impose additional difficulties
for grid operators [9,10]. Therefore, managing EV charging will be a critical requirement.

1.1. Literature Review

Recent studies have aimed to design microgrids for EV charging. The authors of [11]
have proposed mixed-integer linear programming (MILP) for an EV charging station in-
tegrated into a DC microgrid to determine the optimal operation planning. They have
focused on optimizing the daily operational costs based on forecasting PV production
and EV operation. A hybrid optimization problem for energy storage management has
been proposed in [12] to minimize the EV charging cost in a PV-integrated EV charging
station using time-of-use wholesale electricity pricing. The authors in [13] have presented
meta-heuristic methods, such as binary particle swarm optimization and binary grey wolf
optimization. They have studied an optimal charging coordination strategy for a random
arrival of plug-in EVs. A MILP optimization has been proposed in [14] to minimize the
microgrid operation cost by having an aggregated EV charging station for an islanded
microgrid and in [15] to minimize the energy generation cost and load shedding consid-
ering various constraints in a microgrid that integrates battery EV charging stations. A
heuristic operation problem has been proposed in [2] for a commercial building microgrid
that integrates EVs and a PV system to study a strategy to acquire data in real-time rather
than forecasting EV charging demand or PV production. A genetic algorithm optimiza-
tion has been studied in [16] for the multi-criteria optimization problem to minimize the
charging costs of the EV, maximize the use of PV and the storage device and minimize the
degradation of the storage device. A MILP optimization has been proposed in [17] to solve
the day-ahead optimization problem and to find the optimal scheduling and operation of
a prosumer who owns renewable energy sources and a plugged-in EV. They have used
a feed-forward artificial neural network for the weather prediction module in the energy
management system. Linear programming and quadratic programming optimization
problems have been addressed in [18] to minimize the total operating costs for building
a microgrid that integrates a heterogeneous fleet of EVs. A multi-objective scheduling
optimization problem based on genetic algorithms has been presented in [19] for microgrids
including EVs to reduce grid loss and charging costs considering various constraints of the
microgrid sources and EV charging characteristics. The authors in [20] have presented an
optimal model for an energy management strategy in a real microgrid, which integrates a
PV system with storage devices, smart buildings and a plug-in EV. They have minimized
the total costs of energy consumption by reducing the power supplied from the grid. A
robust optimization has been described in [21] and compared with stochastic optimization
to minimize the economic and environmental costs of a microgrid, which integrates PV and
EVs. They have proposed a mathematical model to study the uncertainty of EV charging
behavior and PV power. A model predictive control has been depicted in [22] using a smart
charging strategy that takes into account the future EV charging demand. Their goal is to
reduce the peak energy demand for an EV parking lot with PV sources. A multi-objective
evolutionary particle swarm optimization problem has been presented in [23] to minimize
the costs and the overloading for high demands of grid energy for EV scheduling based on
a day-ahead scenario.

A novel convex quadratic objective function has been proposed in [24] to minimize
the power loss of a microgrid in a two-stage optimization method with different pene-
tration levels of plug-in hybrid EVs, studying the behavior of the plug-in hybrid EVs.
The authors of [25] have proposed a stochastic planning model as a convex programming
problem to optimize the component sizes by minimizing the total cost of the EV charg-
ing station considering the uncertainties of PV production, EV charging demand, and
different constraints. An improved optimal sizing methodology of a typical residential
microgrid integrating renewable energy sources and EVs has been proposed in [26] to
lower greenhouse gases emissions and minimize the cost. An annealing mutation particle
swarm optimization problem has been studied in [27] for microgrid optimal dispatching
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to minimize the environmental protection cost and the operation and maintenance cost of
a microgrid in a multi-objective economic dispatch model. A multi-agent particle swarm
optimization problem has been addressed in [28] for a grid-connected PV, energy storage
system and EV charging station to size the PV and the energy storage system and to set
the charging/discharging pattern of the energy storage system. The EV charging station
integrates PV, an energy storage system and a grid connection. A machine learning-based
approach has been proposed in [29] for energy management in a microgrid, taking into
account a reconfigurable structure based on remote switching of ties and sectionalizing.
They have also proposed a new modified optimization problem based on dragonfly due to
the complexity of the problem. An optimal configuration of PV-powered EV charging sta-
tions in [30] has been studied economically and technically under different solar irradiation
profiles in Vietnam using the HOMER Grid program. An optimization model based on a
genetic algorithm has been proposed in [31] to optimize the use and scheduling of energy
sources for an intelligent hybrid energy system, including EVs and a micro-combined heat
and power system. In [32], a bi-level robust optimization has been proposed to optimize
the design of an EV charging station with distributed energy resources. The authors of [33]
have proposed an optimization model for a battery-swapping station to minimize the
charging cost of EVs by optimizing the charging schedule for swapped EV batteries. An
optimal charging profile has been proposed in [34] for EVs to minimize battery degradation
and extend their lifetime.

A robust optimal power management system has been presented in [35] for a stan-
dalone hybrid AC/DC microgrid. The optimization problem, formulated as a MILP
problem, is responsible for supervising the power flow in the hybrid microgrid, with the
objective to satisfy the load demand while maximizing the usage of renewable sources
(PV and wind), minimizing the usage of diesel generation, extending battery life, and
limiting the utilization of the converter between the AC and DC microgrids. An energy
management system for a grid-connected microgrid has been addressed in [36] based on
a MILP problem to minimize the total energy cost over 24 h, taking into account load
demand, grid tariffs, and renewable energy sources production. A long short-term memory
network has been proposed in their paper to deal with the power prediction of the renew-
able energy sources and the load demand, where each hour, it predicts the profiles for the
next 24 h. Then, real-time implementation is enabled by the receding horizon strategy,
which is used to minimize the prediction error and gives commands for the first hour; then,
each hour, the data are actualized. The proposed strategy in [36] proved its cost reduction
in comparison with an offline optimization after conducting simulation tests. In [37], a
novel modular modeling method has been described for an energy management system
for urban multi-energy sources, including cooling, heating and renewable sources, that
allow complex system topologies to be modeled. They have conducted various case studies
with different climate conditions and electrical loads. They have also compared the results
with a rule-based algorithm to compare the annual cost reductions. In [38], the authors
have investigated the technical, economic, and environmental aspects of renewable energy
sources in a microgrid. An equilibrium optimization problem was developed to minimize
the operational cost of the microgrid, which includes PV, wind turbines, and a biomass
generator. The simulation results proved the benefits of using the proposed algorithm
in reducing operational costs and emissions. An equilibrium optimization problem has
been addressed in [39] for optimum PV-storage system integration in a radial distribution
network. Multi-objective functions have been addressed to minimize the cost of invest-
ment in PV and storage system installations, their cost of operation, the cost of energy
not supplied, the power losses in the distribution lines, and the CO2 emissions by the
PV and the grid. The proposed method is compared with various techniques to prove its
effectiveness. In [40], the authors have proposed an equilibrium algorithm to optimally find
the lithium-ion battery parameters, formulated as a nonlinear optimization problem. The
proposed method was compared with various recent techniques to prove its accuracy; also,
it has proved its closeness to the experimental measurement. An artificial hummingbird
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optimization technique has been presented in [41] to find the unknown parameters of
lithium-ion batteries used in EVs. The proposed method is compared with various recent
techniques to prove its value and effectiveness. An experimental test was conducted, and
the proposed technique had the highest degree of precision among the other techniques.

1.2. Research Gaps

In the previously cited references, the optimization was performed knowing the EV
charging prediction profile for the entire day as day-ahead planning. Knowing an EV
charging prediction profile is based on contextual assumptions, e.g., schedule according to
the occupancy of a car park or the average EV autonomy, which are not yet validated in the
real world. In this work, the objective is to perform a real-time control under optimization
for the minimum energy cost and the maximum PV energy for each EV for an intelligent
infrastructure for recharging electric vehicles (IIREVs) considering the intermittent and
random arrival of the EVs, featuring the EV users’ interaction. For the current work, the
optimization is performed more realistically at every random arrival of an EV. Therefore,
when a new EV comes to the station, the state of charge (socS) of the stationary storage and
the current state of charge of EVs (socEVv ) in charge are actualized for suitable optimization.

1.3. Contributions

The main contributions of this work are:

1. Proposing EV power profiles, which are based on the EV users’ interaction with the
human-machine interface (HMI);

2. Proposing a new method of real-time power management, including energy cost
and PV energy optimization for the IIREVs considering the intermittent and random
arrival of EVs, where the optimization is performed at each EV arrival;

3. The analysis of the energy distribution by source category for EV charging and the
entire station energy system;

4. The validation of the proposed control in simulation and real-time experimental tests
in different meteorological conditions and random EV power profiles.

This article is organized as follows. Section 2 presents the control system for the
IIREVs, then the MILP optimization problem is detailed with the constraints and the
objective function. Section 3 shows the simulation results and analyses for the different
case studies. Section 4 presents the results obtained by real-time experimental tests. Finally,
the conclusions and further works are presented in Section 5.

2. Supervisory and Control System Based on Real-Time Power Management

Figure 1 shows the DC microgrid, denoted as IIREVs, and includes PV sources, sta-
tionary storage, power grid connection, and EVs as DC loads. Two operation modes exist
for the PV sources: maximum power point tracking (MPPT), where maximum power is
drawn using a perturb and observe algorithm, and PV power limitation, where PV power
is limited in case of a surplus of PV power production [42] because the excess power can
no longer be fully injected into the storage and/or into the grid. The stationary storage
is a backup source acting as an energy reservoir when there is insufficient PV power to
charge the EVs. When there is insufficient PV power to charge the EVs, the grid ensures the
security of the system by injecting power to the EVs if the stationary storage has reached its
lower limits (empty or minimum discharge power). On the other hand, the DC microgrid
can sell power to the grid by injecting it when there is a surplus of PV power production and
the stationary storage has reached its higher limits (full or maximum charging power) [43].
Regarding the EVs charging, they can operate in two modes: fully charging as requested
by their users and EV shedding when it is not possible to fully supply the EVs.
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Figure 1. Power flow for the intelligent infrastructure for recharging EVs.

The power flow for IIREVs is shown in Figure 1, where pPV MPPT is the PV MPPT
power, pPV is the PV power, pPV_S is the PV shed power, pG_I is the grid injection power,
pG_S is the grid supply power, pS_C is the stationary storage charging power, pS_D is the
stationary storage discharging power, pI IREVs D is the IIREVs’ total demand power, pI IREVs
is the IIREVs’ total power, and pI IREVs S is the IIREVs’ shed power. The components of the
IIREVs are coupled through their dedicated converters to the common DC bus. PV sources
are connected to the DC bus through the DC/DC converter to draw the MPPT power. The
stationary storage is connected through a reversible DC/DC converter. The EVs’ batteries,
as DC loads, are connected through the DC/DC converter. The grid is connected through a
three-phase bidirectional AC/DC converter. It is necessary to ensure power at all times
and mitigate the power difference between the power production and the EVs’ demand.

The supervisory control system for the IIREVs is shown in Figure 2. The supervisory
and control system consists of four layers: prediction, energy cost optimization, operation,
and HMI. The design and implementation of the IIREVs’ control are based on the interaction
between the EV users and DC microgrid. Energy cost optimization and operation layers
form the control block that should keep the power balanced.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 36 
 

 
Figure 2. Supervisory control system for the IIREVs. 

The main challenge lies in dealing with the discrete events coming from the HMI. 
The optimization results communicate the predictive control settings to the operation 
layer and update the smart grid about the power references of the stationary storage and 
the power grid. The operation layer holds the algorithm that keeps the power balanced 
with respect to the constraints of the system and its physical limits [4]; it sets the PV power 
limitation and performs EV shedding if needed. 

2.1. Prediction Layer 
Météo France provides hourly predictions allowing the calculation of PV power pre-

diction, which is based on solar irradiation (g) and ambient temperature ( ambT ) forecast 
data [45]. The PV power prediction   PV MPPT predp  is calculated in MPPT mode for each 
time instant it  [46] as given in following equations: 

  _

0 0 0

( )( ) [1 ( ( ) 25)]  
1000

= { , , 2 ,..., },

γ= ⋅ ⋅ + ⋅ − ⋅

+ Δ + Δ

i
PV MPPT pred i PV STC PV i PV

i F

g tp t P T t N

with t t t t t t t
 (1)

( ) = ( ) ( ) ,−−+ ⋅ air test
PV i amb i i

test

NOCT TT t T t g t
G

 (2)

where _PV STCP  is the PV power under standard test conditions (STC), γ  is the power 
temperature coefficient (−0.29%/°C), PVT  is the PV cell temperature, PVN  is the number 
of PV panels, 0t , Δt , and Ft  are the initial time instant, time interval between two sam-
ples, and time instant at the end of time operation, respectively, NOCT  is the nominal 
operating cell temperature (41 °C), −air testT  is the fixed air temperature (20 °C), and testG  
is the fixed solar irradiation (800 W/m2). 

  

Figure 2. Supervisory control system for the IIREVs.



Appl. Sci. 2022, 12, 4323 6 of 33

The prediction layer is based on weather forecasts. The energy cost optimization is
based on the production prediction and consumption profile. They are calculated based
on data from the prediction layer and the interaction with the HMI. From the prediction
layer, messages from the smart grid about energy system limits, grid power limits, and
dynamic energy pricing are communicated. From the interaction with the HMI, the EV
users choose their charging mode (Mv), desired state of charge of their EV at departure
(SOCEV_desv ) in real-time, and get the state of charge of their EV at arrival (SOCEV_arrv ).
MILP optimization is used for the technical-economic dispatching of the microgrid sources
and load. This supervisory control has the advantage of interacting with the EV users to
perform the optimization; however, if the choices of the EV users are not feasible, they have
to change them in order to perform the optimization [44].

The main challenge lies in dealing with the discrete events coming from the HMI. The
optimization results communicate the predictive control settings to the operation layer and
update the smart grid about the power references of the stationary storage and the power
grid. The operation layer holds the algorithm that keeps the power balanced with respect
to the constraints of the system and its physical limits [4]; it sets the PV power limitation
and performs EV shedding if needed.

2.1. Prediction Layer

Météo France provides hourly predictions allowing the calculation of PV power
prediction, which is based on solar irradiation (g) and ambient temperature (Tamb) forecast
data [45]. The PV power prediction pPV MPPT pred is calculated in MPPT mode for each
time instant ti [46] as given in following equations:

pPV MPPT pred(ti) = PPV_STC · g(ti)
1000 · [1 + γ · (TPV(ti)− 25)] · NPV

with ti = {t0, t0 + ∆t, t0 + 2∆t, . . . , tF},
(1)

TPV(ti) = Tamb(ti) + g(ti) ·
NOCT − Tair−test

Gtest
, (2)

where PPV_STC is the PV power under standard test conditions (STC), γ is the power
temperature coefficient (−0.29%/◦C), TPV is the PV cell temperature, NPV is the number
of PV panels, t0, ∆t, and tF are the initial time instant, time interval between two samples,
and time instant at the end of time operation, respectively, NOCT is the nominal operating
cell temperature (41 ◦C), Tair−test is the fixed air temperature (20 ◦C), and Gtest is the fixed
solar irradiation (800 W/m2).

2.2. Human-Machine Interface

As for the EVs, it is possible to charge them in three modes: slow, average, and fast. All
EVs can handle up to fast mode, and they are considered to have the same energy capacity.
The HMI allows the EV users to set their SOCEV_arrv , Mv, and SOCEV_desv , and, therefore,
the estimated charging time, test_chv , which is the required time to reach SOCEV_desv , is
calculated as given in (3):

test_chv =
(SOCEV_desv − SOCEV_arrv) · E

PEV_maxv

, (3)

where E is the EV’s battery capacity, and PEV_maxv is the maximum charging power based
on the charging mode set by the EV user. The HMI for the IIREVs is shown in Figure 3 and
is well explained in detail in [47].
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2.3. Energy Cost Optimization

The energy cost optimization layer interacts with the prediction layer and the HMI to
run the optimization. The objective of the optimization is to find the lowest energy cost and
the maximum PV power for each EV. The sharing power between the stationary storage and
the grid is represented by the power distribution coefficient kD that is calculated from this
layer using the power references obtained in the optimization. The benefits of optimization
lie in many aspects: reducing the grid peak power consumption, minimizing the energy
cost, deciding which of the stationary storage or grid may have the better contribution, and
avoiding EV and PV shedding. The communication with the smart grid informs the system
about grid power limits for injection and supply, which are set by a contract with the grid
operators, and the energy pricing in real-time. Additionally, stationary storage physical
limits should be known. The objective is to minimize the total energy cost with respect to
different constraints [45].

The constraints and the objective function are represented in the following subsections.

2.3.1. PV Sources

The two operation modes for the PV are MPPT and limited power. The PV power that
must be shed is noted as pPV_S. Therefore, pPV is calculated [45] as given by (4):

pPV(ti) = pPV MPPT(ti)− pPV_S(ti), (4)

where pPV_S = 0 is in MPPT mode; it should not be negative in power limitation mode.
Thus, constraints are added as follows:

pPV(ti) ≥ 0, (5)

0 ≤ pPV_S(ti) ≤ pPV MPPT(ti). (6)
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2.3.2. Stationary Storage

The stationary storage, represented by lithium-ion batteries, must be protected from
overcharging and over-discharging; thus the maximum storage power PS_max and the
maximum and minimum state of charge of the storage SOCS_max and SOCS_min must be
respected to extend the storage lifetime [45,48] as given by (7) and (8). The simplified
state of the charge of the storage socS evolution [43] is given by (9) for simplicity, where
self-discharge and temperature are not considered:

− PS_max ≤ pS(ti) ≤ PS_max, (7)

SOCS_min ≤ socS(ti) ≤ SOCS_max, (8)

socS(ti) = SOCS0 +
1

3600 · EBat

∫ t

t0

pS(ti)dt, (9)

where SOCS0 is the initial socS, and EBat is the storage energy capacity (kWh) and the storage
power pS(ti) = pS_C(ti)− pS_D(ti). The PV power should not be limited if SOCS_max is not
reached; this constraint is given by (10):

pPV_S(ti) = 0 i f SOCS(ti) < SOCS_max. (10)

2.3.3. Grid Connection

The smart grid transmits messages to IIREVs to respect the maximum grid supply
PG_S_max and injection PG_I_max limits set by the grid [45], as in (11), where pG(ti) =
pG_I(ti)− pG_S(ti):

− PG_S_max ≤ pG(ti) ≤ PG_I_max. (11)

2.3.4. Electric Vehicles

EV batteries, seen as the entire microgrid’s load, can be shed, pI IREVs_S, when pI IREVs D
cannot be fully supplied due to deficient in power, e.g., the storage and grid have reached
their limits [45]. Hence, pI IREVs is given by Equation (12), and knowing that pI IREVs_S
should not be negative, thus, constraints Equations (13) and (14) are added as follows:

pI IREVs(ti) = pI IREVs D(ti)− pI IREVs S(ti), (12)

pI IREVs(ti) ≥ 0, (13)

0 ≤ pI IREVs_S(ti) ≤ pI IREVs D(ti). (14)

No PV shedding power is required when PV power can be fully used, and no EV
shedding power is imposed when EVs can be fully charged. Thus, the constraints of
Equations (15) and (16) must be respected.

i f pPV MPPT(ti) ≥ pI IREVs D(ti) then


pI IREVs S(ti) = 0

pG(ti) ≥ 0
pS(ti) ≥ 0

, (15)

i f pPV MPPT(ti) ≤ pI IREVs D(ti) then


pPV_S(ti) = 0

pG(ti) ≤ 0
pS(ti) ≤ 0

. (16)
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The EV users can select their charging mode and other choices that are expressed in
the IIREVs’ interface. The following EV constraints given in (17)–(31) represent the EV
users’ interaction:

(a) EV charging mode:

i f Mv = 1 then 0 ≤ pEVv(ti) ≤ PEV_ f ast_max ∀ti ∈ [tarrv , tdepv ]
with v = {1, 2, . . . , Nv},

(17)

i f Mv = 2 then 0 ≤ pEVv(ti) ≤ PEV_aver_max ∀ti ∈ [tarrv , tdepv ], (18)

i f Mv = 3 then 0 ≤ pEVv(ti) ≤ PEV_slow_max ∀ti ∈ [tarrv , tdepv ], (19)

pEVv(ti) = 0 ∀ti /∈ [tarrv , tdepv ], (20)

where v is the index of the EV, pEVv is the EV charging power of v vehicle, tarrv and
tdepv are the arrival and departure time of v vehicle, respectively, and Nv is the total
number of EVs.

(b) Total EV charging power:

pI IREVs D(ti) =
Nv

∑
v

pEVv(ti) ∀ti ∈ [tarrv , tdepv ].; (21)

(c) EV state of charge:

SOCEV_min ≤ socEVv(ti) ≤ SOCEV_max ∀ti ∈ [tarrv , tdepv ], (22)

socEVv(ti) = 0 ∀ti /∈ [tarrv , tdepv ], (23)

socEVv(ti) = SOCEV_arrv(ti) ∀ti = tarrv , (24)

SOCEV_arrv(ti) ≥ SOCEV_min ∀ti = tarrv , (25)

socEVv(ti) ≥ SOCEV_arrv(ti) ∀ti ∈ [tarrv , tdepv ], (26)

SOCEV_depv(ti) ≤ SOCEV_desv(ti) ∀ti = tdepv , (27)

socEVv(ti+1) = socEV_arrv(ti) +
pEVv(ti)·∆ti

E
∀ti ∈ [tarrv , tdepv ], (28)

SOCEV_depv(ti) = socEVv(ti) ∀ti = tdepv , (29)

where SOCEVv is the state of charge of v vehicle, SOCEV_min, SOCEV_max, and SOCEV_depv

are the minimum, maximum, and departure state of charge of v vehicle, respectively;
(d) Acceptance criteria:

The estimated charging time of the EV set by the user is tchv , given by (30).

tchv = tdepv − tarrv , (30)

(SOCEV_desv − SOCEV_arrv(ti) )·E
pEVv

≤ tchv ∀ti ∈ [tarrv , tdepv ]. (31)
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If the constraints defined by (30) and (31) are not qualified, then the EV user must
change their choices, e.g., estimated charging time and/or desired soc of EV at the departure
time and charging mode. It is worth mentioning that test_chv is the minimum charging time
imposed by the IIREVs, which is calculated based on the choices of the EV user. tchv is the
time of the EV spent at the IIREVs, which is set by its user. Therefore, tchv should be equal
to or greater than test_chv . The dynamic soc evolution of v vehicle, SOCEVv , is given by (28).

2.3.5. Power Balancing

All power signs are assigned positives, and the physical law of power balancing [45]
can be given by (30):

pPV(ti) + pS_D(ti) + pG_S(ti) = pI IREVs(ti) + pS_C(ti) + pG_I(ti). (32)

As previously noted, kD is the coefficient representing the sharing power between the
stationary storage and the grid, given by (33):

kD(ti) =
pS_C(ti) + pS_D(ti)

pS_C(ti) + pS_D(ti) + pG_I(ti) + pG_S(ti)
. (33)

2.3.6. Objective Function

The total energy cost, Ctotal , takes into account the cost of the supplied power from the
grid, the profit of injected power into the grid, the cost of the storage degradation when
operating, the penalty cost if the EV at departure has not reached its desired SOC, and
the cost of the PV shedding power, which represents the PV power that has not taken
advantage of it. Therefore, the objective function is to minimize Ctotal , given by Equations
(34)–(38):

Ctotal = CG + CS + CPVS + CEV_penalty, (34)

CG =
tF
∑

ti=t0

[cG(ti) · ∆t · (−pG_I(ti) + pG_S(ti))]

cG(ti) =

{
cG_NH f or t ∈ normal hours

cG_PH f or t ∈ peak hours
,

(35)

CS =
tF

∑
ti=t0

[cS(ti) · ∆t · (pS_C(ti) + pS_D(ti))], (36)

CPVS =
tF

∑
ti=t0

[cPVS(ti) · ∆t · pPVS(ti)], (37)

CEV_penalty =
Nv

∑
v
[cEV_p · (SOCEV_desv − SOCEV_depv) · E], (38)

where CG, CS, CPVS, and CEV_penalty are the grid, storage, PV shedding energy costs, and
EV penalty cost, respectively, and cG, cS, cPVS, and cEV_p are the grid, storage, PV shedding
energy tariffs, and EV penalty tariff, respectively. Lastly, the final optimization problem is
given by (39):
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min Ctotal = CG + CS + CPVS + CEV_penalty
with respect to :

pPV(ti) + pS_D(ti) + pG_S(ti) = pS_C(ti) + pG_I(ti) + pI IREVs(ti)
pS(ti) = pS_C(ti)− pS_D(ti)
pG(ti) = pG_I(ti)− pG_S(ti)
pPV(ti) = pPV_MPPT(ti)− pPV_S(ti)
pI IREVs(ti) = pI IREVs D(ti)− pI IREVs S(ti)

i f pPV_MPPT(ti) ≥ pI IREVs D(ti) then


pI IREVs S(ti) = 0
pG(ti) ≥ 0
pS(ti) ≥ 0

i f pPV_MPPT(ti) ≤ pI IREVs D(ti) then


pPV_S(ti) = 0
pG(ti) ≤ 0
pS(ti) ≤ 0

SOCS_min ≤ socS(ti) ≤ SOCS_max

socS(ti) = SOCS0 +
1

3600×EBat

t∫
t0

pS(ti)∆t

pPV(ti) ≥ 0
pI IREVs(ti) ≥ 0
0 ≤ pI IREVs S(ti) ≤ pI IREVs D(ti)
0 ≤ pPV_S(ti) ≤ pPV_MPPT(ti)
−PG_S_max ≤ pG(ti) ≤ PG_I_max
−PS_max ≤ pS(ti) ≤ PS_max
pPV_S(ti) = 0 ii SOCS(ti) ≤ SOCS_max
i f Mv = 1 then 0 ≤ pEVv(ti) ≤ PEV_ f ast_max ∀ti ∈ [tarrv , tdepv ]
i f Mv = 2 then 0 ≤ pEVv(ti) ≤ PEV_aver_max ∀ti ∈ [tarrv , tdepv ]
i f Mv = 3 then 0 ≤ pEVv(ti) ≤ PEV_slow_max ∀ti ∈ [tarrv , tdepv ]
pEVv(ti) = 0 ∀ti /∈ [tarrv , tdepv ]

pI IREVs D(ti) =
Nv
∑
v

pEVv(ti) ∀ti ∈ [tarrv , tdepv ]

SOCEV_min ≤ socEVv(ti) ≤ SOCEV_max ∀ti ∈ [tarrv , tdepv ]
socEVv(ti) = 0 ∀ti /∈ [tarrv , tdepv ]
socEVv(ti) = SOCEV_arrv(ti) ∀ti = tarrv

SOCEV_arrv(ti) ≥ SOCEV_min ∀ti = tarrv

socEVv(ti) ≥ SOCEV_arrv(ti) ∀ti ∈ [tarrv , tdepv ]
SOCEV_depv(ti) ≤ SOCEV_desv ∀ti = tdepv

socEVv(ti+1) = SOCEV_arrv(ti) +
pEVv

(ti)·∆t
E ∀ti ∈ [tarrv , tdepv ]

SOCEV_depv(ti) = socEVv(ti) ∀ti = tdepv

tchv = tdepv − tarrv
(SOCEV_desv−SOCEV_arrv (ti))·E

pEVv (ti)
≤ tchv ∀ti ∈ [tarrv , tdepv ]

ti = {t0, t0 + ∆t, t0 + 2∆t, . . . , tF}
v = {1, 2, . . . , Nv}

(39)

The decision variables in this optimization problem are pEVv , pI IREVs S, pG, pPV_S, pS,
socS, and socEVv , in which they are continuous variables.

2.4. Operation Layer

The energy optimization layer finds the optimal power flow of the sources and the
EVs based on pPV MPPT pred and pI IREVs D. The coefficient kD is calculated based on the
optimized power flow obtained by CPLEX [49]. This coefficient controls the operational
layer for the IIREVs in real-time operation. The advantage of kD is balancing the power
flows, coupling the energy management easily while respecting all constraints [45].
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The operational layer must consider optimized power flow in real operating conditions,
pPV MPPT and pI IREVs D. In addition, the operation management must ensure robustness
and withstand uncertainties in the forecast data. Then, this layer calculates the power
references and performs PV shedding or EV shedding when necessary. The actual operating
conditions lead to a reference power pre f to stabilize the DC bus voltage, defined by (40)
and (41):

pre f (ti) = pPV MPPT(ti)− pI IREVs D(ti)− CP(Vre f − vDC bus), (40)

pre f (ti) = pG_re f (ti) + pS_re f (ti), (41)

where CP, Vre f and vDC bus are the proportional controller gain, reference voltage, and the
actual voltage of the DC bus, respectively. The stationary storage power reference can be
calculated as in (42):

pS_re f (ti) = kD(ti) · pre f (ti), (42)

where kD is defined in the interval [0, 1].
The grid power reference pG_re f is calculated taking into account the stationary storage

physical limit, which means pS_re f = 0 if the storage reaches its maximum SOCS_max or
minimum SOCS_min limits or its maximum power PS_max, and the grid power reference
becomes pG_re f = pre f . Figure 4 shows the control algorithm of the power balancing
strategy for the IIREVs.
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To prove the feasibility of the optimization problem, it is compared with a storage
priority algorithm simulation without optimization “Sim w/o opt”, where kD is one in this
operation mode. Moreover, these operation modes are compared with an ideal case, “Opt
for real conditions”, which is based on real PV MPPT and IIREV powers.

3. Simulation Results and Analyses

A Simulink model is developed to simulate the IIREVs with a step time of 0.01 s,
which contains five chargers with three charging modes in real-time operation and balances
the power of DC bus. SOCEV_arrv , SOCEV_desv , tarrv , and Mv are randomly generated.
SOCEV_arrv and SOCEV_desv are generated in the interval (20%, 50%) and (70%, 100%),
respectively. Regarding the EV batteries, lithium-ion batteries were considered, and their
capacities are assumed to be capable of handling up to fast charge. Sunpower SPR X21-
345 with 21% efficiency under STC is considered as PV panels, and the system loss was
estimated at 14%.

Table 1 provides the parameters used for optimization and power balancing control,
and Table 2 provides the options assumed by the EV users, randomly generated in MATLAB,
where five EVs are expected to come for charging. The grid peak hours are arbitrarily
assumed to be 12:00–13:00 and 15:00–16:00. The energy tariffs are chosen arbitrarily in a
way to prioritize the sources used for the EV charging as given by (43).

cS ≤ cG ≤ cPVS ≤ cEV_penalty. (43)

Table 1. Optimization and simulation parameter values.

SOCS_min 20% PG_I_max 50 kW cS 0.01 €/kWh
SOCS_max 80% PG_S_max 50 kW cPVS 1.2 €/kWh

SOCEV_min 20% PS_max 34.5 kW Vre f 400 V
SOCEV_max 100% NPV 84 PV EBat 90 kWh

SOCS0 50% pPV MPPT 28.98 kWp E 50 kWh
PEV_ f ast_max 50 kW cG_NH 0.1 €/kWh
PEV_aver_max 22 kW cG_PH 0.7 €/kWh
PEV_slow_max 7 kW cEV_penalty 2.5 €/kWh

Table 2. Assumed options by the EV users.

EVs SOCEV_arr SOCEV_des tarr test_ch M

EV1 29% 74% 09:10 03:13 Slow
EV2 23% 78% 09:40 01:15 Average
EV3 22% 88% 12:20 04:43 Slow
EV4 32% 78% 14:20 03:18 Slow
EV5 29% 70% 14:30 00:25 Fast

At each event, like EV arrival, the optimization is executed. Then, the corresponding
kD is calculated as in (33) from the optimized power flow for the corresponding EV arrival
event. The obtained kD is then inserted into the Simulink model, which runs in real-
time conditions. At each EV arrival, the desired parameters, socS and socEVv currently in
charge, are actualized and inserted; then, the supervisory control of the IIREVs executes
the optimization, and the EV starts charging.

The following subsections present different case studies to prove the feasibility of the
optimization problem formulated as MILP under different meteorological conditions.

3.1. Case 1—High Irradiation Profile without Fluctuations

The case of 29 June 2019, in Compiegne, France, is considered. Figure 5 shows
pPV MPPT pred, pPV MPPT .
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In this case, the PV power production is considered significant since the weather
is sunny and clear, so the irradiation is high, and there are no fluctuations. The IIREVs
demand power is based on the data given in Table 2. Figure 6 shows the power flow and
storage state of charge for “Sim w/o opt” and simulation with optimization “Sim with opt”
for case 1, which is based on introducing the kD, which is calculated in the optimization
layer, into the real-time operation algorithm in Simulink.
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In Figure 6a, the storage has priority over the grid either to be discharged or to be
charged. However, when EV5 arrives, the IIREVs demand power greater than the PV and
storage powers that they can supply, where the black dotted lines represent the maximum
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storage power and the red dotted lines represent the maximum grid power that can be
reached. Therefore, the grid supplies power to charge the EVs. On the other hand, in
Figure 6b, the power flow of the storage and the grid is based on the coefficient kD. Since
between 12:00 and 13:00 is considered a peak period, by selling energy to the grid operator,
it is possible to make profits and, thus, reduce the total cost of energy. However, after 13:00,
the storage can be recharged to be able to charge the future EVs with sufficient storage
energy. Therefore, when EV5 arrives, the PV, storage and grid can together supply the EVs.

Figure 7 shows the EV energy distribution for “Sim w/o opt” and “Sim with opt”. The
calculation of EV energy distribution is detailed in [50].
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EV1, EV3, and EV4 depend mainly on PV energy since they charge in slow mode.
EV2 depends on PV and storage with a slightly equal percentage. EV5 depends on the PV,
storage and grid energy. The percentage of grid energy is significantly greater than the
other EVs, since it is charging in fast mode.

Figure 8a shows the energy system distribution for “Sim w/o opt”, “Sim with opt”
and “Opt for real conditions”. There is no grid injection in the “Sim w/o opt”, while for
the “Sim with opt” and “Opt for real conditions”, there is grid injection, which indicates
that selling energy to the grid and the charging energy of the storage was sufficient to get
the best energy distribution for the EVs.
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The percentage of accuracy is the ratio of the total cost over the total cost of the “Opt
for real conditions”. The closer the percentage to 100%, the more accurate it is. If the
percentage is greater than 100%, the total cost is greater than “Opt for real conditions”,
while if the percentage is below 0%, the total cost is the opposite case of “Opt for real
conditions”. Figure 8b shows the energy system cost, where the energy costs in “Sim with
opt” are closer to the ideal case “Opt for real conditions”, resulting in profits with 99.95%
accuracy. Conversely, it is the opposite situation in “Sim w/o opt” with −11.96% accuracy.
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Thus, this proves the superiority of the optimization algorithm over the storage priority
algorithm. The negative sign implies that the IIREV operators make a profit in particular
by selling energy to the grid.

3.2. Case 2—Low Irradiation Profile without Fluctuations

The case of 5 October 2018, in Compiegne, France, is considered. Figure 9 shows
pPV MPPT pred, pPV MPPT .
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In this case, the weather is clear, so there are no fluctuations; however, the PV power
production is not very high. The IIREV demand power is based on the data in Table 2.
Figure 10 shows the power flow and storage state of charge for “Sim w/o opt” and
simulation with optimization “Sim with opt” for case 2.
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Figure 10. Power flow and storage state of charge in (a) “Sim w/o opt” and (b) “Sim with opt”—
case 2.

In Figure 10a, the storage always has priority over the grid. However, when EV5
arrives, the grid supplies power with the PV and the storage to charge the EVs, where the
black dotted lines represent the maximum storage power and the red dotted lines represent
the maximum grid power that can be reached. On the other hand, in Figure 10b, the power
flow of the storage and the grid is based on the coefficient kD. Since the PV production is
not high, the storage reached its lower limit at the departure of EV2. Therefore, the storage
is required to be recharged to be able to charge the future EVs with sufficient storage
energy. Therefore, when EV5 arrives, the PV, storage and grid can together supply the EVs.
However, between 12:00 and 13:00 is considered a peak period, so by selling a little energy
to the grid operator, it is possible to make small profits. Additionally, between 15:00 and
16:00 is a peak period, so in “Sim with opt”, the power flow is better distributed since the
storage is kept to supply power instead of grid power, while in “Sim w/o opt”, the storage
reached its lower limit before 16:00, and the grid continued to supply power to the EVs.

Figure 11 shows the EV energy distribution for “Sim w/o opt” and “Sim with opt”.
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EV1, EV3, and EV4 depend mainly on PV energy since they charge in slow mode. EV2
depends on PV and storage. Figure 11 shows that EV5, which is in fast mode, is charged
from the grid with a high percentage. This will increase the charging price for the EV user.
In Figure 11b, EV5 is charged from the grid with a higher percentage than in “Sim w/o
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opt”, while EV3 and EV4 have been charged from the storage with a higher percentage
than in “Sim w/o opt”, based on kD giving a better energy cost as shown.

Figure 12a shows the energy system distribution for “Sim w/o opt” and “Sim with
opt”. There is no grid injection in the “Sim w/o opt”, while for the “Sim with opt”,
there is a little bit of grid injection, which refers to selling energy to the grid and having
approximately the same storage charging energy. Figure 12b shows the energy system
cost, where the energy costs in “Sim with opt” are closer to the ideal case “Opt for real
conditions” with 99.37% accuracy and lower cost than in “Sim w/o opt” with 164.04%
accuracy (overpriced). In this case, the PV production is not high; however, selling a little
bit of energy to the grid during the peak time could reduce the total cost of the system. Thus,
it proves the superiority of the optimization algorithm over the storage priority algorithm.
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3.3. Case 3—High Irradiation Profile with High Fluctuations

The case of 12 May 2019, in Compiegne, France, is considered. Figure 13 shows
pPV MPPT pred, pPV MPPT .
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In this case, the irradiations are high, and the weather is cloudy, so there are high
fluctuations. The IIREVs demand power is based on the data in Table 2. Figure 14 shows the
power flow and storage state of charge for “Sim w/o opt” and simulation with optimization
“Sim with opt” for case 3.
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In Figure 14a, the storage always has priority over the grid, either to be discharged
or to be charged. However, when EV5 arrives, the IIREV demand power is greater than
the PV and storage power that can be supplied, where the black dotted lines represent the
maximum storage power and the red dotted lines represent the maximum grid power that
can be reached. Therefore, the grid supplies power to charge the EVs. On the other hand, in
Figure 14b, the power flow of the storage and the grid is based on the coefficient kD. Since
between 12:00 and 13:00 is considered a peak period, by selling energy to the grid operator,
it is possible to make profits. However, after 13:00, the storage can be recharged to be able
to charge the future EVs with sufficient storage energy. Therefore, when EV5 arrives, the
PV, storage and grid can together supply the EVs.

Figure 15 shows the EV energy distribution for “Sim w/o opt” and “Sim with opt”.
EV1, EV3, and EV4 depend mainly on PV energy since they charge in slow mode. EV2

depends on PV and storage with a slightly equal percentage. Figure 15 shows that EV5,
which is in fast mode, is charged from the grid with a high percentage. This will increase the
charging price for the EV user. In Figure 15b, EV3, EV4, andEV5 are charged from the grid
with a higher percentage than in “Sim w/o opt”; due to the high fluctuations, the power
distribution was not as suitable. However, the energy cost obtained from optimization
stays better than in “Sim w/o opt” and returns profits due to selling energy to the grid.

Figure 16a shows the energy system distribution for “Sim w/o opt” and “Sim with
opt”. There is no grid injection in the “Sim w/o opt”, while for the “Sim with opt”,
there is grid injection, which is referred to selling energy to the grid and maintaining a
little storage charging energy. Figure 16b shows the energy system cost; due to the high
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fluctuations in the real PV profile, the prediction profile was not so accurate. However, the
energy costs in “Sim with opt” are closer to the ideal case “Opt for real conditions” with
75.45% accuracy and return profits, while it is the opposite situation in “Sim w/o opt” with
−26.46% accuracy. Thus, it proves the superiority of the optimization algorithm over the
storage priority algorithm.
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3.4. Discussion

In case 1, the PV production is high without fluctuations. In “Sim with opt”, selling
energy to the grid is preferred to make profits. Moreover, charging the storage a little bit
could be interesting to get the same EVs energy distribution in “Sim with opt” as in “Sim
w/o opt”.

In case 2, the PV production is low without fluctuations. The energy distribution
especially for EV5 is better in “Sim w/o opt” since it is charged with a lower percentage
of grid energy than in “Sim with opt”. This could be explained by the fact that in “Sim
w/o opt”, the storage is always used until it reaches its limits, while in “Sim with opt”, the
power flow is based on the coefficient kD to minimize the total cost. Therefore, the total
cost in “Sim with opt” is lower than “Sim w/o opt”. Moreover, charging the storage is
necessary after the departure of EV2, since the storage has reached its limit.

In case 3, the PV production is high with high fluctuations. In “Sim with opt”, selling
energy to the grid is preferred to make profits. Moreover, charging the storage a little bit
could be interesting to get a closer EV energy distribution in “Sim with opt” as in “Sim
w/o opt”. Since there are high fluctuations, the power distribution is not that accurate;
however, the total cost for “Sim w/o opt” brings profits to the IIREVs operator, and it is
better than “Sim w/o opt”.

To summarize the three cases studied, “Sim with opt” performs better than “Sim w/o
opt” in minimizing the total cost of the IIREVs with high accuracy in case 1 and case 2,
where they are without fluctuations. For the EV energy distribution, in “Sim with opt”,
the results are satisfying in case 1 as they are approximately identical, while in case 2, the
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coefficient kD gives better energy distribution for the system to have a lower cost than
“Sim w/o opt” instead of giving a better energy distribution for EVs. Therefore, the EV
user charging in fast mode should be willing to pay a high price. In case 3, due to high
fluctuations, the optimization is not very accurate, as the PV prediction is hourly coming
from Météo France. However, the total cost in “Sim with opt” is still better than “Sim with
opt” due to selling energy to the grid and making profits, yet the EV energy distribution is
not as well distributed in “Sim with opt” as in “Sim with opt”.

In optimization, it is always preferred to sell energy to the grid to make profits.
However, the goal, besides minimizing the total cost, is to have better EV energy distribution
by reducing the grid energy consumed by the EVs. Therefore, it is important to recharge the
storage. For the three cases taken in this study, after the departure of EV2, SOCS decreases,
and in case 2, it has reached the lower limit. It is expected for three more EVs to come for
recharging at the IIREVs, and it is supposed that at least one EV could charge in fast mode.
The average energy demand for each EV is 25 kWh, and so it is 75 kWh for the three EVs
to come. Based on the data from Table 2, the capacity of the storage that can be used is
27 kWh (30% of 90 kWh). After the departure of EV2, if SOCS is 20%, then it is empty, and
if it is 30%, then only 9 kWh with PV and grid energy could be used to charge 75 kWh.
This will result in increasing the energy supplied by the grid to charge the coming EVs.
Thus, after the departure of EV2, if PV power is higher than the IIREV demand power, the
storage should be recharged. Hence, the interest is to minimize the total cost of the IIREVs
and to have the best EV energy distribution.

4. Real-Time Experimental Tests

The real-time experimental tests were done in the testbed presented in Figure 17a that
emulates the IIREVs, having a step time of 1/14 kHz. The chargers are emulated with
two DC emulators having each 6 kW, designated by charging terminals equipped with
multi-electrical outlets as shown in Figure 17b. It is considered that the DC emulator 1
is a charging terminal with two electrical outlets to emulate EV1 and EV2 and the DC
emulator 2 is a charging terminal with three electrical outlets to emulate EV3, EV4, and
EV5. The existing testbed allows the PV power profile to be emulated, which permits
it to repeat the experimental test and compare it in two scenarios, with and without
optimization. SOCEV_arrv , SOCEV_desv , tarrv , and Mv are randomly generated. Table 3
provides the parameters used for “real-time exp” and power balancing control.
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Table 3. Real-time experiment parameter values.

SOCS_min 35% PG_I_max 5 kW cS 0.01 €/kWh
SOCS_max 60% PG_S_max 5 kW cPVS 1.2 €/kWh

SOCEV_min 20% PS_max 3.45 kW Vre f 400 V
SOCEV_max 100% NPV 12 PV EBat 37.44 kWh

SOCS0 50% pPV MPPT 4.14 kWp E 5 kWh
PEV_ f ast_max 5 kW cG_NH 0.1 €/kWh
PEV_aver_max 2.2 kW cG_PH 0.7 €/kWh
PEV_slow_max 0.7 kW cEV_penalty 2.5 €/kWh

The parameter values used in Table 3 were chosen with a scale divided by ten, com-
pared to the simulation, due to the physical limitations of the available sources and equip-
ment. The existing stationary storage had an energy capacity of 37.44 kWh, which is
considered high; therefore, the SOC limits were chosen to be between 60% and 35% instead
of 80% and 20%.

In the real-time experiment, at each EV arrival, the optimization was executed when
the EV user came to the charging station and input their preferences, which were commu-
nicated with the dSPACE. Then, Python read the data from dSPACE and created the files
required to run the optimization in C++, solved by CPLEX. Then, Python calculated kD
and sent it in dSPACE to be read in a real-time experimental model. Figure 18 shows the
flowchart of the optimization solving for the “real-time exp”. The corresponding kD was
calculated as in (33) from the optimized power flow for the corresponding EV arrival event.
The obtained kD was then updated into the Simulink model.
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To be specific, at the start of the real-time experimental test, when there were no EVs,
the optimization algorithm was executed for the first time, using only the prediction of PV
power. Then, when the first EV arrived at the station, the EV data were acknowledged, and
the EV user chose his desired SOC and charging mode. These data were communicated
instantly by the real-time experimental model and were sent through a real-time target
via a fiber optic cable that ensured communication with analog input/output ports. After
that, dSPACE received the EV data as an analog input; next, Python read these data and
created the files required, including the parameters and the profiles of PV predicted power
and EV power profiles acquired from the HMI. Later on, Python called C++ to resolve the
optimization problem using the CPLEX solver. Once the problem was resolved, Python
calculated kD and sent it as analog output to the dSPACE; in turn, it sent it to the real-
time experimental model. When another EV came to the station, the same procedure was
performed with the actualized data of the DC microgrid (thus, the SOC of the stationary
storage and SOC of the current EVs charging were actualized).

The following subsections present two case studies to prove the feasibility of the
optimization problem in real-time experimental tests formulated as MILP under different
meteorological conditions.
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4.1. Experiemntal Test 1

The case of 14 October 2021, in Compiegne, France, is considered. Figure 19 shows
pPV MPPT pred, pPV MPPT , where the irradiations are intermediate with low fluctuations.
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In Figure 20a, the power flow of the storage and the grid is based on the coefficient kD.
From 09:00 until 09:10 and 15:00 until 16:00, the grid is used, but this is not accurate since,
in prediction, PV power is higher than the real PV power, and it is also higher than the
IIREV demand power. However, when EV5 arrives, the IIREV demand power is greater
than the PV and storage power that they can supply. Therefore, the grid supplies power
to charge the EVs. Between 11:00 and 14:20, by selling energy to the grid operator, it is
possible to make profits, especially from 12:00 and 13:00, as it is considered a peak period.
Around 17:00, when there is no PV power and the storage is empty, the grid supplies power,
regardless of the kD value. Figure 20b shows the evolution of the storage SOC, where
the storage discharge energy from 09:10 to 10:50, 14:25 to 14:50 and around 16:20 to 16:50.
Figure 20b also shows the stability of the DC bus voltage even with small fluctuations,
which are due to the switching of DC converters, and spikes of a few voltages happen
when each EV starts charging and when it finishes charging.

Figure 21 shows the power flow and storage state of charge for “real-time exp” without
optimization and the DC bus voltage—experimental test 1b.
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In Figure 21a, the storage is always prioritized to be either charged or discharged.
However, when EV5 arrives, the IIREV demand power is greater than the PV and storage
power that they can supply. Therefore, the grid supplies power to charge the EVs. The grid
continues supplying power to the IIREVs as the storage is empty around 17:10. Figure 21b
shows the evolution of the storage SOC, where the storage is recharged from 10:50:10 to
14:25 after being discharged and then again discharges energy when EV5 arrives until
it is empty. Figure 21b also shows the stability of the DC bus voltage even with small
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fluctuations, which are due to the switching of DC converters, and the spikes of a few
voltages happen when each EV starts charging and when it finishes charging.

Table 4 shows the energy system cost for “real-time exp” with opt, where the energy
costs are low due to selling energy to the grid and are far from the optimal energy cost for
real conditions, which is 11.12 c€. For “real-time exp” without optimization, the energy
cost is lower than in optimization due to the storage discharging energy in the peak hour
from 15:00 to 16:00. As shown in Figure 19, the PV power prediction is overestimated and
much higher than the real PV power. Therefore, in “Opt for real conditions”, where the
optimization is performed without uncertainties, it gives the optimal energy cost without
error. It avoids grid supply energy, whereas in “real-time exp” with opt, it predicted falsely
to inject around 12:30 and 15:00 to 16:00, as shown in Figure 20a. Moreover, when EV5
arrives, the storage is discharged to the maximum power and then becomes empty around
17:00. However, in “Opt for real conditions”, the grid supplies its maximum power when
EV5 arrives, and the storage is preserved to discharge at peak hours from 15:00 to 16:00.
This explains the difference in the grid cost and the total cost for both cases.

Table 4. Energy system cost—experimental test 1.

Case Operation Grid Cost (c€) Storage Cost (c€) Total Cost (c€)

Real-time exp w/o opt 13.90 8.52 22.73
Real-time exp with opt 59.18 5.68 64.86
Opt for real conditions 5.51 5.61 11.12

Figure 22 shows the EV energy distribution for “real-time exp” with and without opt.
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In Figure 22, EV1 and EV3 depend mainly on PV energy since they charge in slow
mode. EV2 depends on storage more than PV. EV5 depends on PV, storage and grid energy.
The percentage of grid energy is significantly greater than the other EVs since it is charging
in fast mode. Figure 21a shows a better EV energy distribution than in Figure 21b, especially
for EV4, where it was charged by the storage in the peak period from 15:00 to 16:00 and the
grid is less used for all EVs.

4.2. Experimental Test 2

The case of 27 October 2021, in Compiegne, France, is considered. Figure 23 shows
pPV MPPT pred, pPV MPPT , where the irradiations are intermediate and the weather is a bit
cloudy, so there are low fluctuations. The IIREV demand power is based on the data in
Table 2.
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Figure 24 shows the power flow and storage state of charge for “real-time exp” without
optimization and the DC bus voltage—experimental test 2.
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In Figure 24a, the storage is always prioritized to be either charged or discharged.
However, after EV5 arrives and around 14:45, the storage is empty. The grid supplies
power, but it is insufficient to fully charge the EVs, and therefore, EV shedding is applied
from 14:45 until the departure of EV5 from the IIREVs at 14:55. After EV5′s departure, the
grid continues supplying power to the IIREVs as the storage is empty. Figure 24b shows
the evolution of the storage SOC, where it is always discharging almost all the time until it
is empty around 14:45, and the stability of the DC bus voltage is present even with small
fluctuations. Spikes of a few voltages happen when each EV starts charging and when it
finishes charging.

Figure 25 shows the power flow and storage state of charge for “real-time exp” with
optimization and the DC bus voltage—experimental test 2b.
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storage state of charge and DC bus voltage—experimental test 2b.

In Figure 25a, the power flow of the storage and the grid is based on the coefficient
kD. From 12:00 until 14:20, the PV injects little energy to the grid during the peak hour,
yet some fluctuations still happen where the grid supplies power. However, when EV5
arrives, the IIREV demand power is greater than the PV and storage power that they can
supply. Therefore, the grid supplies power to charge the EVs with maximum power, and
the storage is preserved. From 15:15 to 16:15, the storage discharges energy until it is empty
to avoid the high cost of grid supply power, as it is considered a peak period. After 16:15,
the grid supplies power, regardless of the kD value. Figure 25b shows the evolution of the
storage SOC, where the storage discharges energy from 09:10 to 10:50, 14:25 to 14:50 and
around 15:15 to 16:15. Figure 25b also shows the stability of the DC bus voltage even with
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small fluctuations, which are due to the switching of DC converters, and the spikes of a
few voltages happen when each EV starts charging and when it finishes charging.

Table 5 shows the energy system cost for “real-time exp” without optimization, where
the energy costs are higher than in optimization due to the cost of EV shedding. The
real-time experiment with optimization is closer to the optimization for real conditions, as
it avoids EV shedding and gives better energy costs of 60.91 c€. In “Opt for real conditions”,
where the optimization is performed without uncertainties, it gives the optimal energy cost
without error, which is 53.37 c€. It avoids EV shedding and grid supply energy, and when
EV5 arrives, the storage is discharged to the maximum power, then becomes empty around
14:45, provoking EV shedding. However, in “Opt for real conditions”, the grid supplies
its maximum power when EV5 arrives, and the storage is preserved to discharge at peak
hours from 15:00 to 16:00. This explains the difference in the grid cost and the total cost for
both cases.

Table 5. Energy system cost—experimental test 2.

Case Operation Grid Cost (c€) Storage Cost (c€) EV Shedding Cost (c€) Total Cost (c€)

Real-time exp w/o opt 109.83 6.17 40.72 156.73
Real-time exp with opt 54.88 5.73 0 60.91
Opt for real conditions 47.75 5.61 0 53.37

Figure 26 shows the EV energy distribution for “real-time exp” with and without opti-
mization.
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In Figure 26, the share of PV energy is not significant even for EVs charging in slow
mode. Thus, the share of storage energy is high for EV1 and EV2, while the share of grid
energy is high for EV3, EV4, and EV5 as the storage is empty early, around 14:45. Figure 26b
shows a better EV energy distribution than in Figure 26a, where EV3 and EV4 were charged
by the storage instead of the grid, whereas for EV5, the storage was preserved to discharge
at the peak hour from 15:00 to 16:00, and therefore EV5, charging in fast mode, was charged
mainly by the grid.

4.3. Discussion

For “real-time exp” with optimization, selling energy to the grid is preferred to make
profits based on the coefficient kD to minimize the total cost. Thus, with optimization gives
better energy cost than without optimization. Furthermore, the EV energy distribution can
be considered for “real-time exp” with optimization to be better than without optimization.

To sum up, “with opt” performs better than “w/o opt” in minimizing the total cost of
the IIREVs, and for the EV energy distribution, the results are satisfying with optimization,
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which is not the case without optimization, as the share of storage and grid energies are
higher than the share of PV energy.

5. Conclusions

The simulation and real-time experimental results prove the superiority of the op-
timization problem formulated as MILP and solved by CPLEX over the storage priority
algorithm. The results also show the feasibility of the proposed supervisory control of
the IIREVs, which contains the HMI and the energy management with power balancing
and interacts with the smart grid. The proposed supervisory control executes efficiently
with respect to the constraints and fulfilling the EV user demands. Furthermore, the EVs
that charge in slow mode depend mainly on PV energy, while for average or fast charging,
they depend on the PV, storage and grid power sources. The EV energy distribution is
considered good compared to the storage priority; only in the case with high fluctuations
was the EV energy distribution better in storage priority. In addition, selling energy to the
grid returns profits to the IIREV operator and makes optimization better than the storage
priority algorithm.

The optimization takes into consideration the intermittent arrival and departure of
EVs. Further works will concentrate on realizing optimization taking into consideration
the intermittent arrival and departure of EVs with services such as vehicle-to-grid, vehicle-
to-home, and infrastructure-to-home.
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Abbreviations

AC Alternative current
CO2 Carbon dioxide
DC Direct current
EV Electric vehicle
HMI Human-machine interface
IIREVs Intelligent infrastructure for recharging electric vehicles
MPPT Maximum power point tracking
MILP Mixed-integer linear programming
PV Photovoltaic
SOC State of charge
STC Standard test conditions
Constraints
PEV_maxv Maximum charging power of v vehicle
PEV_aver_max Maximum average charging power
PEV_ f ast_max Maximum fast charging power
PEV_slow_max Maximum slow charging power
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PS_max Stationary storage power limit
PG_I_max Maximum grid injection limit
PG_S_max Maximum grid supply limit
SOCEV_max Maximum state of charge of electric vehicle
SOCEV_min Minimum state of charge of electric vehicle
SOCS_max Maximum state of charge of stationary storage
SOCS_min Minimum state of charge of stationary storage
Parameters
∆t Time interval between two samples
γ Power temperature coefficient
cEV_p EV penalty tariff
cG Grid energy tariff
cG_NH Grid energy tariff in normal hours
cG_PH Grid energy tariff in peak hours
cS Storage energy tariff
cPVS PV shedding energy tariff
CP Controller proportional gain
EBat Energy capacity of the stationary storage (kWh)
Ev Energy capacity of the v vehicle (kWh)
Gtest Fixed solar irradiation for testing
Mv Charging mode of vehicle v
NPV Number of PV panels
Nv EVs total number
NOCT Nominal Operating Cell Temperature
PPV_STC PV power under STC
SOCEV_arrv SOC of vehicle v at arrival
SOCEV_depv State of charge of electric vehicle v at departure
SOCEV_desv SOC of vehicle v at departure
SOCS0 Initial SOC of stationary storage
t0 Initial time instant
Tair−test Fixed air temperature
tarrv Arrival time of v vehicle
tchv Estimated charging time of v vehicle set by the user
tdepv Departure time of v vehicle
test_chv Estimated charging time of vehicle v
tF Time instant at the end of time operation
Vre f Reference voltage of the DC bus
Indices
i Index of time
v Index of EV number
Variables
CEV_penalty EV penalty energy cost
CG Grid energy cost
CS Storage energy cost
CPVS PV shedding energy cost
g Solar irradiation
kD Power distribution coefficient
pEVv EV charging power of v vehicle
pG Grid power
pG_I Grid injection power
pG_S Grid supply power
pG_re f Grid power reference
pI IREVs D IIREVs total demand power
pI IREVs IIREVs total power
pI IREVs S IIREVs shed power
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pPV MPPT PV MPPT power
pPV MPPT pred PV power prediction in MPPT mode
pPV PV power
pPV_S PV shed power
pS Stationary storage power
pS_C Stationary storage charging power
pS_D Stationary storage discharging power
pS_re f Stationary storage power reference
pre f Reference power
socEVv State of charge of electric vehicle v
socS State of charge of stationary storage
Tamb Ambient temperature
ti Continuous time
TPV PV cell temperature
vDC bus Voltage of the DC bus
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