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Projection based approximations of Integral Equation of the first kind

We are concerned with the problem of solving the integral equation of the first kind 𝑇𝑥 = 𝑦, where 𝑇 is an integral operator, a prototype of an ill-posed problem. Discretization and regularization are needed to derive a stable approximation of the solution. The operator 𝑇 may be approximated by a sequence of finite rank operators 𝑇 𝑛 and then the regularization procedure is applied. The discretization procedure may be applied after the regularization procedure. In this paper, we compare both approaches, theoretically and numerically.

Introduction

Let 𝑋 and 𝑌 be Hilbert spaces and 𝑇 : 𝑋 → 𝑌 be a bounded linear operator with its range 𝑅(𝑇) not closed in 𝑌 . We would like to obtain stable approximate solutions for the ill-posed operator equation

𝑇𝑥 = 𝑦, (1.1) 
where 𝑦 ∈ 𝑌 . Several difficulties can appear:

(i) Equation (1.1) may not have any solution.

(ii) Equation (1.1) may have many solutions.

(iii) The right hand side 𝑦 may be noisy and the error on the solution due to noisy data can be amplified.

We can overcome the difficulty (i) partially with the notion of least residual norm solution. This is done by considering the normal equation

𝑇 * 𝑇𝑥 = 𝑇 * 𝑦. (1.2) 
There exists at least a solution for the above equation iff 𝑦 ∈ 𝐷 (𝑇 † ) := 𝑅(𝑇) + 𝑅(𝑇) ⊥ , where 𝑇 † : 𝐷 (𝑇 † ) → 𝑋 denotes the Moore-Penrose inverse of 𝑇 (see [START_REF] Nair | Linear Operator Equations: Approximation and Regularization[END_REF]). To overcome the difficulty (ii), for 𝑦 ∈ 𝐷 (𝑇 † ), one considers 𝑥 † := 𝑇 † 𝑦 the unique element in 𝑋 such that

∥𝑥 † ∥ = inf{∥𝑥∥ : 𝑇 * 𝑇𝑥 = 𝑇 * 𝑦} = inf{∥𝑥∥ : ∥𝑇𝑥 -𝑦∥ = inf 𝑢∈𝑋 ∥𝑇𝑢 -𝑦∥}
Such a 𝑥 † exists, and it is in the orthogonal complement of the kernel of 𝑇 which is equal to the closure of 𝑅(𝑇 * ). It is known as the generalized solution of (1.1).

Since 𝑅(𝑇) is not closed, 𝑇 † is not continuous, and hence, for some 𝑣 ∈ 𝑌 such that 𝑦 + 𝑣 ∈ 𝐷 (𝑇 † ), ∥𝑣∥ small does not imply that 𝑇 † (𝑦 + 𝑣) is close to 𝑇 † 𝑦. Thus, to face the difficulty (iii), some regularization method has to be applied. For example, in Tikhonov regularization of (1.1), one considers the equation

(𝑇 * 𝑇 + 𝛼𝐼)𝑥 𝛼 = 𝑇 * 𝑦 (1.3) 
where 𝛼 > 0. Clearly, since 𝑇 * 𝑇 is a positive self-adjoint operator, (1.3) is uniquely solvable for every 𝑦 ∈ 𝑌 and 𝑦 ↦ → 𝑥 𝛼 := (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑇 * 𝑦 is a continuous linear operator. If 𝑦 ∈ 𝐷 (𝑇 † ), one can prove that ∥𝑥 † -𝑥 𝛼 ∥ = 𝛼∥ (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑥 † ∥ → 0 as 𝛼 → 0.

(1.4)

Under certain assumptions on 𝑥 † , (called source conditions), one can obtain estimates for the error ∥𝑥 † -𝑥 𝛼 ∥. The analogue of (1.3) with a noisy data 𝑦 𝛿 in place of 𝑦 is

(𝑇 * 𝑇 + 𝛼𝐼)𝑥 𝛿 𝛼 = 𝑇 * 𝑦 𝛿 , (1.5) 
where 𝛿 denotes the noise level :

∥𝑦 𝛿 -𝑦∥ ≤ 𝛿. (1.6) 
In this paper, we are concerned with a prototype of the ill-posed equation (1.1), namely, the Fredholm integral equation of the first kind, ). We observe that the adjoint 𝑇 * of 𝑇 is given by

(𝑇 * 𝑥) (𝑠) := ∫ 1 0 𝑘 (𝑡, 𝑠)𝑥(𝑡)𝑑𝑡, 𝑠 ∈ [0, 1],
where 𝑘 (𝑡, 𝑠) is the complex conjugate of 𝑘 (𝑡, 𝑠) so that

(𝑇 * 𝑇𝑥) (𝑠) := ∫ 1 0 k (𝑠, 𝑡)𝑥(𝑡)𝑑𝑡, 𝑠 ∈ [0, 1],
where

k (𝑠, 𝑡) = ∫ 1 0 𝑘 (𝜏, 𝑠)𝑘 (𝜏, 𝑡)𝑑𝜏
Concerning the stable approximation of the exact solution of equation (1.5), many authors began to approach the operator 𝑇 * 𝑇 by a sequence of finite rank operators 𝐻 𝑛 , involving a convergent quadrature rule: in [START_REF] Groetsch | Convergence of a regularized degenerate kernel method for Fredholm integral equations of the first kind[END_REF], Groetsch chose 𝐻 𝑛 to be the degenerate kernel approximation of 𝑇 * 𝑇 and Nair, in [START_REF] Nair | Linear Operator Equations: Approximation and Regularization[END_REF]Chapter 5], analysed the error derived from the Nystöm approximation H𝑛 of 𝑇 * 𝑇. For Groetsch approximation, the approximation 𝑥 𝛿 𝛼,𝑛 solves

(𝐻 𝑛 + 𝛼𝐼)𝑥 𝛿 𝛼,𝑛 = 𝑇 * 𝑦 𝛿 ,
where 𝐻 𝑛 = 𝐹 𝑛 𝑇, 𝐹 𝑛 being the Nyström approximation of 𝑇 * and the error estimate is

∥𝑥 † -𝑥 𝛿 𝛼,𝑛 ∥ ≤ 1 + 1 𝛼 ∥𝑇 * 𝑇 -𝐻 𝑛 ∥ ∥𝑥 † -𝑥 𝛼 ∥ + 𝛿 2 √ 𝛼 + 1 𝛼 ∥ (𝑇 * 𝑇 -𝐻 𝑛 )𝑥 † ∥ (1.9)
For Nair approximation, the approximation 𝑥 𝛿 𝛼,𝑛 solves

( H𝑛 + 𝛼𝐼)𝑥 𝛿 𝛼,𝑛 = 𝑇 * 𝑦 𝛿 ,
where H𝑛 = 𝑇 * F𝑛 , F𝑛 being the Nyström approximation of 𝑇 and the error estimate is

∥𝑥 † -𝑥 𝛿 𝛼,𝑛 ∥ ≤ 1 + ∥𝑇 * ∥ ∥ (𝑇 -F𝑛 )𝑇 * 𝑇 ∥ 𝛼 2 ∥𝑥 † -𝑥 𝛼 ∥ + 𝛿 √ 𝛼 1 + ∥𝑇 * ∥ ∥ (𝑇 -F𝑛 )𝑇 * ∥ 𝛼 3/2
, (1.10) where ∥.∥ denotes the 𝐿 2 norm.

Many discrete regularization methods also concerned with approximating the operator 𝑇 by a sequence (𝑇 𝑛 ) of finite rank operators (see [START_REF] Nair | Regularized collocation method for integral equations of the first kind[END_REF][START_REF] Nair | Quadrature based collocation methods for integral equations of the first kind[END_REF][START_REF] Nair | A discrete regularization method for ill-posed operator equations[END_REF]) , considering the approximate normal equation

𝑇 * 𝑛 𝑇 𝑛 𝑥 = 𝑇 * 𝑛 𝑦 (1.11)
and obtaining approximate regularized solution by solving the so-called discrete Tikhonov regularization (𝑇 * 𝑛 𝑇 𝑛 + 𝛼𝐼)𝑥 = 𝑇 * 𝑛 𝑦.

(1.12)

In [START_REF] Nair | Quadrature based collocation methods for integral equations of the first kind[END_REF], the author considers the approximate operator 𝑇 𝑛 from 𝐿 2 [0, 1] to R 𝑛 with an appropriate inner product, by defining

𝑇 𝑛 𝑥 = (𝑇 (𝑥) (𝑡 1 ), 𝑇 (𝑥) (𝑡 2 ), . . . , 𝑇 (𝑥) (𝑡 𝑛 )), 𝑥 ∈ 𝐿 2 [0, 1],
where 𝑡 1 , . . . , 𝑡 𝑛 are points from [0, 1]. The interesting result proved in [START_REF] Nair | Quadrature based collocation methods for integral equations of the first kind[END_REF] is that

𝑇 * 𝑛 𝑇 𝑛 = 𝐹 𝑛 𝑇,
where 𝐹 𝑛 is the Nyström approximation of 𝑇 * associated to a convergent quadrature rule.

In [START_REF] Nair | A discrete regularization method for ill-posed operator equations[END_REF], the author considers projection based discrete regularization methods which include 𝑇 𝑛 = 𝜋 𝑛 𝑇, where (𝜋 𝑛 ) 𝑛∈N is a sequence of finite rank operators which converges to the identity operator pointwise. For both cases, if 𝑥 𝛿 𝛼,𝑛 is the discrete regularized approximation of 𝑥 † with noisy data, then for 𝑦 ∈ 𝑅(𝑇), the range of 𝑇,

∥𝑥 † -𝑥 𝛿 𝛼,𝑛 ∥ ≤ 1 + ∥𝑇 * 𝑛 𝑇 𝑛 -𝑇 * 𝑇 ∥ 𝛼 ∥𝑥 † -𝑥 𝛼 ∥ + 𝑐 𝛿 √ 𝛼 (1.13)
The philosophy of the previous methods is to discretize the equation 𝑇𝑥 = 𝑦 by 𝑇 𝑛 𝑥 = 𝑦 𝑛 , then the normal equation 𝑇 * 𝑛 𝑇 𝑛 𝑥 = 𝑇 * 𝑛 𝑦 𝑛 is considered and finally this equation is solved with a regularization. In these papers, it was assumed that the right hand side 𝑦 belongs to 𝑅(𝑇), the range of 𝑇.

In this paper, one of our secondary purpose is to propose a method valid for any 𝑦 in the domain of 𝑇 † , so that we can take care of the problem (i) partially. For that reason, it is natural to consider directly the normal equation 𝑇 * 𝑇𝑥 = 𝑇 * 𝑦 and to try to approximate 𝑥 † , the solution with the minimal norm. We know that 𝑥 † is the unique element in 𝑁 (𝑇) ⊥ , the orthogonal complement of the kernel of 𝑇, which satisfies the normal equation. Recall also that the Tikhonov regularized solution 𝑥 𝛼 belongs to 𝑅(𝑇 * ). In fact,

𝑥 𝛼 = (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑇 * 𝑦 = 𝑇 * (𝑇𝑇 * + 𝛼𝐼) -1 𝑦 = 𝑇 * 𝑣 𝛼 ,
where 𝑣 𝛼 satisfies the equation

(𝑇𝑇 * + 𝛼𝐼)𝑣 𝛼 = 𝑦.
(1.14)

Thus, the idea is to approximate 𝑣 𝛼 by 𝑣 𝛼,𝑛 by a discretization method, and take 𝑥 𝛼,𝑛 := 𝑇 * 𝑣 𝛼,𝑛 as the approximatiion of 𝑥 𝛼 . To do it, we consider projection based methods involving continuous linear projection operators 𝜋 𝑛 : 𝐶 [0, 1] → 𝐶 [0, 1] satisfying as usual

𝜋 𝑛 → 𝐼 as 𝑛 → ∞ pointwise on 𝑌 , (𝐻1) 
∃ 𝑝 > 0 such that ∥𝜋 𝑛 ∥ ≤ 𝑝 ∀ 𝑛 ∈ N. (𝐻2)
In practice each 𝜋 𝑛 may be of finite rank. We consider the discretization of equation (1.14) by approximating the operator 𝑇𝑇 * by 𝜋 𝑛 𝑇𝑇 * and tackle the noisy version. To our knowledge this approach has not been studied nor implemented so far. Our aim is to analyse if it is equivalent to perform the discretization at the beginning of the process or at the end. To reach that goal, we consider two approaches for obtaining approximations for 𝑣 𝛼 for each 𝛼 > 0. Both approaches relies upon the same projection 𝜋 𝑛 :

• First approach (Approach A): We consider the discretization of the regularized equation by approximating the operator 𝑇𝑇 * by 𝜋 𝑛 𝑇𝑇 * .

• Second approach (Approach B): We consider the discretization of equation (1.1) by approximating 𝑇 by 𝜋 𝑛 𝑇 and then consider the regularization. This is the approach of [START_REF] Nair | A discrete regularization method for ill-posed operator equations[END_REF].

The main aim of this paper is to compare the above two approaches. In Section 3 [resp Section 4], descriptions of Approach A [resp Approach B] and details of implementations are given. The error estimations under Approach A, which are the main theoretical results of the paper, are treated in Section 5. In Section 6, the error estimation under Approach B is recalled. There are not many computational results available in research literature on that specific problem. We try to fill this gap reporting some computational results to understand the benefits and the downsides of each approach. In Section 2, we present the prototype problem and in Section 7 numerical experiments are performed.

The Prototype Problem

In this section, we specify the items needed to implement the numerical method with the following integral operator 𝑇 :

(𝑇𝑥) (𝑠) := ∫ 1 0 𝑘 (𝑠, 𝑡)𝑥(𝑡)𝑑𝑡 𝑠 ∈ [0, 1], 𝑘 (𝑠, 𝑡) ∈ R. We assume that 𝑘 (•, •) ∈ 𝐶 ( [0, 1] × [0, 1]) so that 𝑅(𝑇) ⊆ 𝐶 [0, 1], and 𝑦 ∈ 𝐶 [0, 1].
Let 𝜋 𝑛 be the interpolation projection from 𝐶 [0, 1] onto the space of piecewise linear functions denoted by 𝑋 𝑛 . Thus,

𝜋 𝑛 𝑥 := 𝑛 ∑︁ 𝑖=0 𝑥(𝑡 𝑛,𝑖 )𝑒 𝑛,𝑖 ,
where 𝑒 𝑛,𝑖 are the so-called hat functions associated to the uniform grid in [0, 1],

namely, 𝑡 𝑛,𝑖 :=

𝑖 𝑛 for all 𝑖 ∈ [[0, 𝑛 ]]. Recall that for 𝑖 = 1, . . . , 𝑛 -1, 𝑒 𝑛,𝑖 (𝑡) :=                      𝑡 -𝑡 𝑛,𝑖-1 𝑡 𝑛,𝑖 -𝑡 𝑛,𝑖-1 for 𝑡 ∈ [𝑡 𝑛,𝑖-1 , 𝑡 𝑛,𝑖 ], 𝑡 𝑛,𝑖+1 -𝑡 𝑡 𝑛,𝑖+1 -𝑡 𝑛,𝑖 for 𝑡 ∈ [𝑡 𝑛,𝑖 , 𝑡 𝑛,𝑖+1 ], 0 otherwise, 𝑒 𝑛,0 (𝑡) :=          𝑡 𝑛,1 -𝑡 𝑡 𝑛,1 -𝑡 𝑛,0 for 𝑡 ∈ [𝑡 𝑛,0 , 𝑡 𝑛,1 ], 0 otherwise, 𝑒 𝑛,𝑛 (𝑡) :=          𝑡 -𝑡 𝑛,𝑛-1 𝑡 𝑛,𝑛 -𝑡 𝑛,𝑛-1 for 𝑡 ∈ [𝑡 𝑛,𝑛-1 , 𝑡 𝑛,𝑛 ], 0 otherwise.
We denote

𝑇 𝑛 := 𝜋 𝑛 𝑇, ⟨𝑢, 𝑣⟩ := ∫ 1 0 𝑢(𝑡)𝑣(𝑡)𝑑𝑡, 𝑘 𝑡 𝑛,𝑖 : 𝑡 → 𝑘 (𝑡 𝑛,𝑖 , 𝑡), y(𝑖) := 𝑦 𝛿 (𝑡 𝑛,𝑖 ), 𝑖 ∈ [[0, 𝑛 ]], (1.15) 
y(𝑖) = ⟨𝑒 𝑛,𝑖 , 𝑦 𝛿 ⟩ 𝑖 ∈ [[0, 𝑛 ]]. (1.16) b(𝑖) := 𝑇𝑇 * (𝑦 𝛿 ) (𝑡 𝑛,𝑖 ) = ∫ 1 0 ∫ 1 0 𝑘 (𝑡 𝑛,𝑖 , 𝑡)𝑘 (𝑢, 𝑡)𝑦 𝛿 (𝑢)𝑑𝑢𝑑𝑡, 𝑖 ∈ [[0, 𝑛 ]], (1.17) 𝑓 𝑛,𝑖 (𝑠) := 𝑇 * (𝑒 𝑛,𝑖 ) (𝑠) = ∫ 1 0 𝑘 (𝑡, 𝑠)𝑒 𝑛,𝑖 (𝑡)𝑑𝑡 (1.18) 𝑔 𝑛,𝑖 (𝑠) := 𝑇 * 𝑛 (𝑒 𝑛,𝑖 ) (𝑠) = 𝑛 ∑︁ 𝑗=0 ⟨𝑒 𝑛,𝑖 , 𝑒 𝑛, 𝑗 ⟩𝑘 𝑡 𝑛, 𝑗 (𝑠) (1.19) 𝑇 𝑛 (𝑥) (𝑠) := 𝑛 ∑︁ 𝑖=0 ⟨𝑘 𝑡 𝑛,𝑖 , 𝑥⟩𝑒 𝑛,𝑖 (𝑠) 𝑠 ∈ [0, 1], (1.20) Note that 𝑇 * 𝑛 (𝑥) (𝑠) = 𝑛 ∑︁ 𝑖=0 ⟨𝑒 𝑛,𝑖 , 𝑥⟩𝑘 𝑡 𝑛,𝑖 (𝑠) 𝑠 ∈ [0, 1], (1.21) 𝜋 𝑛 𝑇𝑇 * (𝑥) (𝑠) = 𝑛 ∑︁ 𝑖=0 ∫ 1 0 ∫ 1 0 𝑘 (𝑡 𝑛,𝑖 , 𝑡)𝑘 (𝑢, 𝑡)𝑥(𝑢)𝑑𝑢𝑑𝑡 𝑒 𝑛,𝑖 (𝑠). (1.22) 𝑇 𝑛 𝑇 * 𝑛 (𝑥) (𝑠) = 𝑛 ∑︁ 𝑖=0 𝑛 ∑︁ ℓ=0 ⟨𝑒 𝑛,ℓ , 𝑥⟩⟨𝑘 𝑡 𝑛,ℓ , 𝑘 𝑡 𝑛,𝑖 ⟩𝑒 𝑛,𝑖 (𝑠) 𝑠 ∈ [0, 1]. (1.23)
Again, let us introduce the following notations:

A 𝑛 (𝑖, 𝑗) := ∫ 1 0 ∫ 1 0 𝑘 (𝑡 𝑛,𝑖 , 𝑡)𝑘 (𝑢, 𝑡)𝑒 𝑛, 𝑗 (𝑢)𝑑𝑢𝑑𝑡, 𝑖, 𝑗 ∈ [[0, 𝑛 ]], (1.24) 
K 𝑛 (𝑖, ℓ) := ⟨𝑘 𝑡 𝑛,ℓ , 𝑘 𝑡 𝑛,𝑖 ⟩ 𝑖, ℓ ∈ [[0, 𝑛 ]], (1.25) 
E 𝑛 (𝑖, 𝑗) := ⟨𝑒 𝑛,𝑖 , 𝑒 𝑛, 𝑗 ⟩ 𝑖, 𝑗𝑙 ∈ [[0, 𝑛 ]], (1.26) 
C 𝑛 = K 𝑛 × E 𝑛 . (1.27) k(𝑖) = 𝑘 𝑡 𝑛,𝑖 𝑖 ∈ [[0, 𝑛 ]].
(1.28)

g(𝑖) = 𝑔 𝑛,𝑖 𝑖 ∈ [[0, 𝑛 ]].
(1.29)

f(𝑖) = 𝑓 𝑛,𝑖 𝑖 ∈ [[0, 𝑛 ]].
(1.30)

g = E 𝑛 k (1.31)

Approach A: Descriptions and implementations

Concerning Approach A, there are several manners to solve the problem. We will consider Galerkin method, denoted by Method A1 and Kantorovich method implemented in two ways, Method A2 and Method A3. At the end of this section, we shall prescribe conditions on 𝑛 depending on 𝛼 > 0 such that the operator 𝜋 𝑛 𝑇𝑇 * + 𝛼𝐼 is bijective, so that it has a continuous inverse on the whole space 𝑌 .

Assuming 

𝑦 𝛿 ∈ 𝐶 [0, 1],
(A 𝑛 + 𝛼I n )w = y - 1 𝛼 (b -A 𝑛 y) (1.38)
where A 𝑛 is defined by (1.24), b is defined by (1.17). Then Remark 2 This method could be backward unstable because of the term 1

x 𝛿 𝛼,𝑛 (𝑠) = w 𝑇 f - 1 𝛼 y 𝑇 f + 1 𝛼 ∫ 1 0 𝑘 (𝑡,

𝛼

(𝑦 -𝑤 𝛼,𝑛 ).

The implementation Method A3 is as follows : Let 𝜂 solution of

(A 𝑛 + 𝛼I n )𝜂 = b (1.41)
where b is defined by (1.17). Then

x 𝛿 𝛼,𝑛 (𝑠) = 1 𝛼 ∫ 1 0 𝑘 (𝑡, 𝑠)𝑦 𝛿 (𝑡)𝑑𝑡 - 1 𝛼 𝜂 𝑇 f. (1.42)
Now, let us prove the solvability of the above operator equations. In view of the assumption (𝐻1), as 𝑇𝑇 * is compact, we have

∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * ∥ → 0 as 𝑛 → ∞.
Thanks to the following theorem, equations (1.32), (1.37) and (1.40) are uniquely solvable.

Proposition 1 For 𝛼 > 0, let 𝑛 ∈ N be such that ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * ∥ ≤ 𝛼 2 . Then, (i) 𝐼-(𝐼-𝜋 𝑛 )𝑇𝑇 * (𝑇𝑇 * +𝛼𝐼) -1 is bijective and ∥ 𝐼 -(𝐼 -𝜋 𝑛 )𝑇𝑇 * (𝑇𝑇 * + 𝛼𝐼) -1 -1 ∥ ≤ 2,
(ii) 𝜋 𝑛 𝑇𝑇 + 𝛼𝐼 is bijective,

(𝜋 𝑛 𝑇𝑇 * + 𝛼𝐼) -1 = (𝑇𝑇 * + 𝛼𝐼) -1 [𝐼 -(𝐼 -𝜋 𝑛 )𝑇𝑇 * (𝑇𝑇 * + 𝛼𝐼) -1 ] -1 ,
and

∥ (𝜋 𝑛 𝑇𝑇 * + 𝛼𝐼) -1 ∥ ≤ 2 𝛼 . (1.43) Proof Let us set 𝐴 := 𝑇𝑇 * . Since 𝐴 is self-adjoint, ∥ ( 𝐴 + 𝛼𝐼) -1 ∥ ≤ 1 𝛼 so that ∥ (𝐼 -𝜋 𝑛 ) 𝐴∥ ≤ 𝛼 2 implies that ∥ (𝐼 -𝜋 𝑛 ) 𝐴( 𝐴 + 𝛼𝐼) -1 ∥ ≤ 1 2 < 1.
Hence, by a well known result from functional analysis (see e.g. [START_REF] Nair | Functional Analysis: A First Course[END_REF], pp 317), 𝐼 -(𝐼 -𝜋 𝑛 ) 𝐴( 𝐴 + 𝛼𝐼) -1 is bijective and ∥ 𝐼 -(𝐼 -𝜋 𝑛 ) 𝐴( 𝐴 + 𝛼𝐼) -1 -1 ∥ ≤ 2 proving (i). The equality 

𝜋 𝑛 𝐴 + 𝛼𝐼 = [𝐼 -(𝐼 -𝜋 𝑛 ) 𝐴( 𝐴 + 𝛼𝐼) -1 ] ( 𝐴 + 𝛼𝐼) implies (ii)

Approach B: Descriptions and implementations

As in the previous section, we consider Galerkin method (Method B1) and the Kantorovich method (Method B2 and Method B3) but where 𝑇 is approximated by 𝜋 𝑛 𝑇. We set 𝑇 𝑛 := 𝜋 𝑛 𝑇 .

In the following method, we use the Galerkin approximation 𝑧 𝛿 𝛼,𝑛 of 𝑣 𝛿 𝛼 . Method B1

1. Solve (𝑇 𝑛 𝑇 * 𝑛 + 𝛼𝐼)𝑧 𝛿 𝛼,𝑛 = 𝜋 𝑛 𝑦 𝛿 2. Compute 𝑢 𝛿 𝛼,𝑛 := 𝑇 * 𝑛 𝑧 𝛿 𝛼,𝑛
The implementation of the method leads to The implementation leads to

(C 𝑛 + 𝛼I n )z = y, ( 1 
(C 𝑛 + 𝛼I n )𝜓 = y - 1 𝛼 (K 𝑛 y -C 𝑛 y) , (1.49) 
where 𝜓(𝑖) := 𝜓 𝛿 𝛼,𝑛 (𝑡 𝑛,𝑖 ), 𝑖 ∈ [[0, 𝑛 ]], y is defined by (1.16) and K 𝑛 by (1.25).

𝑥 𝛼,𝑛 := 𝜓 𝑇 g -

1 𝛼 y 𝑇 g + 1 𝛼 k 𝑇 y, (1.50) 
where k is defined by (1.28) and g by (1.31).

Let us consider another way of implementing Kantorovich method. We note that 2) above correspond to the linear system

𝜙
(C 𝑛 + 𝛼I n )𝜙 = K 𝑛 y
(1.52) and u 𝛼,𝑛 := 1

𝛼 k 𝑇 y - 1 𝛼 𝜙 𝑇 g (1.53)
The unique solvability of the equation (1.51), which is same as the step (1) in the above algorithm, is obvious as 𝑇 𝑛 𝑇 * 𝑛 is a positive self-adjoint operator.

Convergence analysis of Approach A

We propose an error estimate, which is the main theoretical result of this note. We shall be using the easily verifiable relations

(𝑇𝑇 * + 𝛼𝐼) -1 𝑇 = 𝑇 (𝑇 * 𝑇 + 𝛼𝐼) -1 , (𝐸1) 
(𝑇 * 𝑇 + 𝛼𝐼) -1 𝑇 * = 𝑇 * (𝑇𝑇 * + 𝛼𝐼) -1 . (𝐸2)
Also, we shall make use of the estimates (see [3, pp 156]) 

∥ (𝑇 * 𝑇 +𝛼𝐼) -1 𝑇 * 𝑇 ∥ ≤ 1, ∥ (𝑇𝑇 * +𝛼𝐼) -1 𝑇 ∥ ≤ 1 2 √ 𝛼 , ∥ (𝑇 * 𝑇 +𝛼𝐼) -1 𝑇 * ∥ ≤ 1 2 √ 𝛼 . ( 1 
(𝑇𝑇 * + 𝛼𝐼)𝑣 𝛿 𝛼 = 𝑦 𝛿 .
Proposition 2 For 𝛼 > 0, let 𝑛 ∈ N be such that ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * ∥ ≤ 𝛼 2 and let 𝑦 ∈ 𝐷 (𝑇 † ), then

∥𝑥 𝛿 𝛼 -𝑥 𝛿 𝛼,𝑛 ∥ ≤ 2𝛿(1 + 𝑝) √ 𝛼 + 1 √ 𝛼 𝜀 𝑛 (𝑥 † ) + 1 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑦∥ for Method A1, ∥𝑥 𝛿 𝛼 -𝑥 𝛿 𝛼,𝑛 ∥ ≤ 𝛿(1 + 𝑝) √ 𝛼 + 1 √ 𝛼 𝜀 𝑛 (𝑥 † ) for Method A2 and A3,
where 𝑝 is defined by (𝐻2) and 𝜀 𝑛 (𝑥 † ) ≤ min{𝜀 (1) 𝛼,𝑛 , 𝜀 (2) 𝛼,𝑛 , 𝜀 (3) 𝛼,𝑛 } 𝜀 (1) 𝛼,𝑛 := ∥ (𝐼 -𝜋 𝑛 )𝑇 ∥ ∥𝑥 † ∥,

𝜀 (2) 𝛼,𝑛 := 1 2 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * ∥ ∥𝑥 † ∥ 𝜀 (3) 𝛼,𝑛 := 1 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * 𝑇 ∥ ∥𝑥 † -𝑥 𝛼 ∥. Proof We have 𝑣 𝛿 𝛼 -𝑣 𝛿 𝛼,𝑛 = (𝑇𝑇 * + 𝛼𝐼) -1 𝑦 𝛿 -(𝜋 𝑛 𝑇𝑇 * + 𝛼𝐼) -1 𝐷 𝑛 𝑦 𝛿 . According to Proposition 1, (𝜋 𝑛 𝑇𝑇 * + 𝛼𝐼) -1 = (𝑇𝑇 * + 𝛼𝐼) -1 𝐵 𝑛 where 𝐵 𝑛 = [𝐼 -(𝐼 -𝜋 𝑛 )𝑇𝑇 * (𝑇𝑇 * + 𝛼𝐼) -1 ] -1 .
Thus 

𝑣 𝛿 𝛼 -𝑣 𝛿 𝛼,𝑛 = (𝑇𝑇 * + 𝛼𝐼) -1 𝐵 𝑛 (𝐼 -𝐷 𝑛 )𝑦 𝛿 -(𝑇𝑇 * -𝜋 𝑛 𝑇𝑇 * ) (𝑇𝑇 * + 𝛼𝐼) -1 𝑦 𝛿 .
∥𝑇 * (𝑇𝑇 * + 𝛼𝐼) -1 ∥ ≤ 1 2 √ 𝛼
so that by Proposition 1, there exists 𝑛 𝛼 ∈ N such that ∥𝐵 𝑛 ∥ ≤ 2 for all 𝑛 ≥ 𝑛 𝛼 . Hence, we have the following relations:

∥𝑥 𝛿 𝛼 -𝑥 𝛿 𝛼,𝑛 ∥ ≤ 1 √ 𝛼 ∥ (𝐼 -𝐷 𝑛 )𝑦 𝛿 ∥ + 1 √ 𝛼 ∥ (𝑇𝑇 * -𝜋 𝑛 𝑇𝑇 * ) (𝑇𝑇 * + 𝛼𝐼) -1 𝑦 𝛿 ∥ ∥𝑥 𝛿 𝛼 -𝑥 𝛿 𝛼,𝑛 ∥ ≤ 1 √ 𝛼 ∥ (𝐼 -𝐷 𝑛 )𝑦 𝛿 ∥ + 1 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * (𝑇𝑇 * + 𝛼𝐼) -1 𝑦 𝛿 ∥ ∥𝑥 𝛿 𝛼 -𝑥 𝛿 𝛼,𝑛 ∥ ≤ 1 √ 𝛼 ∥ (𝐼 -𝐷 𝑛 )𝑦 𝛿 ∥ + 1 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇 (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑇 * 𝑦 𝛿 ∥ ∥𝑥 𝛿 𝛼 -𝑥 𝛿 𝛼,𝑛 ∥ ≤ 1 √ 𝛼 ∥ (𝐼 -𝐷 𝑛 )𝑦 𝛿 ∥ + 1 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇 (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑇 * 𝑦∥ + 1 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇 (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑇 * (𝑦 𝛿 -𝑦) ∥ ∥𝑥 𝛿 𝛼 -𝑥 𝛿 𝛼,𝑛 ∥ ≤ 1 √ 𝛼 ∥ (𝐼 -𝐷 𝑛 )𝑦 𝛿 ∥ + 1 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 ) (𝑇𝑇 * + 𝛼𝐼) -1 𝑇𝑇 * (𝑦 𝛿 -𝑦) ∥ + 1 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇 (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑇 * 𝑇𝑥 † ∥
From (1.54) we have

∥ (𝐼 -𝜋 𝑛 ) (𝑇𝑇 * + 𝛼𝐼) -1 𝑇𝑇 * (𝑦 𝛿 -𝑦) ∥ ≤ (1 + 𝑝)𝛿, so that ∥𝑥 𝛿 𝛼 -𝑥 𝛿 𝛼,𝑛 ∥ ≤ 1 √ 𝛼 ∥ (𝐼 -𝐷 𝑛 )𝑦 𝛿 ∥ + 𝛿(1 + 𝑝) √ 𝛼 + 1 √ 𝛼 𝜀 𝑛 (𝑥 † ),
where 𝜀 𝑛 (𝑥 † ) := ∥ (𝐼 -𝜋 𝑛 )𝑇 (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑇 * 𝑇𝑥 † ∥.

(1.55)

Now, using the relation (𝐸1) and (𝐸2),

𝜀 𝑛 (𝑥 † ) = ∥ (𝐼 -𝜋 𝑛 )𝑇 (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑇 * 𝑇𝑥 † ∥ = ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * (𝑇𝑇 * + 𝛼𝐼) -1 𝑇𝑥 † ∥ = ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * 𝑇 (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑥 † ∥
Using (1.54) and (1.4) we also obtain

∥ (𝐼 -𝜋 𝑛 )𝑇 (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑇 * 𝑇𝑥 † ∥ ≤ ∥ (𝐼 -𝜋 𝑛 )𝑇 ∥ ∥𝑥 † ∥ ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * (𝑇𝑇 * + 𝛼𝐼) -1 𝑇𝑥 † ∥ ≤ ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * ∥ ∥𝑥 † ∥ 2 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * 𝑇 (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑥 † ∥ ≤ ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * 𝑇 ∥ 𝛼 ∥𝑥 † -𝑥 𝛼 ∥.
Thus, 𝜀 𝑛 (𝑥 † ) ≤ min{𝜀 (1) 𝛼,𝑛 , 𝜀 (2) 𝛼,𝑛 , 𝜀 (3) 𝛼,𝑛 }, where

𝜀 (1) 𝛼,𝑛 := ∥ (𝐼 -𝜋 𝑛 )𝑇 ∥ ∥𝑥 † ∥, 𝜀 (2) 𝛼,𝑛 := 1 2 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * ∥ ∥𝑥 † ∥ 𝜀 (3) 𝛼,𝑛 := 1 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * 𝑇 ∥ ∥𝑥 † -𝑥 𝛼 ∥.
From the above we conclude the following:

▶ For Method A1, as ∥ (𝐼 -𝜋 𝑛 )𝑦 𝛿 ∥ ≤ ∥ (𝐼 -𝜋 𝑛 )𝑦∥ + (1 + 𝑝)𝛿, ∥𝑥 𝛿 𝛼 -𝑥 𝛿 𝛼,𝑛 ∥ ≤ 1 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑦∥ + 2𝛿(1 + 𝑝) √ 𝛼 + 1 √ 𝛼 𝜀 𝑛 (𝑥 † ).
▶ For Methods A2 and A3,

∥𝑥 𝛿 𝛼 -𝑥 𝛿 𝛼,𝑛 ∥ ≤ 𝛿(1 + 𝑝) √ 𝛼 + 1 √ 𝛼 𝜀 𝑛 (𝑥 † ).
This completes the proof.

□ Let us set 𝑑 1 = 2𝑝 + 5 2 and 𝑑 2 = 𝑝 + 3 2 . Theorem 1 For 𝛼 > 0, let 𝑛 ∈ N be such that ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * ∥ ≤ 𝛼 2 and let 𝑦 ∈ 𝐷 (𝑇 † ). Then ∥𝑥 † -𝑥 𝛿 𝛼,𝑛 ∥ ≤ ∥𝑥 † -𝑥 𝛼 ∥ + 𝛿 𝑑 1 √ 𝛼 + 1 √ 𝛼 𝜀 𝑛 (𝑥 † ) + 1 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑦∥
for Method A1, and

∥𝑥 † -𝑥 𝛿 𝛼,𝑛 ∥ ≤ ∥𝑥 † -𝑥 𝛼 ∥ + 𝛿 𝑑 2 √ 𝛼 + 1 √ 𝛼 𝜀 𝑛 (𝑥 † )
for Methods A2 and A3, where

𝜀 𝑛 (𝑥 † ) ≤ min{𝜀 (1) 𝛼,𝑛 , 𝜀 (2) 
𝛼,𝑛 , 𝜀 (3) 𝛼,𝑛 } 𝜀 (1) 𝛼,𝑛 := ∥ (𝐼 -𝜋 𝑛 )𝑇 ∥ ∥𝑥 † ∥,

𝜀 (2) 𝛼,𝑛 := 1 2 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * ∥ ∥𝑥 † ∥ 𝜀 (3) 𝛼,𝑛 := 1 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * 𝑇 ∥ ∥𝑥 † -𝑥 𝛼 ∥.
Further, we have the following:

(i) If 𝑥 † = 𝑇 * 𝑢 for some 𝑢 ∈ 𝑌 , then ∥𝑥 † -𝑥 𝛿 𝛼,𝑛 ∥ ≤ ∥𝑥 † -𝑥 𝛼 ∥ + 𝛿 𝑑 1 √ 𝛼 + 1 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * ∥ ∥𝑢∥ + 1 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑦∥
for Method A1 and

∥𝑥 † -𝑥 𝛿 𝛼,𝑛 ∥ ≤ ∥𝑥 † -𝑥 𝛼 ∥ + 𝛿 𝑑 2 √ 𝛼 + 1 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * ∥ ∥𝑢∥
for Methods A2 and A3. (ii) If 𝑥 † = 𝑇 * 𝑇 𝑣 for some 𝑣 ∈ 𝑋, then

∥𝑥 † -𝑥 𝛿 𝛼,𝑛 ∥ ≤ ∥𝑥 † -𝑥 𝛼 ∥ + 𝛿 𝑑 1 √ 𝛼 + 1 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * 𝑇 ∥ ∥𝑣∥ + 1 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑦∥
for Method A1 and

∥𝑥 † -𝑥 𝛿 𝛼,𝑛 ∥ ≤ ∥𝑥 † -𝑥 𝛼 ∥ + 𝛿 𝑑 2 √ 𝛼 + 1 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * 𝑇 ∥ ∥𝑣∥
for Methods A2 and A3.

Proof

As

∥𝑥 𝛼 -𝑥 𝛿 𝛼 ∥ ≤ 𝛿 2 √ 𝛼 , ∥𝑥 † -𝑥 𝛿 𝛼,𝑛 ∥ ≤ ∥𝑥 † -𝑥 𝛼 ∥ + ∥𝑥 𝛼 -𝑥 𝛿 𝛼 ∥ + ∥𝑥 𝛿 𝛼 -𝑥 𝛿 𝛼,𝑛 ∥,
the estimates in the first part of the theorem follow from from Proposition 2. If, in addition, 𝑥 † = 𝑇 * 𝑢 for some 𝑢 ∈ 𝑌 , then we have

𝜀 𝑛 (𝑥 † ) = ∥ (𝐼 -𝜋 𝑛 )𝑇 (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑇 * 𝑇𝑥 † ∥ = ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * (𝑇𝑇 * + 𝛼𝐼) -1 𝑇𝑇 * 𝑢∥ ≤ ∥ (𝐼 -𝜋 𝑛 ))𝑇𝑇 * ∥ ∥𝑢∥.
Hence, we obtain (i). In case 𝑥 † = 𝑇 * 𝑇 𝑣 for some 𝑣 ∈ 𝑋, then

𝜀 𝑛 (𝑥 † ) = ∥ (𝐼 -𝜋 𝑛 )𝑇 (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑇 * 𝑇𝑥 † ∥ = ∥ (𝐼 -𝜋 𝑛 )𝑇 (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑇 * 𝑇𝑇 * 𝑇 𝑣∥ = ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * (𝑇𝑇 * + 𝛼𝐼) -1 𝑇𝑇 * 𝑇 𝑣∥ ≤ ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * 𝑇 ∥ ∥𝑣∥.
Hence, we obtain (ii). □ Corollary 1 If 𝑦 ∈ 𝑅(𝑇), for each method

∥𝑥 † -𝑥 𝛿 𝛼,𝑛 ∥ ≤ ∥𝑥 † -𝑥 𝛼 ∥ + 𝛿 𝑑 1 √ 𝛼 + 1 √ 𝛼 ε𝑛 (𝑥 † )
where ε𝑛 (𝑥 † ) ≤ min{2𝜀 (1) 𝛼,𝑛 , 𝜀 (2) 𝛼,𝑛 , 𝜀 (3) 𝛼,𝑛 }.

Corollary 2 Suppose 𝑦 ∈ 𝐷 (𝑇 † ). (ii) If 𝑥 † ∈ 𝑅(𝑇 * 𝑇) and 𝑛 large enough so that

𝛼 𝑛, 𝛿 ≥ max{𝛿 2/3 , ∥ (𝐼 -𝜋 𝑛 )𝑦∥ 2/3 , ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * 𝑇 ∥ 2/3 }, then ∥𝑥 † -𝑥 𝛿 𝛼,𝑛 ∥ = 𝑂 (𝛼 𝑛, 𝛿 ).
Proof The source condition 𝑥 † = 𝑇 * 𝑢 implies that

∥𝑥 † -𝑥 𝛼 ∥ ≤ √ 𝛼 ∥𝑢∥.
In case 𝑥 † = 𝑇 * 𝑇 𝑣 for some 𝑣 ∈ 𝑋, then

∥𝑥 † -𝑥 𝛼 ∥ ≤ 𝛼 ∥𝑢∥.
Hence, the results follow from Theorem 1. □

Convergence analysis of Approach B

For this method, we assume that 𝑦 ∈ 𝑅(𝑇). (𝐻4)

In [START_REF] Nair | A discrete regularization method for ill-posed operator equations[END_REF], the estimate in (1.13) is proved for approach B1, namely,

∥𝑥 † -𝑥 𝛿 𝛼,𝑛 ∥ ≤ 1 + ∥𝑇 * 𝑛 𝑇 𝑛 -𝑇 * 𝑇 ∥ 𝛼 ∥𝑥 † -𝑥 𝛼 ∥ + 𝑐 𝛿 √ 𝛼
Since ∥𝑥 † -𝑥 𝛼 ∥ ≤ ∥𝑥 † ∥, from the above inequality, we obtain

∥𝑥 † -𝑥 𝛿 𝛼,𝑛 ∥ ≤ ∥𝑥 † -𝑥 𝛼 ∥ + 𝑐 𝛿 √ 𝛼 + 1 𝛼 ∥𝑇 * 𝑛 𝑇 𝑛 -𝑇 * 𝑇 ∥ ∥𝑥 † ∥. (1.56)
For methods B2 and B3, there is an extra term of the form ∥ (𝐼 -𝜋 𝑛 )𝑇𝑥 † ∥ √ 𝛼 in the bound.

Theoretical Comparison with previous methods

In the case It is to be observed that the theoretical results derived in the previous sections are valid for any sequence (𝜋 𝑛 ) of linear operators defined on 𝑌 such that ∥ (𝐼 -𝜋 𝑛 )𝑇 ∥ → 0. In the following we shall consider two specific cases.

𝜀 𝑛 (𝑥 † ) = 1 2 √ 𝛼 ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * ∥ ∥𝑥 † ∥,
(a) If 𝜋 𝑛 is an orthogonal projection,

∥𝑇 * 𝑛 𝑇 𝑛 -𝑇 * 𝑇 ∥ 𝛼 = ∥𝑇 * 𝑇 -𝑇 * 𝜋 * 𝑛 𝜋 𝑛 𝑇 ∥ 𝛼 = ∥𝑇 * 𝑇 -𝑇 * 𝜋 𝑛 𝑇 ∥ ∥𝑥 † ∥ 𝛼 = ∥𝑇 * (𝐼 -𝜋 𝑛 )𝑇 ∥ 𝛼 = ∥ (𝐼 -𝜋 𝑛 )𝑇 ∥ 2 𝛼 = ∥ (𝐼 -𝜋 𝑛 )𝑇 ∥ √ 𝛼 2 Thus, ∥𝑇 * 𝑛 𝑇 𝑛 -𝑇 * 𝑇 ∥ 𝛼 ≤ ∥ (𝐼 -𝜋 𝑛 )𝑇 ∥ √ 𝛼
whenever 𝑛 is large enough so that

∥ (𝐼 -𝜋 𝑛 )𝑇 ∥ ≤ √ 𝛼. (b) If 𝜋 𝑛 is not orthogonal then ∥𝑇 * 𝑇 -𝑇 * 𝑛 𝑇 𝑛 ∥ 𝛼 ≤ ∥ (𝐼 -𝜋 𝑛 )𝑇 ∥ √ 𝛼 whenever (∥𝑇 * 𝑇 -𝑇 * 𝜋 * 𝑛 𝜋 𝑛 𝑇 ∥) converges to 0 faster than (∥ (𝐼 -𝜋 𝑛 )𝑇 ∥) and 𝑛 is large enough so that ∥𝑇 * 𝑇 -𝑇 * 𝜋 * 𝑛 𝜋 𝑛 𝑇 ∥ ≤ √ 𝛼∥ (𝐼 -𝜋 𝑛 )𝑇 ∥.
We should take a particular operator 𝑇 and projection 𝜋 𝑛 to be able to do a useful comparison. In the next section, a numerical comparison is performed.

Numerical Results

For the numerical tests we consider two examples of integral equations of the first kind.

Example 1

∫ 1 0 (𝑠 2 + 𝑡 2 )𝑥(𝑡)𝑑𝑡 = 10𝑠 2 3 + 6 5 
,

with analytical solution 𝑥(𝑡) = 𝑡 2 + 3. In this example, the operator 𝑇 is of finite rank and hence 𝑇 † is continuous. Numerical experiments are carried out only to show how the results are better in this case.

Example 2

∫ 𝜋 0 𝑐𝑜𝑠(𝑠 -𝑡)𝑥(𝑡)𝑑𝑡 = 𝜋 2 cos(𝑠). (2) 
with analytical solution: 𝑥(𝑡) = cos(𝑡). In this case, 𝑇 is of infinite rank, and hence, 𝑇 † is discontinuous.

The impact of the discretization size: 𝒏 varies

For small perturbation values of 𝛿 and 𝛼 (Figures 1.1a and 1.1b), it can be seen that methods A1 and B1 do not depend on 𝑛 and that the error is about 10 -10 . All other methods perform worse because 1

𝛼

is huge and introduce a bad backward error. Methods A3 and B3 are the worst and do not improve as 𝑛 increases. Methods A2 and B2 show poor performance.

Taking into account the theoretical findings, considering 𝛼 as √ 𝛿, methods A1 and B1 persist as those with best performance but all methods perform similarly for a sufficient large 𝑛, where the error is about 10 -4 . So the Galerkin approach is more efficient since it can produce an approximate solution with the minimum error for coarse discretizations (Figures 1.1c and 1.1d).

As the perturbation parameter 𝛿 increases, the quality of the approximation degrades, as expected, and all methods perform not very differently. As depict As it was noticed, the Kantorovich approach can only be advantageous when the problem requires larger regularization, and approximation quality improvement can be achieved by using finer grids. This is not the case for Galerkin, since the method is almost insensitive to 𝑛. The impact of the regularization parameter 𝛼 is theoretically proven and numerically shown to be dependent on the perturbation parameter 𝛿. For both examples, see Figure 1.3, for fixed grid size and perturbation, the Galerkin approach provides better approximations as 𝛼 disminuishes, as opposed to Kantorovich which produces the best approximations to the exact solution for higher regularization values. Problems that suffer from large perturbations on the source term and large regularization values to provide an approximate solution may benefit from Kantorovich richer but more costly approach.

Conclusion

In order to compare the Approach A and Approach B using the error estimates, it is necessary to know the smoothing properties of 𝑇 in relation with the convergence properties of the projections 𝜋 𝑛 , and also on the source conditions and the choice of the regularization parameter 𝛼. However, the numerical experiments provide some outcomes. In view of the numerical results, there are not significant differences in the behavior of Approach A and Approach B. That means that the order in which the discretization and the regularization are performed does not really matter. On the other hand, the discretization method matters. Indeed, Galerkin method and Kantorovich method behave quite differently. Galerkin methods do not depend on the discretization parameter 𝑛. One can choose a coarse grid and provide an accurate solution whose numerical coast is low. Moreover these methods are not sensitive to the noise level 𝛿. On the contrary, Kantorovich methods are sensitive to the parameter 𝑛. The solutions may improve when 𝑛 increases (Figure 1.1c). Galerkin methods are quite sensitive to the regularization parameter 𝛼. When 𝛼 is small enough, then Galerkin methods will perform well. If 𝛼 increases, then Kantorovich methods improve and may be better than Galerkin methods (see 

∫ 1 0 1 0

 11 𝑘 (𝑠, 𝑡)𝑥(𝑡)𝑑𝑡 = 𝑦(𝑠), 𝑠 ∈ [0, 1], (1.7) where kernel 𝑘 (•, •) is such that the map 𝑇 defined by (𝑇𝑥) (𝑠) := ∫ 𝑘 (𝑠, 𝑡)𝑥(𝑡)𝑑𝑡, 𝑠 ∈ [0, 1], (1.8) is a compact operator between appropriate Hilbert spaces 𝑋 and 𝑌 of functions on [0, 1]. More specifically, with 𝑋 = 𝑌 = 𝐿 2 [0, 1] and 𝑘 (•, •) ∈ 𝐶 ( [0, 1] × [0, 1]

  Hence 𝑥 𝛿 𝛼 -𝑥 𝛿 𝛼,𝑛 = 𝑇 * (𝑇𝑇 * + 𝛼𝐼) -1 𝐵 𝑛 (𝐼 -𝐷 𝑛 )𝑦 𝛿 -(𝑇𝑇 * -𝜋 𝑛 𝑇𝑇 * ) (𝑇𝑇 * + 𝛼𝐼) -1 𝑦 𝛿 𝑥 𝛿 𝛼 -𝑥 𝛿 𝛼,𝑛 = 𝑇 * (𝑇𝑇 * + 𝛼𝐼) -1 𝐵 𝑛 (𝐼 -𝐷 𝑛 )𝑦 𝛿 -𝑇 * (𝑇𝑇 * + 𝛼𝐼) -1 𝐵 𝑛 (𝑇𝑇 * -𝜋 𝑛 𝑇𝑇 * ) (𝑇𝑇 * + 𝛼𝐼) -1 𝑦 𝛿 Using the relation 𝑇 * (𝑇𝑇 * + 𝛼𝐼) -1 = (𝑇 * 𝑇 + 𝛼𝐼) -1 𝑇 * and estimate (1.54), we have

  (i) If 𝑥 † ∈ 𝑅(𝑇 * ) and 𝑛 large enough so that 𝛼 𝑛, 𝛿 ≥ max{𝛿, ∥ (𝐼 -𝜋 𝑛 )𝑦∥, ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * ∥}, then ∥𝑥 † -𝑥 𝛿 𝛼,𝑛 ∥ = 𝑂 ( √ 𝛼 𝑛, 𝛿 ).

  Approach A and Approach B can be compared through the comparison between ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * ∥ and ∥𝑇 * 𝑛 𝑇 𝑛 -𝑇 * 𝑇 ∥. In the case 𝜀 𝑛 (𝑥 † ) = ∥ (𝐼 -𝜋 𝑛 )𝑇 ∥ ∥𝑥 † ∥, Approach A and Approach B can be compared through the comparison between ∥ (𝐼 -𝜋 𝑛 )𝑇 ∥ √ 𝛼 and ∥𝑇 * 𝑛 𝑇 𝑛 -𝑇 * 𝑇 ∥ 𝛼 .

(b) Example 2 : 3 Fig. 1 . 1 :

 2311 Fig. 1.1: Logarithm of the errors for several values of 𝑛
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 3 The impact of the regularization parameter: 𝜶 varies (a) Example 1: 𝑛 = 40 and 𝛿 = 10 -6 (b) Example 2: 𝑛 = 40 and 𝛿 = 10 -6
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 1 2a, Figure 1.2c, Figure 1.2e and Figure 1.2f).

  let 𝜔 𝛿 𝛼,𝑛 be the Galerkin approximation of 𝑣 𝛿 𝛼 , that is, 𝜔 𝛿 𝛼,𝑛 satisfies (𝜋 𝑛 𝑇𝑇 * + 𝛼𝐼)𝜔 𝛿 𝛼,𝑛 = 𝜋 𝑛 𝑦 𝛿 . This method may incur high computational cost because of the computation of the term 𝜋 𝑛 𝑦 𝛿 -1 𝛼 𝜋 𝑛 𝑇𝑇 * (𝐼 -𝜋 𝑛 )𝑦 𝛿 . The implementation of Method A2 is as follows : Let w solution of

		(1.32)
	Method A1	
	1. Solve (𝜋 𝑛 𝑇𝑇 * + 𝛼𝐼)𝜔 𝛿 𝛼,𝑛 = 𝜋 𝑛 𝑦 𝛿	
	2. Compute 𝑥 𝛿 𝛼,𝑛 := 𝑇 * 𝜔 𝛿 𝛼,𝑛	
	The implementation is as follows : 𝜔 𝛿 𝛼,𝑛 (𝑠) = 𝑛 𝑗=0 𝜔( 𝑗)𝑒 𝑛, 𝑗 (𝑠), where the vector
	𝜔 solves	
	(A 𝑛 + 𝛼I n )𝜔 = y,	(1.33)
	where A 𝑛 is given in (1.24) and y is given by (1.15). Then	
	𝑥 𝛿 𝛼,𝑛 = 𝜔 𝑇 f,	(1.34)
	where the components of	

f are given by

(1.30)

. Let 𝑣 𝛿 𝛼,𝑛 be the Kantorovich approximation of 𝑣 𝛿 𝛼 , that is, 𝑣 𝛿 𝛼,𝑛 satisfies the equation (𝜋 𝑛 𝑇𝑇 * + 𝛼𝐼)𝑣 𝛿 𝛼,𝑛 = 𝑦 𝛿 . (1.35) Let x 𝛿 𝛼,𝑛 := 𝑇 * 𝑣 𝛿 𝛼,𝑛 . If we apply the operator 𝐼 -𝜋 𝑛 to equation (1.35), we obtain (𝐼 -𝜋 𝑛 )𝑣 𝛿 𝛼,𝑛 = 1 𝛼 (𝐼 -𝜋 𝑛 )𝑦 𝛿 (1.36) If we apply the operator 𝜋 𝑛 to equation (1.35), using (1.36), we obtain (𝜋 𝑛 𝑇𝑇 * + 𝛼𝐼)𝜋 𝑛 𝑣 𝛿 𝛼,𝑛 = 𝜋 𝑛 𝑦 𝛿 -1 𝛼 𝜋 𝑛 𝑇𝑇 * (𝐼 -𝜋 𝑛 )𝑦 𝛿 . (1.37) Method A2 1. Solve (𝜋 𝑛 𝑇𝑇 * + 𝛼𝐼) v 𝛿 𝛼,𝑛 = 𝜋 𝑛 𝑦 𝛿 -1 𝛼 𝜋 𝑛 𝑇𝑇 * (𝐼 -𝜋 𝑛 )𝑦 𝛿 2. Compute 𝑣 𝛿 𝛼,𝑛 = v 𝛿 𝛼,𝑛 + 1 𝛼 (𝐼 -𝜋 𝑛 )𝑦 𝛿 3. Compute 𝑥 𝛿 𝛼,𝑛 := 𝑇 * 𝑣 𝛿 𝛼,𝑛 Remark 1

  𝜋 𝑛 𝑇𝑇 * 𝑣 𝛿 𝛼,𝑛 belongs to 𝑅(𝜋 𝑛 ), so that (𝜋 𝑛 𝑇𝑇 * + 𝛼𝐼)𝑤 𝛿 𝛼,𝑛 = 𝜋 𝑛 𝑇𝑇 * 𝑦 𝛿 .

				𝑠)𝑦 𝛿 (𝑡)𝑑𝑡	(1.39)
	Let us consider another way of computing the Kantorovich approximation: we
	have	𝑣 𝛿 𝛼,𝑛 =	1 𝛼	(𝑦 𝛿 -𝜋 𝑛 𝑇𝑇 * 𝑣 𝛿 𝛼,𝑛 ).
	and			
		𝑤 𝛿 𝛼,𝑛 := (1.40)
	Thus we have the following algorithm:
	Method A3			
	1. Solve (𝜋 𝑛 𝑇𝑇			

* + 𝛼𝐼)𝑤 𝛿 𝛼,𝑛 = 𝜋 𝑛 𝑇𝑇 * 𝑦 𝛿 2. Compute 𝑣 𝛿 𝛼,𝑛 = 1 𝛼 (𝑦 𝛿 -𝑤 𝛿 𝛼,𝑛 ) 3. Compute x 𝛿 𝛼,𝑛 := 𝑇 * 𝑣 𝛿 𝛼,𝑛

  and(1.43). □ Remark 3 The above proposition is useful to analyse the error of Approach A (seeSection 5). It is to be remarked that if 𝜋 𝑛 are orthogonal projections, then equations (1.32), (1.37) and (1.40) are uniquely solvable without the assumption ∥ (𝐼 -𝜋 𝑛 )𝑇𝑇 * ∥ ≤ 𝛼 2 in Proposition 1, because in this case the operator 𝜋 𝑛 𝑇𝑇 * + 𝛼𝐼 on the right hand sides of these equations can be replaced by 𝜋 𝑛 𝑇𝑇 * 𝜋 𝑛 + 𝛼𝐼, where 𝜋 𝑛 𝑇𝑇 * 𝜋 𝑛 is a positive self-adjoint operator, so that 𝜋 𝑛 𝑇𝑇 * 𝜋 𝑛 + 𝛼𝐼 is a bijective bounded linear operator.

  .44) where C 𝑛 is defined by (1.27) and z(𝑖) := 𝑧 𝛿 𝛼,𝑛 (𝑡 𝑛,𝑖 ), 𝑖 ∈ [[0, 𝑛 ]], and 𝑢 𝛼,𝑛 := 𝑇 * 𝑛 𝑧 𝛼,𝑛 can be written as 𝑢 𝛼,𝑛 := k 𝑇 E 𝑛 z, (1.45)where k is defined by (1.28) and E 𝑛 is defined by(1.26).Next, let 𝜓 𝛿 𝛼,𝑛 be the Kantorovich approximation. It satisfies the equation

		(𝑇 𝑛 𝑇 * 𝑛 + 𝛼𝐼)𝜓 𝛿 𝛼,𝑛 = 𝑦 𝛿	(1.46)
	Applying the operators the operator 𝐼 -𝜋 𝑛 and 𝜋 𝑛 to the equation (1.46), we obtain
		(𝐼 -𝜋 𝑛 )𝜓 𝛿 𝛼,𝑛 =	𝛼 1	(𝐼 -𝜋 𝑛 )𝑦 𝛿	(1.47)
	and	(𝑇 𝑛 𝑇 * 𝑛 + 𝛼𝐼)𝜋 𝑛 𝜓 𝛿 𝛼,𝑛 = 𝜋 𝑛 𝑦 𝛿 -	1 𝛼	𝑇 𝑛 𝑇 * 𝑛 (𝐼 -𝜋 𝑛 )𝑦 𝛿 ,	(1.48)
	respectively. This leads to the following method:
	Method B2				
	1. Solve (𝑇 𝑛 𝑇				

* 𝑛 + 𝛼𝐼)a𝑡𝜓 𝛿 𝛼,𝑛 = 𝜋 𝑛 𝑦 𝛿 -1 𝛼 𝑇 𝑛 𝑇 * 𝑛 (𝐼 -𝜋 𝑛 )𝑦 𝛿 2. Compute: 𝜓 𝛿 𝛼,𝑛 = a𝑡𝜓 𝛿 𝛼,𝑛 + 1 𝛼 ((𝐼 -𝜋 𝑛 )𝑦 𝛿 ) 3. Compute: 𝑥 𝛿 𝛼,𝑛 := 𝑇 * 𝑛 𝜓 𝛿 𝛼,𝑛

  𝜋 𝑛 in the case of Method A1 and 𝐷 𝑛 := 𝐼 in the case of Method A2 and A3. Let 𝑥 𝛿 𝛼 := 𝑇 * 𝑣 𝛿 𝛼 , where 𝑣 𝛿 𝛼 is the solution of

.54) Let 𝑥 𝛿 𝛼,𝑛 := 𝑇 * 𝑣 𝛿 𝛼,𝑛 , where 𝑣 𝛿 𝛼,𝑛 satisfies (𝜋 𝑛 𝑇𝑇 * + 𝛼𝐼)𝑣 𝛿 𝛼,𝑛 = 𝐷 𝑛 𝑦 𝛿 , where 𝐷 𝑛 :=
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The impact of the perturbation parameter: 𝜹 varies

For a large regularization parameter, 𝛼 = 10 -3 (see Figure 1.2), for Example 1 the Kantorovich approach is always better than Galerkin, specially methods A3 and B3. For Example 2, Kantorovich approach only supersedes Galerkin for higher values of 𝑛, and methods A2 and B2 are those with best overall performance.