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Abstract

Consider an integral equation λ u − Tu = f, where T is an
integral operator, defined on C[0, 1], with a kernel having an alge-
braic or a logarithmic singularity. Let πm denote an interpolatory
projection onto a space of piecewise polynomials of degree ≤ r − 1
with respect to a graded partition of [0, 1] consisting of m subinter-
vals. In the product integration method, an approximate solution is
obtained by solving λ um − Tπmum = f. As in order to achieve
a desired accuracy, one may have to choose m large, we find approx-
imations of um using a discrete modified projection method and its
iterative version. We define a two-grid iteration scheme based on this
method and show that it needs less number of iterates than the two-
grid iteration scheme associated with the discrete collocation method.
Numerical results are given which validate the theoretical results.

Keywords: Algebraic singularity, Logarithmic singularity, Collocation
method, Interpolatory projection, Graded mesh, Piecewise polynomial
approximation, Product integration, Weakly singular integral operator.
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1 Introduction

Consider the integral operator

(Tu)(s) =

∫ 1

0

gα(|s− t|) u(t) dt, 0 ≤ s ≤ 1,

with

gα(s) = sα−1, 0 < α < 1 and g1(s) = log(s).

The former corresponds to the so called algebraic singularity and the latter,
α = 1 following the convention in [1], to the logarithm singularity. Then T is a
compact operator from C[0, 1] to C[0, 1]. We are interested in an approximate
solution of the following integral equation:

λ u− Tu = f, (1)

where λ is not an eigenvalue of T and f ∈ C[0, 1].
One of the important methods for finding an approximate solution of

weakly singular equations is the Product Integration method. Let r ≥ 1 and
let Xm denote the space of piecewise polynomial functions of degree ≤ r − 1
with respect to a partition of [0, 1] with m subintervals. Choose r distinct
points in each of the subinterval of the partition and let πm : C([0, 1]) → Xm

be the map which interpolates at these mr points. In the product integration
method, (1) is approximated by

λ um − Tπmum = f. (2)

The solution um of the above equation is obtained by solving a linear system
of equations of size mr. In order to achieve a desired accuracy, it may be
necessary to choose m large. We would like to find an approximation of um by
solving a system of a relatively small size. For this purpose, we approximate
Tπm by some discrete operators defined on a coarser grid.

In the collocation method, (1) is approximated by λ uC
m − πmTπmuC

m =
πmf.

Vainikko and Uba [2] obtain the error bounds in the collocation method.
Hakk and Pedas [3] prove that if the interpolation points are chosen appropri-
ately, then the collocation solution exhibits superconvergence at the interpo-
lation points. A two-grid method based on the collocation method is analysed
in Hakk and Pedas [4]. Kaneko et al [5] consider approximate solution of
weakly singular Hammerstein integral equations by the collocation methods.
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In [6], Graham chooses approximate space consisting of spline functions and
investigates the Galerkin and the iterated Galerkin methods. Cao and Xu [7]
choose approximating space consisting of piecewise polynomials and of mildly
singular functions which reflect the singularities of the exact solution. The
Galerkin method is then considered with an orthogonal projection onto this
approximating space. A disadvantage of this approach is that it is problem
specific.

In order to reduce the size of the linear system to solve, Hakk and Pedas
analyse a two-grid method based on the collocation method in [4].

The aim of this paper is to investigate the performance of the discrete ver-
sion of the modified projection method of Kulkarni [8] for approximate solution
of (2). In the case of the algebraic singularity, 0 < α < 1, for an appropriate
choice of the coarse grid (value of the grading parameter q), we prove that
the convergence rate of the discrete modified projection solution is better than
those of the discrete collocation and the discrete iterated collocation.

There are not many computational results available for an approximate
solution of (1) in research literature and we try to fill this gap. We report some
computational results for the weakly singular integral equations with both the
algebraic as well as logarithmic singularities. As we considered a graded mesh,
a careful computation of the weights in the product integration method was
necessary. We followed the approach developed by Atkinson and Shampine
in [9]. For the algebraic singularity, numerical results confirm the superiority
of the discrete modified projection method over the collocation ones. In the
case of the logarithmic singularity, α = 1, numerical results show that the
discrete iterated modified projection solution converges faster than the other
three approaches.

Then, we define 2 two-grid iteration schemes associated with the discrete
modified projection method and compare their performance with the two-grid
iteration schemes associated with the collocation method. We show that the
iterates in the two-grid iteration scheme associated with the discrete modi-
fied projection method converge faster than the corresponding iterates in the
discrete collocation method.

The paper is arranged as follows. In Section 2 we describe the product inte-
gration method, quote a result about the smoothness of the exact solution and
state the results about the order of convergence of the approximate solution um

in the product integration method. In Section 3 the discrete collocation, the
discrete iterated collocation, the discrete modified projection and the discrete
iterated modified projection methods are defined. Then, we obtain orders of
convergence of approximate solutions in various discrete methods. Numerical
results related to these discrete methods for the integral operator with both
an algebraic singularity and a logarithmic singularity are given in Section 4.
Section 5 is devoted to two-grid methods followed by its numerical illustration
in Section 6.
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2 Product Integration

In this section we recall the product integration method and state some
convergence results which are available in the research literature.

The exact solution of (1) has a singular behavior at the two end points
of the interval [0, 1]. Hence a graded mesh is needed to define a piecewise
polynomial approximation.
The concept of a graded mesh was developed by Rice [10]. In [1] Schneider
considers a graded mesh and obtains the orders of convergence for ∥u−um∥∞.
He shows that an appropriate choice of interpolation points, such as the Gauss
points, improves the order of convergence. Atkinson and Shampine [9] discuss
the details of the computation of weights in the product integration method
and give computational results.

Let q ≥ 1, m ∈ N and m be even. Consider the following graded partition
of [0, 1] :

yi =
1

2

(
2(i− 1)

m

)q

, 1 ≤ i ≤ m

2
+ 1,

yi = 1− ym+2−i,
m

2
+ 1 ≤ i ≤ m+ 1. (3)

Then

max
1≤i≤m

(yi+1 − yi) ≤
q

m
. (4)

Let r ≥ 1 and let Xm denote the space of piecewise polynomial functions
of degree ≤ r − 1 with respect to the above partition. Choose

0 ≤ µ1 < µ2 < · · · < µr ≤ 1. (5)

The mr collocation points are chosen as si,j = yi + µj(yi+1 − yi), i = 1, . . . ,m,
j = 1, . . . , r.
An interpolatory map πm : C[0, 1] → Xm is defined by

(πmu)(si,j) = u(si,j), i = 1, . . . ,m, j = 1, . . . , r.

If µ1 = 0 and µr = 1, then Xm ⊂ C[0, 1] and the m(r − 1) + 1 collocation
points are given by

si,j = yi + µj(yi+1 − yi), i = 1, . . . ,m, j = 1, . . . , r − 1, sm,r = ym+1.

Then πm converges to the identity operator pointwise on C[0, 1]. As in
Atkinson et al [11], πm can be extended to L∞([0, 1]) and

sup
m

∥πm∥ ≤ C1. (6)
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Let {ηi,j : i = 1, . . . ,m, j = 1, . . . , r} be a basis for Xm such that

ηi,j(sk,ℓ) = δi,kδj,ℓ.

Then

(πmu)(t) =

m∑
i=1

r∑
j=1

u(si,j)ηi,j(t), t ∈ [0, 1].

It follows that

Tπmu(s) =

m∑
i=1

r∑
j=1

u(si,j)

∫ 1

0

gα(|s− t|)ηi,j(t)dt

=

m∑
i=1

r∑
j=1

ωi,j(s)u(si,j). (7)

The exact equation (1) is approximated by λ um−Tπmum = f (equation (2)).
Note that the operators {Tπm} are collectively compact and converge

pointwise to T on C[0, 1]. Hence for m large enough, (λI − Tπm) is invertible,∥∥(λI − Tπm)−1
∥∥ ≤ C2 (8)

and (2) has a unique solution. Note that

u− um = (λI − T )−1f − (λI − Tπm)−1f

= (λI − Tπm)−1(T − Tπm)(λI − T )−1f

= (λI − Tπm)−1T (I − πm)u.

Hence

∥u− um∥∞ ≤ C2∥T (I − πm)u∥∞. (9)

We quote a result about the smoothness of the solution u of (1) from Atkinson
[12].

The Hölder spaces are defined as follows. For 0 < α < 1,

C(0,α)[0, 1] =

{
g ∈ C[0, 1] : dα(g) = sup

0≤t,τ≤1

|g(t)− g(τ)|
|t− τ |α

< ∞
}

(10)

and

C(0,1)[0, 1] =

{
g ∈ C[0, 1] : sup

0≤t,τ≤1

|g(t)− g(τ)

|t− τ logB/(t− τ)|
< ∞

}
for some B > 1.
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Theorem 1 (Atkinson [12]) Let k ≥ 0 be an integer, and let 0 < α ≤ 1. Assume that

f ∈ C(0,α)[0, 1], f ∈ Ck(0, 1) and ti(1− t)if (i)(t) ∈ C(0,α)[0, 1], i = 1, . . . , k Then

1. The solution u of (1) satisfies u ∈ C(0,α)[0, 1], u ∈ Ck(0, 1) and

ui(t) = ti(1− t)iu(i)(t) ∈ C(0,α)[0, 1], i = 1, . . . , k.

Further ui(0) = ui(1) = 0, i = 1, . . . , k.

2. For 0 < α < 1, |u(i)(t)| ≤ ci t
α−i, 0 < t ≤ 1

2
, i = 1, . . . , k,

|u(i)(t)| ≤ ci (1− t)α−i, 1
2 ≤ t < 1, i = 1, . . . , k.

With α = 1, for any ϵ ∈ (0, 1),

|u(i)(t)| ≤ ci t
1−ϵ−i, 0 < t ≤ 1

2
, i = 1, . . . , k,

|u(i)(t)| ≤ ci (1− t)1−ϵ−i,
1

2
≤ t < 1, i = 1, . . . , k.

Throughout this paper we assume that f ∈ C(0,α)[0, 1]
⋂

Cr(0, 1) and for
i = 1, . . . , r, ti(1− t)if (i)(t) ∈ C(0,α)[0, 1].

In [10], Rice has proved the following estimate: If 0 < α < 1 and q ≥ r

α
, then

∥u− πmu∥∞ = O
(
m−r

)
. (11)

It then follows from (9) that

∥u− um∥∞ = O
(
m−r

)
. (12)

If α = 1 and q > r, then

∥u− um∥∞ = O
(
m−r

)
. (13)

The above results can be improved by a suitable choice of collocation points.

We describe them below. Let M =

∫ 1

0

r∏
j=1

(µj − t)dt. Note that if µj , j =

1, . . . , r, are the Gauss points, then M = 0. In [1] Schneider has proved the
following error estimates.

Let M = 0 and 0 < α < 1. If q ≥ α+ r + 1

2α
, then

∥T (I − πm)u∥∞ = O
(
m−r−α

)
. (14)

It then follows from (9) that

∥u− um∥∞ = O
(
m−r−α

)
. (15)
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Let M = 0 and α = 1. If q >
r + 2

2
, then

∥T (I − πm)u∥∞ = O
(
m−r−1 log(m)

)
. (16)

It follows that

∥u− um∥∞ = O
(
m−r−1 log(m)

)
. (17)

In the next Section, some discrete operators which approximate Tπm are
defined and then two-grid methods associated with these discrete operators
are described.

3 Projection based Discrete Methods

In the case of an integral operator

(Tu)(s) =

∫ 1

0

k(s, t)u(t)dt, 0 ≤ s ≤ 1,

where the kernel k(·, ·) is either smooth or is of the type of Green’s function,
the discrete versions of various projection methods are defined by replacing
the integral in the definition of T by a convergent quadrature formula.

The discrete version of the iterated collocation method for an Urysohn
integral equation with a smooth kernel is considered in Atkinson-Flores [13],
whereas the discrete versions of the modified projection and the iterated
modified projection methods are investigated in Kulkarni-Rakshit [14].

In the present case, we replace T by

Tπm(u)(s) =

m∑
i=1

r∑
j=1

ωi,j(s)u(si,j).

Choose n ∈ N such that n is even and m = np, p ∈ N. Let q ≥ 1 and
consider the following coarse partition of [0, 1] :

xi =
1

2

(
2(i− 1)

n

)q

, 1 ≤ i ≤ n

2
+ 1,

xi = 1− xn+2−i,
n

2
+ 1 < i ≤ n+ 1. (18)

Let r ≥ 1 and Xn denote the space of piecewise polynomial functions of degree
≤ r − 1 with respect to the above partition. The nr collocation points are
chosen as ti,j = xi + µj(xi+1 − xi), i = 1, . . . , n, j = 1, . . . , r, where µj ’s are
from (5).
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Let πn : C[0, 1] → Xn be defined as

(πnu)(ti,j) = u(ti,j), i = 1, . . . , n, j = 1, . . . , r. (19)

Note that

yip+1 =
1

2

(
2(ip)

m

)q

=
1

2

(
2(i+ 1− 1)

n

)q

= xi+1.

Discrete Collocation Method

We define TC
n = πnTπmπn and approximate (2) by

λ uC
n − πnTπmπnu

C
n = πnf.

Note that πnu
C
n = uC

n . Hence

(λ− πnTπm)uC
n = πnf. (20)

Furthermore πn converges to the Identity operator on C[0, 1], {Tπm : m ≥
1} is collectively compact and is pointwise convergent on C[0, 1]. Hence ∥(πn−
I)Tπm∥ → 0 as n → ∞. It follows that {πnTπm : n ≥ 1,m ≥ 1} is collectively
compact. For n large enough, (λI − πnTπm) is invertible,∥∥(λI − πnTπm)−1

∥∥ ≤ C3 (21)

and (20) has a unique solution. Apply πn to (2) to obtain

λπnum − πnTπmum = πnf.

Thus,

(λ− πnTπm)um = πnf + λ(I − πn)um. (22)

From (20) and (22) we obtain

um − uC
n = λ(λ− πnTπm)−1(I − πn)um.

Hence using the estimates (6) and (21), we obtain

∥um − uC
n ∥∞ ≤ |λ|C3∥(I − πn)um∥∞

≤ |λ|C3∥(I − πn)u∥∞ + |λ|C3(1 + C1)∥u− um∥∞. (23)

Bearing in mind that πmπn = πn and Tπmπn = Tπn, u
C
n is also the solution

of (λ− πnTπn)u
C
n = πnf , so it is the collocation approximation at the coarse

grid.
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Discrete Iterated Collocation Method

We define TS
n = Tπmπn = Tπn and approximate (2) by

λ uS
n − Tπnu

S
n = f. (24)

Indeed, we recover the product integration on the coarse grid.
Then u− uS

n = (λI − Tπn)
−1T (I − πn)u. Hence

∥u− uS
n∥∞ ≤ C2∥T (I − πn)u∥∞

and from (9)

∥um − uS
n∥∞ ≤ ∥um − u∥∞ + ∥u− uS

n∥∞
≤ C2(∥T (I − πm)u∥∞ + ∥T (I − πn)u∥∞). (25)

Discrete Modified Projection Method

To build this method, and contrary to the preceding ones, two grids are needed
(a coarse and a fine).

We define TM
n = πnTπm + Tπmπn − πnTπmπn. Then

Tπm − TM
n = (I − πn)Tπm(I − πn) = (I − πn)T (πm − πn).

We approximate (2) by

λ uM
n − TM

n uM
n = f. (26)

Since ∥Tπm − TM
n ∥ ≤ 2C1∥(I − πn)T∥ → 0 as n → ∞, for n large enough,

λI − TM
n is invertible and ∥∥(λI − TM

n )−1
∥∥ ≤ C4. (27)

We have

um − uM
n = (λI − Tπm)−1f − (λI − TM

n )−1f

= (λI − TM
n )−1(Tπm − TM

n )(λI − Tπm)−1f

= (λI − TM
n )−1(I − πn)T (πm − πn)um.

Note that

∥(I − πn)T (πm − πn)um∥∞ ≤ 2C1∥(I − πn)T∥∥um − u∥∞ +
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∥(I − πn)T (I − πm)u∥∞ + ∥(I − πn)T (I − πn)u∥∞.

Hence

∥um − uM
n ∥∞ ≤ 2C1C4∥(I − πn)T∥∥um − u∥∞ +

C4[∥(I − πn)T (I − πm)u∥∞ + ∥(I − πn)T (I − πn)u∥∞].(28)

Discrete Iterated Modified Projection Method

We define

ũM
n =

1

λ
(TπmuM

n + f). (29)

It can be proved that

∥um − ũM
n ∥∞ ≤ C5(∥T (I − πn)T∥∥uM

n − um∥∞ +

∥T (I − πn)T (I − πn)u∥∞). (30)

We skip the details.

Error Estimates

We consider an integral operator with an algebraic singularity and obtain
orders of convergence for the discrete collocation solution, the discrete iterated
collocation solution and the discrete modified projection solution.

Proposition 1 Let (Tu)(s) =

∫ 1

0

1

|s− t|1−α
u(t) dt, 0 < α < 1. If u ∈ L∞[0, 1],

then Tu ∈ C(0,α)[0, 1] and

dα(Tu) = sup
0≤s,s′≤1

(T u) (s) - (T u) (s’)

|s− s′|α ≤ 22−α + 1

α
∥u∥∞. (31)

Proof Note that∣∣(Tu)(s)− (Tu)(s′)
∣∣ ≤ (∫ 1

0

∣∣∣∣∣ 1

|s− t|1−α
− 1

|s′ − t|1−α

∣∣∣∣∣ dt
)

∥u∥∞

≤
[
22−α + 1

α
∥u∥∞

]
|s′ − s|α.

It follows that dα(Tu) ≤
22−α + 1

α
∥u∥∞, which completes the proof. □
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Theorem 2 Let (Tu)(s) =

∫ 1

0

1

|s− t|1−α
u(t) dt, 0 < α < 1, and πn be the

interpolatory projection defined by (19). Then

∥(I − πn)T∥ = O
(
n−α

)
. (32)

Proof Let g ∈ C(0,α)[0, 1]. Then |g(t)− g(s)| ≤ dα(g)|t− s|α, s, t ∈ [0, 1]. We define
a piecewise constant function g0 as follows. Let

ti =
xi + xi+1

2
, g0(x1) = g(t1), g0(t) = g(ti), t ∈ (xi, xi+1], i = 1, . . . , n.

Then πn(g0) = g0. From (4) we recall that max
1≤i≤n

(xi+1 − xi) ≤ q

n
. Hence for t ∈

[xi, xi+1],

|g(t)− (πng)(t)| = |(I − πn)(g − g0)(t)|
≤ (1 + ∥πn∥)|g(t)− g(ti)|
≤ (1 + C1)q

αdα(g)n
−α.

Hence if g ∈ C(0,α)[0, 1], then

∥g − πng∥∞ ≤ (1 + C1)q
αdα(g)n

−α.

Let u ∈ L∞[0, 1]. Then from (31), dα(Tu) ≤
22−α + 1

α
∥u∥∞. It follows that

∥(I − πn)Tu∥∞ ≤ (1 + C1)q
αdα(Tu)n

−α ≤ (1 + C1)q
α 22−α + 1

α
∥u∥∞n−α.

The required estimate follows by taking the supremum over the set {u ∈ L∞[0, 1] :
∥u∥∞ ≤ 1}. □

Theorem 3 If q ≥ r

α
for 0 < α < 1 and q > r for α = 1, then

∥um − uCn ∥∞ = O(n−r), ∥um − uSn∥∞ = O(n−r). (33)

If 0 < α < 1 and q ≥ min

{
r

α
,
α+ r + 1

2α

}
, then

∥um − uMn ∥∞ = O
(
n−r−α

)
. (34)

If M =

∫ 1

0

r∏
j=1

(µj − t)dt = 0, 0 < α < 1 and q ≥ α+ r + 1

2α
, then

∥um − uSn∥∞ = O(n−r−α). (35)

If M = 0, α = 1 and q >
r + 2

2
, then

∥um − uSn∥∞ = O(n−r−1 log(n)). (36)
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Proof Recall from (23) that

∥um − uCn ∥∞ ≤ |λ|C3∥(I − πn)u∥∞ + |λ|C3(1 + C1)∥u− um∥∞.

Since m ≥ n, from (11) and (12) we obtain ∥um − uCn ∥∞ = O(n−r).
Recall from (25) that

∥um − uSn∥∞ ≤ C2(∥T (I − πm)u∥∞ + ∥T (I − πn)u∥∞) (37)

≤ C2∥T∥(∥(I − πm)u∥∞ + ∥(I − πn)u∥∞). (38)

Hence from (11), ∥um − uSn∥∞ = O(n−r).
We recall from (28) the following error estimate in the discrete modified

projection solution:

∥um − uMn ∥∞ ≤ 2C1C4∥(I − πn)T∥∥um − u∥+
C4[∥(I − πn)T (I − πm)u∥∞ + ∥(I − πn)T (I − πn)u∥∞]

Using (11), (12), (14) and (32), we conclude that if 0 < α < 1 and q ≥

min

{
r

α
,
α+ r + 1

2α

}
, then

∥um − uMn ∥∞ = O
(
n−r−α

)
.

If M = 0, 0 < α < 1 and q ≥ α+ r + 1

2α
, then from (14) and (37),

∥um − uSn∥∞ = O(n−r−α).

If M = 0, α = 1 and q >
r + 2

2
, then from (16) and (37),

∥um − uSn∥∞ = O(n−r−1 log(n)).

This completes the proof. □

We now deduce an error estimates from Theorem 3 in the case of an

algebraic singularity with α =
1

2
and u(t) =

√
t+

√
1− t as exact solution.

Corollary 1 Let α =
1

2
and u(t) =

√
t+

√
1− t.

1. Let Xn be the space of piecewise linear polynomials, that is, r = 2, and let
µ1 = 0, µ2 = 1. Then M ̸= 0. If q = 4, then ∥um − uC

n ∥ = O(n−2), ∥um −
uS
n∥ = O(n−2), ∥um − uM

n ∥ = O(n−2.5).
2. Let Xn be the space of piecewise constant polynomials, that is, r = 1, and

let µ1 =
1

2
. Then M = 0. If q ≥ 2, then ∥um−uC

n ∥ = O(n−1), ∥um−uM
n ∥ =

O(n−1.5). If q ≥ 2.5, then ∥um − uS
n∥ = O(n−1.5).

3. Let Xn be the space of piecewise linear polynomials, that is, r = 2, and let
µ1, µ2 be the Gauss 2 points. Then M = 0. If q ≥ 4, then ∥um − uC

n ∥ =
O(n−2). If q ≥ 3.5, then ∥um − uS

n∥ = O(n−2.5), ∥um − uM
n ∥ = O(n−2.5).

We also deduce error estimates for logarithmic singularity (α = 1) with the
exact solution chosen to be u(t) = t log(t)+(1−t) log(1−t), from Theorem 3.
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Corollary 2 Let α = 1 and u(t) = t log(t) + (1− t) log(1− t).

1. Let Xn be the space of piecewise linear polynomials, that is, r = 2, and let
µ1 = 0, µ2 = 1. Then M ̸= 0. If q > 2, then ∥um − uC

n ∥ = O(n−2), ∥um −
uS
n∥ = O(n−2).

2. Let Xn be the space of piecewise constant polynomials, that is, r = 1, and let

µ1 =
1

2
. Then M = 0. If q > 1.5, then ∥um − uC

n ∥ = O(n−1), ∥um − uS
n∥ =

O(n−2 log(n)).
3. Let Xn be the space of piecewise linear polynomials, that is, r = 2, and let

µ1, µ2 be the Gauss 2 points. Then M = 0. If q > 2, then ∥um − uC
n ∥ =

O(n−2), ∥um − uS
n∥ = O(n−3 log(n)).

4 Numerical Experiments for Projection based
Discrete Methods

Recall that Xm is the space of piecewise polynomials with respect to the
partition (3) and {ηi,j : i = 1, . . . ,m, j = 1, . . . , r} is a basis for Xm such
that ηi,j(sk,ℓ) = δi,kδj,ℓ. Then

(πmu)(t) =

m∑
i=1

r∑
j=1

u(si,j)ηi,j(t), t ∈ [0, 1]

and

Tπmu(s) =

m∑
i=1

r∑
j=1

u(si,j)

∫ 1

0

gα(|s− t|)ηi,j(t)dt =
m∑
i=1

r∑
j=1

ωi,j(s)u(si,j).

Consider the case of the piecewise constant polynomials which interpolate at

the mid-points. In this case, r = 1 and si,1 =
yi + yi+1

2
.

Note that ηi,1(t) =

{
1, if t ∈ [yi, yi+1),
0, otherwise.

Hence

Tπmu(s) =

m∑
i=1

u(si,1)

∫ yi+1

yi

gα(|s− t|)dt =
m∑
i=1

ωi(s)u(si,1).

In the case of the continuous piecewise linear polynomials which interpolate at
the partition points, the dimension of Xm is m + 1. The interpolation points
are yi, i = 1, . . . ,m+ 1. We have

(πmu)(t) =

m+1∑
i=1

u(yi)ηi(t), t ∈ [0, 1],
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where the basis functions are ηi(t) =


t−yi−1

yi−yi−1
, if t ∈ [yi−1, yi],

yi+1−t
yi+1−yi

, if t ∈ [yi, yi+1],

0 otherwise.
It follows that

Tπmu(s) =

(
1

y2 − y1

∫ y2

y1

gα(|s− t|)(y2 − t)dt

)
u(y1) +

m∑
i=2

(
1

yi − yi−1

∫ yi

yi−1

gα(|s− t|)(t− yi−1)dt +

1

yi+1 − yi

∫ yi+1

yi

gα(|s− t|)(yi+1 − t)dt

)
u(yi) +(

1

ym+1 − ym

∫ ym+1

ym

gα(|s− t|)(t− ym)dt

)
u(ym+1)

=

m+1∑
i=1

ωi(s)u(yi)

In the case of the piecewise linear polynomials which interpolate at Gauss 2
points, the dimension of Xm is 2m. The interpolation points are given by

si,1 =
yi + yi+1

2
− 1√

3

yi+1 − yi
2

, si,2 =
yi + yi+1

2
+

1√
3

yi+1 − yi
2

, i = 1, . . . ,m.

The basis functions are

ηi,1(t) =

{
si,2−t

si,2−si,1
, if t ∈ [yi, yi+1],

0 otherwise,
ηi,2(t) =

{
t−si,1

si,2−si,1
, if t ∈ [yi, yi+1],

0 otherwise.

It follows that

Tπmu(s) =

m∑
i=1

(
1

si,2 − si,1

∫ yi+1

yi

gα(|s− t|)(si,2 − t)dt

)
u(si,1) +

m∑
i=1

(
1

si,2 − si,1

∫ yi+1

yi

gα(|s− t|)(t− si,1)dt

)
u(si,2)

=

m∑
i=1

[ωi,1(s)u(si,1) + ωi,2(s)u(si,2)] .

Thus, in the above three cases, the computation of the weights ωi,j(s) reduces

to the integrals of the form

∫ b

a

gα(|s − t|)dt or

∫ b

a

gα(|s − t|) t dt. These

integrals can be evaluated analytically. However, since we are using a graded



Springer Nature 2021 LATEX template

Fast and Accurate Solvers for Weakly Singular Integral Equations 15

mesh, there is a loss of significance. Hence we follow the approach of Atkinson
and Shampine [9] and evaluate them numerically with a sufficient accuracy.

Example 1: Algebraic Singularity

Let

T (u)(s) =

∫ 1

0

1√
|s− t|

u(t) dt, that is, α =
1

2
.

We solve the integral equation

10 u− T (u) = f,

where the right hand side f is so chosen that u(t) =
√
t +

√
1− t, t ∈ [0, 1].

This solution satisfies the properties listed in Theorem 1.
We choose n = 4 and m = 256 (higher values lead to similar results). In the

following, we illustrate and confirm the bounds described in Corollary 1. The
error and the computed orders of convergence achieved with (i) continuous
piecewise linear interpolation at the partition points, (ii) piecewise constant
interpolation at the mid-points and (iii) piecewise linear interpolation at Gauss
2 points, are reported. The notation is uC

n for collocation solution, uS
n for

iterated collocation, uM
n for modified projection, and ũM

n for iterated modified
projection. The integer q is the parameter for the graded mesh and its value
has impact on the convergence rate.

Table 1: Errors and computed orders of convergence: continuous piecewise
linear interpolation at the partition points (Algebraic Singularity).

q ∥um − uC
n ∥∞ order ∥um − uS

n∥∞ order ∥um − uM
n ∥∞ order ∥um − ũM

n ∥∞ order

1 3.18× 10−02 0.52 8.84× 10−04 1.19 3.98× 10−04 1.11 1.19× 10−05 1.64
2 2.11× 10−04 1.95 6.77× 10−05 1.98 1.27× 10−05 2.04 4.61× 10−07 2.79
3 5.33× 10−04 1.58 8.07× 10−05 2.03 1.04× 10−06 2.06 1.38× 10−06 2.31
4 7.17× 10−04 1.84 1.29× 10−04 2.01 1.70× 10−05 2.34 2.30× 10−06 2.50

Table 1 shows that for continuous piecewise linear interpolation at the
partition points the error in the discrete iterated modified projection method
is less than that in the discrete iterated collocation method, as well as less
than the two non-iterated versions.

From Corollary 1, if q = 4, then the expected orders of convergence are
2 for the collocation and the iterated collocation solutions, whereas 2.5 for
the two modified projection solutions. These estimates are confirmed by the
numerical computations.

For the piecewise constant interpolation at the mid-points, Table 2, the
error in the discrete iterated collocation method is less than the error in the
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Table 2: Errors and computed orders of convergence: piecewise constant
interpolation at the mid-points (Algebraic Singularity).

q ∥um − uC
n ∥∞ order ∥um − uS

n∥∞ order ∥um − uM
n ∥∞ order ∥um − ũM

n ∥∞ order

1 4.14× 10−02 0.84 7.29× 10−04 1.15 5.55× 10−04 1.17 9.82× 10−06 1.52
2 1.17× 10−02 1.21 9.23× 10−05 1.68 6.97× 10−05 1.37 2.38× 10−06 1.38
3 6.84× 10−03 1.27 1.20× 10−04 1.60 9.52× 10−05 1.33 4.15× 10−06 1.26
4 7.79× 10−03 1.28 1.66× 10−04 1.63 1.30× 10−04 1.36 6.07× 10−06 1.34

discrete collocation method. As expected the errors in discrete iterated collo-
cation method and the discrete modified projection method are similar. The
error in the discrete iterated modified projection method is the least.

From Corollary 1, if q ≥ 2.5, then the expected orders of convergence for the
collocation solution is 1, whereas for the iterated collocation and the modified
projection solutions it is 1.5.

Table 3: Errors and computed orders of convergence: Piecewise linear
interpolation at Gauss 2 points (Algebraic Singularity).

q ∥um − uC
n ∥∞ order ∥um − uS

n∥∞ order ∥um − uM
n ∥∞ order ∥um − ũM

n ∥∞ order

1 1.99× 10−02 1.01 3.18× 10−04 1.27 2.51× 10−04 1.24 3.60× 10−06 1.47
2 8.75× 10−03 1.33 3.05× 10−05 1.78 2.06× 10−05 1.97 3.49× 10−07 2.36
3 2.74× 10−03 1.69 2.57× 10−05 1.86 1.75× 10−05 2.49 7.66× 10−07 2.76
4 1.14× 10−03 2.17 3.99× 10−05 2.10 3.51× 10−05 2.34 1.57× 10−06 2.56

Observe that for piecewise linear interpolation at Gauss 2 points (Table
3), again, the error in the discrete iterated collocation method is less than the
error in the discrete collocation method. As expected the errors in discrete
iterated collocation method and the discrete modified projection method are
similar. The error in the discrete iterated modified projection method is the
least and there is an improvement in the order of convergence.

The orders of convergence estimated by Corollary 1 are also verified: for
q ≥ 3.5 the expected orders of convergence for the collocation solution is 2,
whereas for the modified projection solution it is 2.5.

Example 2: Logarithmic Singularity

Let T (u)(s) =

∫ 1

0

log |s− t| u(t) dt. We solve the integral equation

u− T (u) = f,

where the right hand side f is so chosen that u(t) = t log(t) + (1 − t) log(1 −
t), t ∈ [0, 1]. This solution satisfies the properties listed in Theorem 1.
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In Table 4 we observe that the discrete modified projection method
improves over the discrete iterated collocation method. The discrete iterated
modified projection method is still the best.

From Corollary 2, if q > 2, then the expected orders of convergence in the
discrete collocation method and the discrete iterated collocation method are 2,
which are inline with the numerical computations for q = 4. Numerical results
indicate that the order of convergence for the discrete modified projection
methods is 3, as well as for iterated modified projection.

Table 4: Errors and computed orders of convergence: continuous piecewise
linear interpolation at the partition points (Logarithmic Singularity).

q ∥um − uC
n ∥∞ order ∥um − uS

n∥∞ order ∥um − uM
n ∥∞ order ∥um − ũM

n ∥∞ order

1 3.01× 10−02 0.45 1.49× 10−03 1.40 3.12× 10−04 1.54 1.47× 10−05 2.37
2 5.43× 10−03 0.97 9.67× 10−05 2.08 1.66× 10−06 2.96 6.81× 10−07 3.08
3 8.11× 10−04 1.58 1.33× 10−04 2.09 5.85× 10−06 2.92 2.10× 10−06 3.12
4 4.26× 10−04 1.84 2.24× 10−04 2.09 1.39× 10−05 2.88 4.88× 10−06 3.13

For piecewise constant interpolation at the mid-points, Table 5, it can be
seen that the error in the discrete iterated collocation method is less than the
error in the discrete collocation method. Whatever the value q of the graded
mesh can be, the error in the discrete iterated modified projection method is
always the smallest.

From Corollary 2, if q > 1.5, then the expected order of convergence for the
collocation solution is 1, whereas ∥um − uS

n∥∞ = O
(
n−2 log(n)

)
. Numerical

results indicate that the order of convergence in the discrete modified projec-
tion method is 2 and in the discrete iterated modified projection method it is
2.5 (even higher).

Table 5: Errors and computed orders of convergence: piecewise constant
interpolation at the mid-points (Logarithmic Singularity).

q ∥um − uC
n ∥∞ order ∥um − uS

n∥∞ order ∥um − uM
n ∥∞ order ∥um − ũM

n ∥∞ order

1 3.13× 10−02 1.07 6.35× 10−04 1.73 3.15× 10−04 1.85 5.71× 10−06 2.69
2 1.17× 10−02 1.24 1.74× 10−04 2.06 9.07× 10−05 2.09 2.68× 10−06 2.53
3 1.39× 10−02 1.24 2.91× 10−04 2.06 1.65× 10−04 2.11 6.58× 10−06 2.70
4 1.69× 10−02 1.25 4.66× 10−04 2.06 2.73× 10−05 2.13 1.35× 10−05 2.98

Considering now piecewise linear interpolation at Gauss 2 points, Table 6,
from Corollary 2, if q > 2, then the expected order of convergence for the
collocation solution is 2, whereas ∥um − uS

n∥∞ = O
(
n−3 log(n)

)
.

While the performance of the discrete iterated collocation method and the
discrete modified projection method is similar, the discrete iterated modified
projection method remains the best, both in terms of the error and the order
of convergence.
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Table 6: Errors and computed orders of convergence: piecewise linear
interpolation at Gauss 2 points (Logarithmic Singularity).

q ∥um − uC
n ∥∞ order ∥um − uS

n∥∞ order ∥um − uM
n ∥∞ order ∥um − ũM

n ∥∞ order

1 6.59× 10−03 1.39 9.20× 10−05 2.00 5.90× 10−05 2.06 1.84× 10−06 2.87
2 6.24× 10−04 2.17 1.16× 10−05 3.03 1.20× 10−05 3.06 1.02× 10−06 3.48
3 1.04× 10−03 2.27 3.76× 10−05 2.90 3.75× 10−05 2.92 3.67× 10−06 3.45
4 1.83× 10−03 2.24 8.49× 10−05 2.78 8.30× 10−05 2.80 9.33× 10−06 3.36

Overall, the discrete iterated modified method is clearly superior to the
others, and the discrete modified method can also provide good performance.
All theoretical bounds deduced are illustrated by the numerical results.

5 Two Grid Methods

In order to reduce the size of the linear systems to be solved, two-grid methods
are proposed for approximating the solution of

(λI − Tπm)um = f. (39)

These methods were considered in Kulkarni [15] for the multivariable Fred-
holm integral equations with smooth kernels. In [15], T was replaced by a
Nyström approximation, whereas in this paper it is replaced by Tπm. Previ-
ously, Hakk and Pedas [4], have proposed a two-grid method for collocation
and analyzed the convergence order, but without numerical experiments. The
aim of this section is also to fill this gap.

Method 1

Let u
(0)
m be an approximate solution of (39) and Tn be an approximation of

Tπm. The iteration is defined as

r(k) = f − (λ I − Tπm)u(k)
m = (λ I − Tπm)(um − u(k)

m ).

u(k+1)
m = u(k)

m + (λ I − Tn)
−1r(k), k = 0, 1, 2, . . . (40)

Then

um − u (k+1)
m = (I − (λI − Tn)

−1(λI − Tπm))(um − u(k)
m )

= (λI − Tn)
−1(Tπm − Tn)(um − u(k)

m ).

Let
τn = sup

m≥n
∥(λI − Tn)

−1(Tπm − Tn)∥.

Then
∥um − u(k+1)

m ∥∞ ≤ τn∥um − u(k)
m ∥∞.
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Remark 1 Let Tn = TC
n = πnTπn and consider the iteration scheme

r(k) = (λ I − Tπm)(um − u
(k)
m ).

u
(k+1)
m = u

(k)
m + (λ I − Tn)

−1πnr
(k), k = 0, 1, 2, . . . .

We show below that u
(k)
m is a constant sequence.

Let u
(0)
m = 0. Then r(0) = f ⇒ πnr

(0) = πnf.

The term z
(0)
n = (λ I − Tn)

−1πnr
(0) is obtained by solving

λ z
(0)
n − πnTπnz

(0)
n = πnr

(0).

Thus, z
(0)
n ∈ Xn.

As a consequence, u
(1)
m = z

(0)
n ∈ Xn. Now since πmπn = πn,

πnr
(1) = πnf − λ πnu

(1)
m + πnTπmπnu

(1)
m

= πnr
(0) − λ z

(0)
n + πnTπnz

(0)
n

= 0.

Hence z
(1)
n = (λ I − Tn)

−1πnr
(1) = 0 and

u
(2)
m = u

(1)
m = z

(0)
n .

Thus there is no improvement by iteration.

Remark 2 If we choose Tn = TM
n = πnTπm + Tπmπn − πnTπmπn, then

Tπm − Tn = (I − πn)Tπm(I − πn) = (I − πn)T (πm − πn).

Using (6) and (27) we deduce that

τn ≤ ∥(λI − TM
n )−1∥ sup

m≥n
(∥πm∥+ ∥πn∥) ∥(I − πn)T∥

≤ 2C1C4∥(I − πn)T∥.
It follows that

τn = O(∥(I − πn)T∥). (41)

Since T is a compact operator and πn converges to the Identity operator I pointwise,
it follows that ∥(I − πn)T∥ → 0 as n → ∞. Hence for n large enough τn < 1 and

∥um − u
(k+1)
m ∥∞ ≤ τn∥um − u

(k)
m ∥∞ (42)

Method 2

Let ũ
(0)
m be an approximate solution

(λ I − Tπm)um = f.

Let Tn be an approximation of Tπm. The iteration scheme is defined as

r(k) = f − (λ I − Tπm)ũ(k)
m = (λ I − Tπm)(um − ũ(k)

m )



Springer Nature 2021 LATEX template

20 Fast and Accurate Solvers for Weakly Singular Integral Equations

ũ(k+1)
m = ũ(k)

m +
1

λ

[
r(k) + (λ I − Tn)

−1Tπmr(k)
]
, k = 0, 1, . . . (43)

In this case

um − ũ (k+1)
m = um − ũ(k)

m − 1

λ

[
I + (λ I − Tn)

−1Tπm

]
r(k)

= − 1

λ
(λ I − Tn)

−1 (Tn − Tπm)Tπm(um − ũ(k)
m ).

Let

τ̃n =
1

|λ|
sup
m≥n

∥(λ I − Tn)
−1 (Tn − Tπm)Tπm∥.

Then

∥um − ũ (k+1)
m ∥∞ ≤ τ̃n∥um − ũ(k)

m ∥∞ (44)

Remark 3 If we choose Tn = TC
n = πnTπn, then

Tπm − Tn = (I − πn)Tπm + πnT (πm − I) + πnT (I − πn).

Thus,

∥(Tπm − Tn)Tπm∥ ≤ ∥(I − πn)T∥∥T∥∥πm∥2 + ∥(I − πm)T∥∥T∥∥πn∥∥πm∥
+ ∥(I − πn)T∥∥T∥∥πn∥∥πm∥
≤ 3(C1)

2∥T∥∥(I − πn)T∥.
It follows that

τ̃n = O(∥(I − πn)T∥). (45)

Remark 4 If we choose Tn = TM
n = πnTπm + Tπmπn − πnTπmπn, then

∥(Tπm − Tn)Tπm∥ ≤ ∥(I − πn)T (I − πm)T∥∥πm∥+
∥(I − πn)T (I − πn)T∥∥πm∥

≤ 2C1∥(I − πn)T∥2.
Hence

τ̃n = O
(
∥(I − πn)T∥2

)
. (46)

A comparison of (41), (45) and (46) shows that while the iterates obtained
in the two-grid method 2 with the discrete collocation approximation and
the iterates obtained in the two-grid method 1 with the discrete modified
projection approximation converge at the same rate, the iterates obtained in
the two-grid method 2 with the discrete modified projection approximation
converge faster than these two iterates. These results are validated in Section
5.3 for specific examples of weakly singular integral equations with an algebraic
or a logarithmic singularity.

The two-grid method 2 with Tn = TC
n is considered in Hakk and Pedas [4].

However, there are no computational results.
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6 Numerical Experiments for Two Grid
Methods

We now give numerical results for the two grid methods. The results show
that the two-grid method 2 based on the discrete modified projection method
needs about half the number of iterations to achieve the desired accuracy as
compared to the two-grid method 2 based on the discrete collocation method
and the two-grid method 1 based on the discrete modified projection method.
Thus, the results given in (41), (42), (44), (45) and (46) are validated.

Algebraic Singularity

We consider the integral equation 10 u−
∫ 1

0

1√
|s− t|

u(t) dt = f, where

the right hand side f is so chosen that the exact solution is u(t) =
√
t +√

1− t, t ∈ [0, 1]. We choose m = 256, n = 4.
The stopping criterium used for the iterative process was

∥um − u
(k)
m ∥

∥um∥
< 10× eps

for method 1, and

∥um − ũ
(k)
m ∥

∥ũm∥
< 10× eps

for method 2, where eps ≈ 2.2× 10−16 is the machine precision.
Tables 7 to 9 present the errors for the three interpolation schemes. As pre-

dicted by (46) modified projection method 2 delivers the fastest convergence,
requiring half of the number of iterations as the others. Nevertheless, all the
three schemes allowed to reach the desired accuracy. The parameter q control-
ling the graded mesh does not seem to influence the speed of convergence (just
for illustration, results with q ̸= 1 are shown together with the ones obtained
with the uniform grid q = 1).

Logarithmic Singularity

We solve the integral equation u(s)−
∫ 1

0

log |s− t| u(t) dt = f(s), where

the right hand side f is so chosen that u(t) = t log(t)+(1−t) log(1−t), t ∈ [0, 1].
Again we choose m = 256, n = 4, and the stopping criterium is established
by the relative error

∥um − uk
m∥

∥um∥
< 10× eps
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Table 7: Errors for continuous piecewise linear interpolation at the partition
points (Algebraic Singularity)

Collocation Modified Proj. Modified Proj. Collocation Modified Proj. Modified Proj.
method 2 method 1 method 2 method 2 method 1 method 2

it. q = 1 q = 4

1 3.47× 10−02 7.16× 10−03 1.81× 10−03 1.50× 10−02 6.94× 10−03 2.26× 10−03

2 1.90× 10−03 4.03× 10−04 6.24× 10−06 8.16× 10−04 4.90× 10−04 1.25× 10−05

3 1.11× 10−04 2.37× 10−05 2.34× 10−08 5.55× 10−05 3.52× 10−05 7.10× 10−08

4 6.74× 10−06 1.43× 10−06 9.09× 10−11 3.87× 10−06 2.55× 10−06 4.04× 10−10

5 4.15× 10−07 8.73× 10−08 3.63× 10−13 2.72× 10−07 1.85× 10−07 2.30× 10−12

6 2.58× 10−08 5.39× 10−09 3.11× 10−15 1.92× 10−08 1.35× 10−08 1.47× 10−14

7 1.62× 10−09 3.36× 10−10 2.66× 10−15 1.36× 10−09 9.76× 10−10 2.66× 10−15

8 1.02× 10−09 2.10× 10−11 2.44× 10−15 9.66× 10−11 7.08× 10−11

9 6.48× 10−12 1.33× 10−12 6.86× 10−12 5.13× 10−12

10 4.13× 10−13 8.44× 10−14 4.89× 10−13 3.72× 10−13

11 2.74× 10−14 6.44× 10−15 3.62× 10−14 2.82× 10−14

12 3.33× 10−15 2.44× 10−15 4.44× 10−15 4.00× 10−15

13 2.44× 10−15 2.66× 10−15 2.66× 10−15

Table 8: Errors for piecewise constant interpolation at the mid-points
(Algebraic Singularity)

Collocation Modified Proj. Modified Proj. Collocation Modified Proj. Modified Proj.
method 2 method 1 method 2 method 2 method 1 method 2

it. q = 1 q = 3

1 7.40× 10−02 8.65× 10−03 2.71× 10−03 5.74× 10−02 8.02× 10−03 2.91× 10−03

2 2.68× 10−03 4.17× 10−04 7.27× 10−06 2.88× 10−03 5.35× 10−04 1.46× 10−05

3 1.32× 10−04 2.24× 10−05 2.42× 10−08 1.94× 10−04 3.94× 10−05 1.22× 10−07

4 7.19× 10−06 1.26× 10−06 9.44× 10−11 1.44× 10−05 3.47× 10−06 1.01× 10−09

5 4.10× 10−07 7.33× 10−08 3.94× 10−13 1.32× 10−06 3.21× 10−07 8.19× 10−12

6 2.40× 10−08 4.39× 10−09 3.11× 10−15 1.22× 10−07 2.94× 10−08 6.59× 10−14

7 1.47× 10−09 2.83× 10−10 2.22× 10−15 1.11× 10−08 2.66× 10−09 3.33× 10−15

8 9.46× 10−11 1.82× 10−11 1.01× 10−09 2.40× 10−10 2.66× 10−15

9 6.11× 10−12 1.18× 10−12 9.09× 10−11 2.15× 10−11

10 3.96× 10−13 7.75× 10−14 8.19× 10−08 1.93× 10−12

11 2.64× 10−14 6.44× 10−15 7.35× 10−13 1.72× 10−13

12 3.11× 10−15 2.22× 10−15 6.59× 10−14 1.55× 10−14

13 2.22× 10−15 6.88× 10−15 3.33× 10−15

14 3.11× 10−15 2.89× 10−15

15 2.66× 10−15 2.66× 10−15

for method 1, and
∥um − ũk

m∥
∥ũm∥

< 10× eps

for method 2. To lighten the presentation, only piecewise linear interpolation
at Gauss 2 points on an uniform grid are considered. For the other alternatives,
the outputs are similar.

Figure 1 shows the relative error against the number of iterations to com-
pute the approximate solution for the three different iterative approaches
(Collocation - method 2, Modified Projection - methods 1 and 2) on a
semi-logarithmic plot.
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Table 9: Errors for piecewise linear interpolation at Gauss 2 points (Algebraic
Singularity)

Collocation Modified Proj. Modified Proj. Collocation Modified Proj. Modified Proj.
method 2 method 1 method 2 method 2 method 1 method 2

it. q = 1 q = 4

1 4.98× 10−02 5.42× 10−03 1.55× 10−03 5.82× 10−02 5.43× 10−03 1.55× 10−03

2 1.53× 10−03 2.32× 10−04 4.71× 10−06 1.53× 10−03 2.32× 10−04 4.71× 10−06

3 6.86× 10−05 1.41× 10−05 2.52× 10−08 6.87× 10−05 1.41× 10−05 2.52× 10−08

4 4.71× 10−06 1.04× 10−06 1.30× 10−10 4.70× 10−06 1.04× 10−06 1.30× 10−10

5 3.47× 10−07 7.54× 10−08 6.57× 10−13 3.47× 10−07 7.54× 10−08 6.56× 10−13

6 2.53× 10−08 5.42× 10−09 5.33× 10−15 2.53× 10−08 5.41× 10−09 5.11× 10−15

7 1.82× 10−09 3.86× 10−10 2.89× 10−15 1.82× 10−09 3.86× 10−10 3.11× 10−15

8 1.30× 10−10 2.75× 10−11 2.66× 10−15 1.31× 10−10 2.75× 10−11

9 9.32× 10−12 1.95× 10−12 9.33× 10−12 1.95× 10−12

10 6.66× 10−13 1.39× 10−13 6.55× 10−13 1.13× 10−13

11 4.91× 10−14 1.13× 10−14 4.80× 10−14 1.13× 10−14

12 5.33× 10−15 2.89× 10−15 5.33× 10−15 3.11× 10−15

13 2.89× 10−15 2.66× 10−15 2.89× 10−15

14 2.66× 10−15 2.53× 10−15

5 10 15 20
10

-15

10
-10

10
-5

10
0

Collocation

Modified Projection 1

Modified Projection 2

Fig. 1: Two grid convergence history for piecewise linear interpolation at
Gauss 2 points (Logarithmic Singularity).

The number of iterates in the two-grid method associated with the modified
projection method 2 is about half as compared with those in the collocation
method 2 and modified projection method 1. This is inline with the theoretical
results given in (41), (45), and (46).

We now consider a larger value for m to report on elapsed time. Figure 2
shows the required number of iterations and time in seconds for m = 1024 in
terms of increasing values of n. Overall, computation time is greatly reduced
for the 2-grid approach when compared with the time to compute the product
integration on the fine grid. Just for note, we mention that for m = 1024, 3.50
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Fig. 2: Two grid required number of iterations and time in seconds for
m = 1024 and several values of n (logarithmic scale), for piecewise linear inter-
polation at Gauss 2 points (Logarithmic Singularity).

seconds are required while only 0.03 seconds for the two-grid approach with
n = 4. That is, more than 100 times faster. The elapsed time increases for
increasing values of n but the number of iterations decreases. An increase of
22 in the coarse grid induces a reduction in the number of iterations in 2−1.
The modified iteration method 2 consistently requires half of the iterations to
reach the desired accuracy when compared with the other two approaches, as
already reported.

It is worth to mention that Atkinson, in the nineties in [12], stated that “In
our experience these [two-grid methods] are the most efficient numerical meth-
ods for solving the linear systems obtained when solving integral equations of
the second kind”. All our results clearly highlight Atkinson’s statement.

7 Conclusion

In this paper we consider approximate solution of a weakly singular Fred-
holm integral equations. The kernel of the integral operator is of the form
|s−t|α−1, 0 < α < 1 or of the form log(|s−t|), the case corresponding to α = 1.
The approximating space is chosen to be the space of piecewise polynomials
with respect to a graded partition of [0, 1] with grading parameter q. We con-
sider a fine partition of [0, 1] with m subintervals and a coarse partition with n
subintervals. We choose r distinct points 0 ≤ µ1 < µ2 < · · · < µr ≤ 1 and the
interpolation points are obtained by shifting these points to each subinterval

of the partition. The value M =

∫ 1

0

r∏
j=1

(µj − t)dt characterizes the grid type:
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if M = 0, Gauss points are used. The interpolatory projection associated with
the fine partition is denoted by πm. In the Product Integration method, T is
replaced by Tπm and the solution is denoted by um.

Our aim is to obtain approximations of um. We prove the following results:

1. If 0 < α < 1, M ̸= 0 and q ≥ r

α
, then the discrete collocation and the iter-

ated discrete collocation solution converge to um at the same rate, whereas
in the discrete modified projection method, the order of convergence is
improved by α.

2. If 0 < α < 1, M = 0 and q ≥ α+ r + 1

2α
, then the iterated discrete colloca-

tion solution converge faster than the discrete collocation solution. Both the
discrete iterated collocation and the discrete modified projection solutions
converge to um at the same rate.

3. If α = 1, M ̸= 0, q > r, then the collocation solution and the iterated
collocation solution converge at the same rate. Numerical results indicate
that in the discrete modified projection method, the order of convergence
is improved by 1.

4. If α = 1, M = 0, q >
r + 2

2
, then the iterated discrete collocation solution

converges faster than the discrete collocation solution. Numerical results
indicate that the error in the discrete iterated modified projection method
is the least and there is an improvement in the order of convergence as
compared to the discrete iterated collocation solution.

5. In the case of Gauss points (M = 0), we expect that the discrete iterated
modified projection solution would converge faster than the discrete mod-
ified projection solution. However, we could not prove it theoretically. If
0 < α ≤ 1, then the numerical results show that the error is the least in
the discrete iterated modified projection method. If α = 1, then numerical
results show, in addition, an improvement in the order of convergence of
the discrete iterated modified projection solution.

6. In the two-grid method 2 based on the discrete collocation method, we have
the following estimate:

∥um − ũ (k+1)
m ∥∞ ≤ M1∥(I − πn)T∥∥um − ũ(k)

m ∥∞.

On the other hand, in the two-grid method 2 based on the discrete modified
projection method, we obtain

∥um − ũ (k+1)
m ∥∞ ≤ M2(∥(I − πn)T∥)2∥um − ũ(k)

m ∥∞.

Numerical results show that the number of iterations in the two-grid
method associated with the modified projection method 2 is half as com-
pared with those in the discrete collocation method 2. Both approaches
favor the computational efficiency by reducing dramatically the elapsed
time to reach a prescribed accuracy (near machine precision).
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The results in this paper can be extended to an integral operator of the
form

(Tu)(s) =

∫ 1

0

k(s, t)gα(|s− t|) u(t) dt, 0 ≤ s ≤ 1,

where k(s, t) is a smooth function and

gα(s) = sα−1, 0 < α < 1 and g1(s) = log(s).

In this case the formula (7) will be replaced by

Tmu(s) =

m∑
i=1

r∑
j=1

k(s, si,j)u(si,j)

∫ 1

0

gα(|s− t|)ηi,j(t)dt

=

m∑
i=1

r∑
j=1

ωi,j(s)k(s, si,j)u(si,j).
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