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ABSTRACT

Context. The Euclid mission of the European Space Agency will perform a survey of weak lensing cosmic shear and galaxy clustering
in order to constrain cosmological models and fundamental physics.
Aims. We expand and adjust the mock Euclid likelihoods of the MontePython software in order to match the exact recipes used
in previous Euclid Fisher matrix forecasts for several probes: weak lensing cosmic shear, photometric galaxy clustering, the cross-
correlation between the latter observables, and spectroscopic galaxy clustering. We also establish which precision settings are required
when running the Einstein–Boltzmann solvers CLASS and CAMB in the context of Euclid.
Methods. For the minimal cosmological model, extended to include dynamical dark energy, we perform Fisher matrix forecasts based
directly on a numerical evaluation of second derivatives of the likelihood with respect to model parameters. We compare our results
with those of previously validated Fisher codes using an independent method based on first derivatives of the Euclid observables.
Results. We show that such MontePython forecasts agree very well with previous Fisher forecasts published by the Euclid Collab-
oration, and also, with new forecasts produced by the CosmicFish code, now interfaced directly with the two Einstein–Boltzmann
solvers CAMB and CLASS. Moreover, to establish the validity of the Gaussian approximation, we show that the Fisher matrix marginal
error contours coincide with the credible regions obtained when running Monte Carlo Markov chains with MontePython while using
the exact same mock likelihoods.
Conclusions. The new Euclid forecast pipelines presented here are ready for use with additional cosmological parameters, in order to
explore extended cosmological models.

Key words. cosmology: theory – surveys – cosmology: observations – large-scale structure of Universe – cosmological parameters

1. Introduction

Forecasts for large-scale structure surveys are useful, first, for
predicting the sensitivity of future experiments to cosmological
models and parameters, and second, for paving the way to the
analysis of real data. After the publication of many independent
Euclid-like forecasts, an effort was undertaken within the Euclid

⋆ This paper is published on behalf of the Euclid Consortium.

Collaboration to compare several forecasting pipelines and val-
idate them across each other. This has led to the publication of
Euclid Collaboration (2020, ‘Euclid preparation: VII’, hereafter
EP:VII).

EP:VII presents a comparison of Fisher forecasts, based on
the calculation of the Fisher information matrix. This method
provides a good approximation to the true experimental sen-
sitivity as long as the posterior is nearly Gaussian, that is, as
long as the likelihood is a nearly Gaussian function of model
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parameters (for fixed fiducial data and assuming flat priors on
model parameters). Fisher matrices can be tricky to compute
because they involve a calculation of derivatives with a finite
difference method. The results may depend on the choice of
algorithm and stepsizes because of two factors: (i) numeri-
cal noise in the theory codes and Fisher matrix codes lead
to unstable derivatives in the small stepsize limit, and (ii) the
posterior may deviate from a multivariate Gaussian. EP:VII
shows how to mitigate these issues and obtains a very good
level of agreement between several Fisher matrix codes. We
choose one of them, CosmicFish (Raveri et al. 2016), as a rep-
resentative case of EP:VII codes. In this work, we validated
a handful of new pipelines by comparing them directly with
CosmicFish.

In order to compare different Fisher matrix codes in nearly
ideal conditions, one can make a strategical choice. First, com-
pute theory predictions in advance at various points in parameter
space using an Einstein–Boltzmann Solver (EBS) and store
the results in files. Secondly, let different Fisher matrix codes
read these data and compute the Fisher matrix with their own
algorithm. This strategy is the one adopted in EP:VII with
theory predictions usually computed by the EBS CAMB (Lewis
et al. 2000)1.

This approach is very well suited for the cross-comparison
of several Fisher matrix codes, but not for testing the impact of
different EBSs. One of the intermediate goals of this work is
to achieve such a task. We compared CosmicFish results when
the code reads some files produced either by CAMB or CLASS
(Lesgourgues 2011a; Blas et al. 2011). We found very good
agreement between these two choices. We also provide a dis-
cussion of the settings that need to be imposed to each code in
order to get stable, accurate, and mutually agreeing results.

The strategy described above relies on the storage of the data
containing theoretical predictions in some files. This was a ratio-
nal attitude for the purpose of comparing different Fisher matrix
codes. However, once Fisher matrix codes have been validated,
the need to run EBSs separately and to fill up a directory with
a substantial amount of data appears as relatively heavy. Ideally,
one would like to call the EBS on the fly from the Fisher code
in order to save time and memory. Another intermediate goal of
the current work is to implement this possibility in CosmicFish.
We validated forecasts in which CosmicFish calls either CAMB
or CLASS on the fly.

The Gaussian posterior approximation breaks in the case of
parameters with asymmetric error bars, with a posterior hitting
the prior edge (e.g. for parameters that are always positive and
whose best-fit value is close to zero), or in presence of a strong
nonlinear degeneracy between parameters. In order to go beyond
the Gaussian approximation, it is necessary to explore directly
the full likelihood instead of just its second derivatives computed
at the best-fit point. This is often done using Bayesian infer-
ence algorithms – such as, for instance, the Metropolis-Hastings
algorithm – involving Monte Carlo Markov chains (MCMCs).
Such MCMCs require a direct coding of the likelihood L unlike
Fisher matrix codes such as CosmicFish that require the coding
of its second derivatives, that is, of formulas in which the full
likelihood itself does not appear explicitly.

Euclid forecasts based on an MCMC approach were per-
formed earlier in a few papers (Audren et al. 2013b; Sprenger
et al. 2019; Brinckmann et al. 2019) using the framework of the

1 This was not the case for all the algorithms used in EP:VII: for the
photometric probe, two of the pipelines could call directly the EBS
instead of storing its results in files.

MontePython Bayesian inference package (Audren et al. 2013a;
Brinckmann & Lesgourgues 2019). However, the Euclid recipes
used in these works were never accurately compared to those
validated in EP:VII.

An advantage of the MontePython package is that, once
the mock likelihood describing an experiment has been imple-
mented, it is possible to run MontePython either in Fisher
mode or in MCMC mode. The former mode estimates the Fisher
matrix directly from the likelihood evaluated at a few points
in the vicinity of the best fit (for details see Brinckmann &
Lesgourgues 2019). The MCMC mode allows for more reliable
forecasts beyond the Gaussian approximation. It is important to
stress that both methods rely on the numerical implementation of
the likelihood formula in a single place in the code. Thus, once
the likelihood has been validated in one mode, it can be con-
sidered as equally valid in the other mode. In our case, we can
validate the MontePython Euclid likelihoods against the fore-
casts of EP:VII by running MontePython (MP) in Fisher mode
(referred to as MP/Fisherfrom now on), and then, if needed,
use the same likelihoods in the MontePython MCMC mode
(which we call MP/MCMC). As such, MontePython is a valuable
tool to transition from reliable Fisher forecasts to reliable MCMC
forecasts.

One of the main goals of this paper is actually to vali-
date the MP/Fisher Euclid pipeline against EP:VII pipelines,
for the same cosmological model as in EP:VII, that is, the
minimal ΛCDM model extended to dark energy with two
equation-of-state parameters w0 and wa – usually referred as the
Chevallier–Polarski–Linder (CPL) model (Chevallier & Polarski
2001; Linder 2003). This validation has established that the
MontePython Euclid likelihoods contain exactly the same mod-
elling of Euclid data as EP:VII, and can thus be used for robust
forecasts in both MP/Fisher and MP/MCMC modes. Note that
MontePython can be readily used with all the free parame-
ters of all the cosmological models implemented in the CLASS
code. Thus, this validation is an important step for cosmologists
who want to produce robust Euclid forecasts in essentially what-
ever extended cosmological model with or without the Fisher
approximation.

However, we should stress that the MontePython mock
Euclid likelihoods used within this paper should not be confused
with the official Euclid likelihood meant to be used with real
data, that is currently under development within the Euclid Col-
laboration. At this stage, the MontePython likelihoods are only
meant for forecasting purposes. They do not account for the state
of the art in the modelling of theoretical and instrumental effects
within the Euclid Collaboration.

In Sect. 2 we discuss the general analytic form of the like-
lihood and of the Fisher matrix assumed in EP:VII codes –
such as CosmicFish – and in MontePython. These expres-
sions rely on the same observable power spectra describing
the data at the level of two-point statistics. In Sect. 3 we pro-
vide more details on the calculation of these observable power
spectra, taking into account nonlinear corrections and instru-
mental errors. In Sect. 4 we compare five ways to compute
the Fisher matrix with either CosmicFish or MontePython. In
Sect. 5 we summarise our results for the sensitivity of Euclid
to the parameters of the ΛCDM+{w0, wa} model, showing also
the results of a MontePython MCMC forecast for comparison.
In Sect. 6 we discuss the importance of correctly setting the
input parameters of CAMB or CLASS in order to get consistent
and robust results – showing in particular that precision settings
need to be carefully handled in CAMB. We present our conclusions
in Sect. 7.
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2. Likelihood-based Fisher matrices

Forecasts for cosmological surveys are often based on the Fisher
matrix formalism. In a Bayesian context the Fisher matrix
describes the curvature of the logarithm of the likelihood L in
the vicinity of the best fit2.

Fαβ = −∂α∂β lnL
∣∣∣
best fit, (1)

where {α, β} are the model (cosmological or nuisance) parameter
indices. The Fisher matrix provides an accurate representation of
the true likelihood only if the latter is close to being Gaussian,
but it is fast to evaluate compared to a full MCMC forecast. In
the presence of strong degeneracies among the parameters and
highly non-Gaussian likelihoods, the Fisher matrix results may
depend heavily on the steps used to evaluate numerical deriva-
tives and may differ significantly from MCMC results. However,
in the case of a sufficiently Gaussian posterior, the inverse of
the Fisher matrix can be used to estimate confidence ellipses
for pairs of parameters and confidence intervals for individual
parameters. The present work confirms that for forecasts on the
sensitivity of Euclid to the parameters of the ΛCDM+{w0, wa}

model the Fisher formalism is applicable.

2.1. Photometric surveys

In a usual analysis of the photometric surveys of weak lens-
ing (WL) and galaxy clustering (GCph), the observed3 signal
is decomposed into spherical harmonic coefficients afid

i (ℓ,m) in
each redshift bin i. In many analyses, these coefficients are mod-
elled to be Gaussian distributed with a covariance matrix Cth

i j (ℓ).
In a realistic universe this only captures a part of the informa-
tion contained within the signal, but within this work we are not
concerned with the analysis of other higher order statistics (such
as for example the bi- or trispectrum, void or peak counts). Fur-
thermore, it is often presumed that a reduced analyzed fraction
of the sky fsky < 1 causes a corresponding proportional decrease
in the covariance matrix. This leads to the likelihood

L = N
∏
ℓm

1
√

det Cth
ℓ

e− fsky
1
2
∑

i j afid
i (ℓ,m) (Cth

i j )
−1(ℓ) [afid

j (ℓ,m)]∗ , (2)

where the indices {i, j} run over each bin of each probe,
while N is the likelihood normalization factor. Using the fact
that the observed covariance can be estimated via Cfid

i j (ℓ) =
1

2ℓ+1
∑

m afid
i (ℓ,m) [afid

j (ℓ,m)]∗, a few steps of algebra lead to

χ2 ≡ −2 ln
L

Lmax
= fsky

∑
ℓ

(2ℓ + 1) (3)

×

{
ln

[
det Cth(ℓ)
det Cfid(ℓ)

]
+ Tr[(Cth)−1(ℓ) Cfid(ℓ)] − N

}
,

where N is the size of each C(ℓ) matrix. From here, two pos-
sible steps can be taken. Either one follows the definition of
Eq. (1) to derive the Fisher matrix or one derives a more compact
expression of the likelihood. The latter approach leads to

χ2 = fsky

∑
ℓ

(2ℓ + 1)
dmix
ℓ

dth
ℓ

+ ln
dth
ℓ

dfid
ℓ

− N
 , (4)

2 In the context of forecasts the best fit is simply the assumed fiducial
model.
3 In typical forecasts there is no actual observed data. Instead, the
fiducial model (referred here as “fid”) is used to emulate a possible
observation.

with

dth
ℓ = det

[
Cth

i j (ℓ)
]
, (5)

dfid
ℓ = det

[
Cfid

i j (ℓ)
]
, (6)

dmix
ℓ =

∑
k

det


Cth

i j (ℓ) if j , k
Cfid

i j (ℓ) if j = k

. (7)

In the last definition k is an index running over each bin of each
probe and thus over each column of the theory matrix Cth. In
each term of the sum the determinant is evaluated over a matrix
such that the kth column of the theory matrix Cth has been
substituted by one column of the fiducial matrix Cfid.

The likelihood of Eq. (3) can also be used to derive an
expression for the Fisher matrix by differentiating twice with
respect to an arbitrary pair of parameters of indices {α, β} and
evaluating at the fiducial. Then we find a well-known compact
expression for the Fisher matrix (Carron 2013; EP:VII)

Fαβ =
1
2

fsky

∑
ℓ

(2ℓ + 1)Tr
{[

Cfid(ℓ)
]−1 [
∂αCth(ℓ)

∣∣∣
fid

]
(8)

[
Cfid(ℓ)

]−1 [
∂βCth(ℓ)

∣∣∣
fid

]}
,

where we omitted redshift bin indices for concision. All deriva-
tives are evaluated precisely at the fiducial model4.

2.2. Spectroscopic surveys

Similarly, for galaxy clustering data in a spectroscopic survey
(GCs) the likelihood is commonly assumed to be Gaussian with
respect to the observed galaxy power spectrum Pobs(k, µ, z), such
that χ2 ≡ −2 ln(L/Lmax) reads

χ2 ≡ −2 ln
L

Lmax
=

∑
i

∫
k2dk

∫
dµ

Vfid
i

8π2 (9)

×

Pth
obs

[
kobs(k, µ, zi), µobs(µ, zi), zi

]
− Pfid

obs (k, µ, zi)

Pth
obs

[
kobs(k, µ, zi), µobs(µ, zi), zi

] 
2

,

where k is the Fourier wavenumber, µ is the cosine of the angle
between the Fourier wavevector and the line of sight, zi is the
central redshift of bin i, and Vfid

i is the volume covered by this
bin. In the previous expression Pth

obs is the observable power spec-
trum, given by the galaxy spectrum of the theoretical cosmology
(the cosmology that one wants to confront to the data) plus shot
noise, and Pfid

obs is the power spectrum of the mock observation
(set equal to the galaxy spectrum of the fiducial cosmology plus
shot noise). The volume Vfid

i is evaluated for the latter cosmol-
ogy. Importantly, Eq. (9) already contains the Alcock-Paczyński
effect, in which the wavenumber k and angle µ for the observed
power spectrum are distorted through the impact of the analy-
sis pipeline that converts the observed angular positions ϑ and
redshifts z of individual galaxies into a power spectrum through
the use of some reference cosmology. This gives z-dependent
relations between the value of (k, µ) in the reference cosmology
and the observed values (kobs, µobs). We identify the reference

4 There exists another option: one may use a likelihood that is Gaussian
in the C(ℓ)’s instead of the aℓm’s. The EP:VII paper uses both methods
to compute the Fisher matrix forecasts, showing that they are equivalent
for all our practical purposes. See Eq. (142) and Eq. (143) in EP:VII for
details.
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cosmology and the fiducial cosmology in order to get simpler
equations, since in this case Pfid

obs does not receive additional
Alcock-Paczyński factors. We write the precise formulas for the
Alcock-Paczyński effect and the full observed power spectrum
Pobs(k, µ, z) further below in Sect. 3.2.

By taking again the second derivative of Eq. (9) and evalu-
ating it at the fiducial cosmology, we find the well-known and
compact expression for the Fisher matrix

Fαβ =
∑

i

1
8π2

∫
dµ

∫
k2dk

× ∂αln(Pth
obs)

∣∣∣
fid ∂βln(Pth

obs)
∣∣∣
fidVfid

i ,

(10)

where the derivatives are evaluated precisely at the fiducial
model and the arguments of the observed power spectrum are
again Pth

obs[kobs(k, µ, zi), µobs(µ, zi), zi]5.

2.3. Likelihood derivatives

A specific code can compute the Fisher matrix with various
methods, always involving the calculation of derivatives (of cos-
mological observables or directly of the likelihood) with respect
to cosmological and nuisance parameters. Usually these deriva-
tives are computed using numerical methods, such as an n-point
derivative stencil or more advanced methods (such as fitting a
low-order polynomial curve through a set of n points), but in
several cases (such as bias parameters or shot noise) analytical
formulas can be used instead. To compute the derivatives a given
code receives the matter power spectrum Pm(k, z) computed by
an EBS (either linear as in Sect. 3.2 or corrected for nonlinear
clustering using a specific recipe as in Sect. 3.1) evaluated at a
few points in model parameter space. The spectrum is used to
compute the cosmological observable (that is, the photometric
harmonic spectra Cth

i j (ℓ) or the observable galaxy power spec-
trum Pth

obs) or directly the likelihood L and the derivative can be
inferred.

2.3.1. The CosmicFish method

EP:VII uses various codes to get the Fisher matrix directly
from Eqs. (8) and (10). The first-order derivatives ∂αCth(ℓ)|fid
or ∂α ln(Pth

i,obs)|fid are inferred from finite differences, with Cth(ℓ)
or Pth

i,obs being computed at the fiducial point and in its vicinity
by an EBS. The main purpose of EP:VII was to compare such
codes. Each of them was reading the same input matter power
spectra in some files produced by the EBS CAMB. These codes
differed through the detailed numerical implementation of the
Fisher formula and through the algorithm used to compute first-
order derivatives. The validation of these different codes was
based on a comparison between the predicted marginalised error
on each model parameter (that is, the 68% confidence limit on a
each parameter when all other parameters are unknown). A given
code was validated when all marginalised errors lied within 10%
5 Note that EP:VII uses an equivalent expression in which the spec-
trum that appears in Eq. (10) does not include shot noise, while here we
do assume that Pth

obs and Pth
obs include shot noise. In the conventions of

EP:VII, to compensate for this, Vfid
i needs to be replaced by

Veff
i (k, µ, zi) = Vfid

i

 nfid
i Pfid

obs (k, µ, zi)

nfid
i Pfid

obs (k, µ, zi) + 1

2

, (11)

where nfid
i is the galaxy number density in each redshift bin and the

product nfid
i Pfid

obs is dimensionless.

of the median computed across all the codes – which means that
a maximum deviation of 20% on each marginalised error was
allowed between pairs of codes.

Since our goal in this work was to validate a few additional
pipelines, we needed to compare our new results with at least
one of the validated EP:VII codes (comparing with all of them
would have been intractable). We choose CosmicFish as our
reference EP:VII code. CosmicFish can be set to compute the
first-order derivative of cosmological spectra either with a sim-
ple two-sided finite difference method or with a more advanced
SteM algorithm using ten different step sizes, which essentially
fits a tangent to the curve as a function of the cosmological
parameters, see Appendix B of Camera et al. (2017) for further
details.

2.3.2. The MP/Fisher method

This method relies on the MontePython Euclid mock like-
lihoods, which are simply the numerical implementation
of Eqs. (4) and (9) in the Python-based inference code
MontePython (MP; Audren et al. 2013a; Brinckmann &
Lesgourgues 2019). These Euclid mock likelihoods could
easily be transposed to other samplers such as Cobaya. Simpler
forms of these likelihoods have been presented in previous
papers (Audren et al. 2013b; Sprenger et al. 2019) under the
names euclid_pk and euclid_lensing. Together with this
paper, we release6 an improved version of these likelihoods,
named euclid_spectroscopic and euclid_photometric.
These are designed to match the same recipes as EP:VII.

To derive the corresponding Fisher matrices the MP code does
not use Eqs. (8) or (10), but computes the derivative directly from
the likelihood (or χ2), using Eq. (1). All second derivatives are
evaluated with a two-sided finite difference method. MP uses the
EBS CLASS to compute the full χ2 at the fiducial point {θ̄α} and in
its vicinity. Second derivatives with respect to a given parameter
θα are inferred from the likelihood at the fiducial point and at
two adjacent points with θα = {θ̄α ± ∆θα}. Cross derivatives with
respect to two parameters {θα, θβ} are inferred from the likelihood
at the fiducial point and at four adjacent points with θα = {θ̄α ±
∆θα} and θβ = {θ̄β ± ∆θβ}.

EP:VII and the MP/Fisher method would give the same
result for any given stepsize ∆θα if there was no numerical noise
inherent to the codes and if the likelihood was a perfect multi-
variate Gaussian function of model parameters. However, neither
of these criteria is fulfilled, leading to a possible dependence
of the result on the chosen stepsizes. We have illustrated this
issue in the result section, and concluded that it can be overcome
for the purpose of Euclid forecasts, at least in the case of the
ΛCDM+{w0, wa} model.

The MP code was initially designed for Bayesian parame-
ter inference with various MCMC algorithms but it features an
automatic calculation of the Fisher matrix through finite dif-
ferences since the release of version 3 in 2018 (Brinckmann &
Lesgourgues 2019). The public code offers an advanced scheme
for the choice of parameter stepsizes, such as a search by iteration
of each stepsize such that the variation of each parameter from θ̄α
to θ̄α +∆θα leads to an increase of – lnL by a target value ∆ lnL
chosen by the user, up to some tolerance. In this paper, for the
sake of simplicity and efficiency, we disabled these iterations. In
each run we directly fix the stepsizes in our input files. We have

6 The release will take place upon acceptance of this paper as an update
of the main MontePython branch in the public repository.
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placed all our input files, scripts, and results in a public GitHub
repository7 to make our results entirely reproducible.

3. Likelihood recipes

3.1. Photometric likelihood

3.1.1. General expression

The detailed calculation leading to the expression of the photo-
metric spectra and likelihood adopted here has been described
in many previous papers, including EP:VII. Here, we just want
to precise the set of relations and assumptions used by our
CosmicFish and MontePython pipelines, which match the
previous settings adopted in EP:VII.

For the purpose of evaluating either the likelihood, see
Eq. (4), or directly of the Fisher matrix, see Eq. (8), both
CosmicFish and MontePython require the calculation of the
photometric spectra CXY

l in multipole space, where X,Y = L
for the cosmic shear data or G for the photometric galaxy
data. In the sub-Hubble (Newtonian) limit and using the
Limber approximation, one can write these spectra under the
generic form

CXY
i j (ℓ) =

∫ zmax

zmin

dz
WX

i (z)WY
j (z)

c−1H(z)r2(z)
Pm

[
ℓ + 1/2

r(z)
, z

]
+ NXY

i j (ℓ),

(12)

where WX
i (z) is the window function of the X observable in the

ith redshift bin, H(z) is the Hubble rate at redshift z, r(z) is the
comoving distance to z, Pm(k, z) is the nonlinear matter power
spectrum in Fourier space and NXY

i j (ℓ) is the noise spectrum.
In the codes we adopt units of Mpc−1 for H/c, Mpc for r and
Mpc3 for Pm, making the CXY

i j dimensionless. The integrals run
over the redshift range [zmin, zmax] covered by the survey and we
distinguish between Nbin redshift bins.

In absence of intrinsic alignment effects (and assuming that
the standard Poisson equation applies to sub-Hubble scales)
the lensing window function in the ith bin would simply be
given by

Wγi (z) =
3
2

c−2H2
0 Ωm,0 (1 + z) r(z)

×

∫ zmax

z
dz′ ni(z′)

[
1 −

r(z)
r(z′)

]
,

(13)

where ni(z) is the observed galaxy density in each redshift bin.
In accordance with EP:VII, we model this density as some

true underlying distribution n(z), which is calibrated using a vari-
ety of different techniques (van den Busch et al. 2020; Naidoo
et al. 2023), convolved with the photometric error pph(zp|z) of
the experiment and normalized to unity,

ni(z) =

∫ z+i
z−i

dzp n(z) pph(zp|z)∫ zmax

zmin
dz

∫ z+i
z−i

dzp n(z) pph(zp|z)
, (14)

7 https://github.com/sabarish-vm/Euclid_w0wa.git

where z−i and z+i are the edges of the ith redshift bin. As in
EP:VII, we assume that the galaxy distribution is given by8

n(z) =
(

z
z0

)2

exp

− (
z
z0

)1.5 , (15)

with z0 = zmean/
√

2 and the mean redshift of the distribution,
zmean, is given in Table 1. The photometric redshift error is
modeled as EP:VII.

pph(zp|z) =
1 − fout

√
2πσb(1 + z)

exp

−1
2

[
z − cbzp − zb

σb(1 + z)

]2


+
fout

√
2πσ0(1 + z)

exp

−1
2

[
z − c0zp − z0

σ0(1 + z)

]2
 , (16)

where the second term accounts for a fraction fout of catastrophic
outliers. The parameters of this model are detailed in Table 1,
while the observed galaxy density in each bin is shown in Fig. 1.

The contribution of intrinsic alignment effects to the total
observed shear angular power spectrum can be modelled through
a modification of the lensing window function. As a first
step, one can assume the intrinsic alignment tracer to be
biased with respect to the matter overdensity δm as δIA(k, z) =
−AIA CIAΩm,0 FIA(z) δm(k, z)/D(z), where AIA and CIA are two
parameters, D(z) is the linear growth factor of matter density
fluctuations, and FIA(z) is a function of the redshift-dependent
mean luminosity of galaxies ⟨L⟩(z) in units of a characteristic
luminosity L⋆(z) EP:VII,

FIA(z) = (1 + z)ηIA [⟨L⟩(z)/L⋆(z)]βIA . (17)

The parameters ηIA and AIA are treated as nuisance parameters
for the inference, while CIA and βIA are fixed in our analysis.
With such a model, one can account for intrinsic alignment by
adding a new term to Wγi (z). The total lensing window function
then reads

WL
i (z) = Wγi (z) −AIACIAΩm,0

FIA(z)
D(z)

W IA
i (z), (18)

with the definition

W IA
i (z) = c−1 ni(z)H(z). (19)

The values of the parameters entering these expressions are sum-
marised in Table 1. The function ⟨L⟩(z)/L⋆(z) is instead read
in a file scaledmeanlum_E2Sa.dat provided on the public
repository of the EP:VII publication9.

The inclusion of photometric data on galaxy clustering
involves the galaxy window function

WG
i (z) = c−1 ni(z)H(z) bi(z), (20)

where ni(z) is again the observed galaxy density in each redshift
bin, still given by Eq. (14), while bi(z) account for light-to-mass
bias in the ith bin at redshift z. In principle, one could model
bias as a unique continuous function of redshift, b(z). However,

8 Notice that a more realistic photometric distribution based on the
Euclid Consortium Flagship was recently published in Euclid Collab-
oration (2021). However, for the sake of validation, we stick to the
analytic formula used in EP:VII.
9 https://github.com/euclidist-forecasting/fisher_for_
public

A90, page 5 of 33

https://github.com/sabarish-vm/Euclid_w0wa.git
https://github.com/euclidist-forecasting/fisher_for_public
https://github.com/euclidist-forecasting/fisher_for_public


Casas, S., et al.: A&A, 682, A90 (2024)

Table 1. Constants used in the Fisher and likelihood formulas.

Type Name Value (pessimistic/optimistic)

Redshift bins Nbin 10
Redshift bins zmin 0.001
Redshift bins zmax 2.5
Redshift bins z+1 , .., z+5 0.418, 0.560, 0.678, 0.789, 0.900
Redshift bins z+6 , .., z+9 1.019, 1.155, 1.324, 1.576
Redshift bins zmean 0.9

Photometric error c0 1.0
Photometric error cb 1.0
Photometric error z0 0.1
Photometric error zb 0.0
Photometric error σ0 0.05
Photometric error σb 0.05
Photometric error fout 0.1

Intrinsic alignment CIA 0.0134
Intrinsic alignment βIA 2.17

Noise σϵ 0.3
Noise ngal 30 arcmin−2

Multipoles ℓmin 10
Multipoles ℓWL

max 1500/5000
Multipoles ℓ

GCph
max 750/1500

Sky coverage fsky 0.3636

Notes. Only the maximum multipole values vary between the pessimistic and optimistic settings.

Fig. 1. Underlying theoretical distribution of the number density of
galaxies n(z) (black dashed line), normalised to one, together with the
ni(z) (solid colored lines) at each of the 10 tomographic redshift bins
(dotted vertical colored lines), normalised to 1/10. The ni(z) are wide
and overlap each other due to the photometric redshift errors.

in absence of a reliable bias model, the EP:VII group treated the
mean biases bi in each bin as nuisance parameters. Technically,
this could be implemented in various ways. Either with a con-
stant bias for each bin i such that bi(z) = bi for zmin < z < zmax
or with a unique function across all bins such that bi(z) = b(z)
for zmin < z < zmax, where b(z) is a step-like function taking the
value bi within the range z−i < z < z+i . As a consequence of pho-
tometric redshift errors, the latter is not equivalent to the former
because the functions ni(z) do not vanish outside of the range
[z−i , z

+
i ]. Thus, in the second simplified model, the functions

ni(z) feature discontinuities at each z+i = z−i+1. Both options are
implemented in our CosmicFish and MontePython pipelines.
However, since EP:VII adopted the second model, we have also
maintained it10.

Finally, we take into account the noise contribution to all
auto-correlation spectra. Assuming a Poissonian distribution of
galaxies, the noise spectra read

NLL
i j (ℓ) =

σ2
ϵ

n̄i
δi j,

NGG
i j (ℓ) =

1
n̄i
δi j,

NLG
i j (ℓ) = NGL

i j (ℓ) = 0,

(21)

where n̄i is the expected average number of galaxies per stera-
dian in the given bin i and σ2

ϵ is is the variance of the observed
ellipticities. The number n̄i is computed as the expected total
number of galaxies per steradian, ngal, divided by the number
of bins11. Like in EP:VIIwe take a σϵ of 0.21 per degree of free-
dom. Given the two degrees of freedom in the WL maps, this
implies σϵ = 0.21

√
2 ≃ 0.30.

The lensing spectra, galaxy clustering spectra, and cross-
correlation spectra can be gathered in the full cross-correlation
matrix

Cph(ℓ) =
[

CLL
i j (ℓ) CGL

i j (ℓ)
CLG

i j (ℓ) CGG
i j (ℓ)

]
. (22)

10 This technical detail is important for calculating derivatives with
respect to the bi’s. Thus it is necessary to stick to the same conven-
tion in order to recover a similar Fisher matrix. In the codes the second
option (used here) is called binned, while the first option is called
binned_constant.
11 We are assuming equally populated bins as in EP:VII.
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Table 2. Redshift-dependent survey specifications evaluated at the central redshift zi of each redshift bin.

Redshift bin Survey volume Galaxy number density Galaxy bias
zmin zi zmax Vfid

i [Gpc3/(hfid)3] nfid
i [10−4 (hfid)3/Mpc3] bfid

i

0.90 1.00 1.10 7.94 6.86 1.46
1.10 1.20 1.30 9.15 5.58 1.61
1.30 1.40 1.50 10.05 4.21 1.75
1.50 1.65 1.80 16.22 2.61 1.90

Notes. Quantities with units h Mpc−1 are converted into Mpc−1 always using the unique fiducial value hfid.

The calculation of the likelihood, see Eq. (4), or directly of the
Fisher matrix, see Eq. (8), relies on two matrices for each ℓ,
with elements Cth

i j (ℓ) and Cfid
i j (ℓ). These matrices are simply the

(2Nbin) × (2Nbin) matrix of Eq. (22), computed either at an arbi-
trary point in parameter space in the case of Cth

i j (ℓ), or at fiducial
parameter values in the case of Cfid

i j (ℓ). Equations (4) and (8)
feature a sum over ℓ from ℓmin to some ℓmax. Following EP:VII
conventions, we choose a smaller value of the maximum mul-
tipole for the galaxy survey, ℓGCph

max , than for the lensing survey,
ℓWL

max = ℓmax. This choice allows us to stick to scales where galaxy
bias can be modelled as approximately linear. The boundary val-
ues are given in Table 1. This means that for ℓ > ℓGCph

max , Cph
i j (ℓ)

reduces to the Nbin × Nbin matrix CLL
i j (ℓ).

3.1.2. Detailed numerical implementation

The nonlinear matter power spectrum Pm(k, z) is obtained from
either CLASS or CAMB. Nonlinear corrections are computed
within these codes using Halofit – including Takahashi et al.
(2020) and Bird et al. (2012) corrections, see Appendix A.4
for details. The nonlinear power spectrum is approximated as
zero outside of the range [kmin, kmax] = [0.001, 50] h Mpc−1. This
range is sufficient to include most of the tails of the convo-
lution kernels in Eq. (12) even for the multipoles ℓmin = 10
and ℓmax = 5000. The growth factor D(z) is also extracted from
CLASS or CAMB. In the case of MontePython, CLASS is called
on-the-fly at every point in cosmological parameter space. On
the other hand, CosmicFish can call either CLASS or CAMB on-
the-fly, but it also can read a set of pre-computed files with
cosmological quantities produced by any arbitrary EBS.

In the case of MontePython, which can also be used to per-
form MCMCs, computing the matrix elements Cph

i j (ℓ) for every
single ℓ would be numerically expensive. Using the fact that
these elements are smooth functions of ℓ, we only compute them
on a discrete grid of values of size 100 (with logarithmic spac-
ing between ℓmin and ℓmax) and then use a spline interpolation
to get them at every integer ℓ within the range [ℓmin, ℓmax]. The
log-likelihood is computed by summing over all integer values of
ℓ. In the case of CosmicFish, the angular spectra are computed
on the same grid and do not need further interpolation, since the
sum is evaluated only over the 100 ℓ-bins.

3.2. Spectroscopic likelihood

3.2.1. General expression

The details of our recipe for the spectroscopic likelihood have
been described in many previous papers, including EP:VII. Here
we just summarize briefly the set of relations and assumptions

used by our CosmicFish and MontePython pipelines, which
match the prescription adopted by EP:VII.

For the purpose of evaluating either the likelihood, see
Eq. (9), or directly of the Fisher matrix, see Eq. (10), both
CosmicFish and MontePython require the calculation of the
observed redshift-space galaxy power spectrum Pobs(k, µ, z) at
wavenumber k, angle cosine µ, and redshift z. The calculation of
this quantity starts from the evaluation of the linear real-space
matter power spectrum Pm,lin(k, z), which can be computed with
CAMB or CLASS. The calculation sticks to scales where one can
assume a linear relation between the galaxy and matter power
spectra. Then, the real-space galaxy linear power spectrum reads

Pgal,lin(k, z) = b2(z)Pm,lin(k, z), (23)

where b(z) is the effective galaxy bias. We assume a constant bias
bi in each redshift bin i (with central redshift value zi). Bin edges
and fiducial bias values are specified in Table 2. To obtain the
redshift-space galaxy linear power spectrum, one should further
multiply Pm,lin by the Kaiser correction factor (Kaiser 1987)[
b(z) + f (z)µ2

]2
, (24)

where µ = k · r̂/k is the cosine of the angle between the wave-
vector k and the line-of-sight direction r̂ and f (z) is the scale-
independent growth rate12. In absence of massive neutrinos (or
modified gravity effects), the redshift dependence of σ8(z) can
be modeled as

σ8(z) = D(z)σ8(z = 0). (25)

The Fingers-of-God effect can be accounted with an additional
prefactor FFoG(z), that we model as a Lorentzian (see e.g.
Percival et al. 2004),

FFoG(z) =
1

1 + [ f (z) k µσfid
p (z)]2

, (26)

where the dispersion σfid
p is given by an integral over the linear

spectrum of the fiducial model,[
σfid

p (z)
]2
=

1
6π2

∫
dk Pfid

m,lin(k, z). (27)

In practice, for the latter integral, we use finite boundaries
specified in the next section.

Furthermore, baryon acoustic oscillations in the power spec-
trum are smoothed out by nonlinear matter clustering. This effect
12 We recall that when the growth factor D and growth rate f are
expressed as a function of the scale factor a, they are related to each
other through f (a) = d ln D(a)/d ln a.
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Table 3. Specifications used in the spectroscopic likelihood and Fisher formulas.

Type Name Value (Pessimistic/Optimistic)

Spectroscopic error σ0,z 0.001

Wavenumber kmin 0.001 hfid/Mpc
Wavenumber kmax (0.25/0.30) hfid/Mpc

can be approximately modelled by replacing Pm,lin with the
de-wiggled power spectrum

Pdw(k, µ, z) ≡ Pm,lin(k, z) e−gµk
2
+ Pnw(k, z)

(
1 − e−gµk

2)
, (28)

gµ(k, µ, z) =
[
σfid
v (z)

]2 {
1 − µ2 + µ2[1 + f fid(z)]2

}
, (29)

where in this case f fid(z) is fixed to the fiducial cosmology. The
no-wiggle power spectrum Pnw(k, z) is obtained by smoothing
Pm,lin(k, z) as described in the next section. The variance of the
displacement field [σfid

v ]2 for the fiducial model is set equal to
the quantity [σfid

p ]2 defined in Eq. (27).
In EP:VII, two cases were considered. In the first one, σv and

σp were treated as free parameters in each redshift bin, with fidu-
cial values calculated at the zmean of the survey and rescaled by
the growth factor D(z). These parameters were then marginalized
over. In the second one, in each redshift bin, these parameters
were fixed to their fiducial value (computed with the power spec-
trum of the fiducial cosmology). The latter case assumes a better
knowledge of nonlinear corrections and leads to more optimistic
constraints. In this paper, we have stuck to the second option and
kept these variables fixed in both our pessimistic and optimistic
approaches.

Additionally, spectroscopic redshift errors further suppress
this power spectrum by an overall factor

Fz(k, µ, z) = exp[−k2µ2σ2
r (z)], (30)

where σr(z) is the comoving distance error, which depends on
the linear scaling of the redshift error σ0,z:

σr(z) =
c

H(z)
(1 + z)σ0,z. (31)

The value of σ0,z is given in Table 3.
Next, the Alcock-Paczyński effect introduces a change of the

observed wavenumbers and angles with respect to the reference
cosmology used for the analysis (identified here to the fiducial
model). In particular, distances parallel to the line of sight and
orthogonal to it are modified respectively by

k⊥,obs = k⊥ q⊥
h

hfid , k∥,obs = k∥ q∥
h

hfid , (32)

where

q⊥ =
Dfid

A (z)
DA(z)

, q∥ =
H(z)

Hfid(z)
. (33)

Then, using k2 = k2
⊥ + k2

∥
and µ = k∥/k for both the fidu-

cial wavevector (with no subscript) and the observed one (with
subscript ‘obs’), we can express the observed wavevector com-
ponents as a function of the fiducial ones,

kobs = k q⊥
h

hfid

1 + µ2

 q2
∥

q2
⊥

− 1

1/2

, (34)

µobs = µ
q∥
q⊥

1 + µ2

 q2
∥

q2
⊥

− 1

−1/2

. (35)

This shows explicitly that µobs is a function of (µ, z) while kobs is
a function of (k, µ, z). Additionally, the Alcock-Paczyński effect
implies that the overall power spectrum is multiplied by a factor
of q2

⊥q∥.
Finally, we also include a shot noise parameter Ps(z):

Ps(zi) =
1

nfid
i

+ ps(zi), (36)

where the residual shot noise ps(zi) is treated as a nuisance
parameter with a fiducial value of 0 in each redshift bin, and
nfid

i is the galaxy number density in each bin given in Table 2.
In summary, the observed galaxy power spectrum in each bin i
reads (EP:VII)

Pobs(kobs, µobs, zi) = q2
⊥ q∥

×
[bi σ8(zi) + f (zi)σ8(zi) µ2

obs]
2

1 + [ f fid(zi) kobs µobs σ
fid
p (zi)]2

×
Pdw(kobs, µobs, zi)

σ2
8(zi)

Fz(kobs, µobs, zi)

+ Ps(zi),

(37)

where we omitted the arguments of the functions kobs(k, µ, z)
and µobs(µ, z). In each redshift bin the product biσ8(zi) is
actually treated as an independent nuisance parameter, which
means that it is kept fixed when varying the cosmological
parameter σ8. Together with the values of ps(zi) the spec-
troscopic case features a total of 8 nuisance parameters. The
fiducial value of each biσ8(zi) is inferred from the bfid

i value
reported in Table 2 multiplied by σfid

8 (zi) (see Table B.2 for
exact values).

To evaluate the likelihood (resp. the Fisher matrix), one
should insert this expression into Eq. (9) (resp. into Eq. 10),
which also depends on the volume Vfid

i and nfid
i in each bin,

whose values are listed in Table 2. Finally, one should integrate
over k from kmin to kmax (whose values are given in Table 3 for
the pessimistic and an optimistic case) and µ from −1 to +1.

3.2.2. Detailed numerical implementation

For the sake of reproducibility, we provide here some details
on the discretisation schemes, interpolation routines and inte-
gration algorithms used in our CosmicFish and MontePython
pipelines. These settings ensure some well-converged calcula-
tions, such that changing them slightly would have a negligible
impact on our results.

In our CosmicFish or MontePython algorithms the linear
matter power spectrum Pm,lin(k, z) is returned by CAMB or CLASS
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on a logarithmically-spaced grid of 1055 discrete values of k
ranging from kmin = 3.528×10−5 Mpc−1 to kmax = 50.79 Mpc−1,
corresponding to a logarithmic stepsize of d ln k = 0.01354.

The value of σ8(z = 0) is read from CAMB or CLASS.
The growth factor D(z) and growth rate f (z) are also
extracted from CAMB or CLASS. Then σ8(zi) is approximated as
σ8(0) D(zi)/D(0).

The no-wiggle power spectrum Pnw(k, z) is inferred from
Pm,lin(k, z) using a Savitzky-Golay filter of order 3 on the same
grid of 1055 points evenly spaced in (ln k) (see e.g. Boyle &
Komatsu 2018). The filter’s window length is set to 101 points,
which corresponds to a smoothing over ∆ ln k = 100 ln(1 +
d ln k) = 1.359.

The algorithm then builds interpolators for Pm,lin(k, z)
and Pnw(k, z) (using the scipy CubicSpline algorithm in
MontePython and the order-3 RectBivariate spline algo-
rithm in CosmicFish). The final likelihood requires the eval-
uation of several quantities – including these two spectra – on
a three-dimensional grid (ki, µ j, zk), or, in the case of theoretical
power spectra, (kobs,i, µobs, j, zk) = [kobs(ki, µ j, zk), µobs(µ j, zk), zk].
In this grid, for MontePython (CosmicFish), ki takes
500 (2048) discrete values of k between some kmin and kmax
(whose values are reported in Table 3) with even logarithmic
spacing, additionally µ j takes 9 (128) discrete values evenly
spaced between −1 and +1. Finally, zk runs over the 4 central
redshift values of the 4 redshift bins reported in Table 3.

We have tested that having only 9 values for the grid in µ is
enough for our purposes in both MontePython and CosmicFish
when the integral is performed using the Simpson algorithm
of the Python package scipy (Virtanen et al. 2020). However,
for CosmicFish we kept the grid of 128 values in µ, since in
general it is a much more time-efficient code. In both codes
the final integral over k is also performed using the Simpson
algorithm.

4. Validation of the forecast pipelines

4.1. Methodology

In this work, for each survey and each settings, we have com-
pared five Fisher matrices corresponding to the following five
cases:
1. CF/ext/CAMB: With this method, CosmicFish (CF) reads

the information (spectra, distances...) in files produced in
advance (externally) by CAMB. This is one of the meth-
ods used in EP:VII. Thus, we include this case in order to
cross-check that nothing significant has changed within the
CosmicFish code such that, a couple of years later, it still
agrees with the results of EP:VII.

2. CF/int/CAMB: CosmicFish calls CAMB internally to extract
all relevant information (spectra, distances...) on the fly: this
is a more efficient approach that we also want to validate
here. The comparison with the first case has proven that we
integrated CAMB within CosmicFish in a correct way, with a
proper use of the CAMB Python wrapper.

3. CF/ext/CLASS: CosmicFish reads the relevant information
in files similar to those of the first method, but produced
in advance by CLASS. The comparison of this method with
the first one has proven that the theoretical predictions from
CAMB and CLASS agree within the sensitivity of Euclid.

4. CF/int/CLASS: CosmicFish calls CLASS internally to
extract all relevant information on the fly: this is again a
more efficient approach than the external one. The compar-
ison with the third case is a proof that we integrated CLASS

within CosmicFish in a correct way, with a proper use of
the CLASS Python wrapper.

5. MP/Fisher: MontePython (MP) runs in Fisher mode and
extracts all cosmological information on the fly from CLASS.
The primary goal of this paper is to validate this pipeline
against that of EP:VII.

We have treated our results for the CF/ext/CAMB case as the
“reference result” corresponding to the recipes of EP:VII. In
order to show that this choice is justified, we have also directly
compared the above five Fisher matrices with a second refer-
ence Fisher matrix from EP:VII. In the photometric case our
second reference was the Fisher matrix posted on the online
repository fisher_for_public9. In the spectroscopic case the
second reference was be provided by SoapFish (SF), which is
another of the codes validated by the EP:VII group. Similar to
CF/ext/CAMB, the SF pipeline relies on external files produced
by CAMB.

Finally, we can also estimate the survey sensitivity to cos-
mological parameter using the MP/MCMC method, that is, fitting
some fiducial Euclid data with our Euclid mock likelihoods
(which are the very same likelihoods as in the MP/Fisher
method), while exploring the parameter space with MCMCs.
The focus of this paper is not on the comparison between Fisher
and MCMC results. Still, knowing the MCMC results is useful
in order to cross-check our Fisher results, evaluate the level of
Gaussianity of our likelihood with respect to model parameters,
or get insight on parameter degeneracies.

In the following section, we have compared the results
given by all these methods with a seven-parameter cosmol-
ogy (ΛCDM+{w0, wa}). Fiducial values of cosmological and
nuisance parameters are summarised in Table B.1. We have
proven that all our Fisher pipelines agree with each other within
at most 10%, which is the validation threshold set by the
EP:VII publication.

Since for each case (photometric/spectroscopic survey with
pessimistic/optimistic settings) we have five ways to compute
the Fisher matrix, we can perform ten comparisons between
pairs of matrices. The comparison can be made at the level of
unmarginalised or marginalised errors. Unmarginalised errors
correspond to the error on one parameter when all other param-
eters are kept fixed. This only involves the diagonal coefficients
of the Fisher matrices. Marginalised errors instead represent the
error on one parameter when all the others are unknown (and
only constrained by the experiment). This involves the diagonal
coefficients of the inverse Fisher matrices. As such, it depends on
all coefficients in the Fisher matrices, or in other words, on the
Fisher estimate of correlations between all pairs of parameters.

The most important quantities which we use for validation
are of course the marginalised errors. Still, the knowledge of the
unmarginalised ones is often useful. We have reported on both
in what follows.

4.2. Photometric likelihood

4.2.1. Pessimistic setting

Table 4 contains the most relevant information for the pho-
tometric survey with pessimistic settings, that is, the biggest
discrepancy between marginalised errors computed across all
cosmological and nuisance parameters in each of the 10 compar-
isons that can be made. The result is presented as a five-by-five
symmetric matrix (with no information along the diagonal since
each method agrees with itself). In a nutshell, since the worst
difference is at the level of 2% and thus well below the 10%
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Table 4. For the photometric survey with pessimistic settings, and for each pair of Fisher matrices obtained with different methods, largest
percentage difference between the predicted marginalised error on each parameter (across all cosmological and nuisance parameters).

CF/ext/CLASS CF/int/CLASS MP/Fisher CF/ext/CAMB CF/int/CAMB

CF/ext/CLASS 0.0 0.01 1.61 1.17 0.48
CF/int/CLASS 0.01 0.0 1.6 1.17 0.48
MP/Fisher 1.61 1.6 0.0 1.98 1.62
CF/ext/CAMB 1.17 1.17 1.98 0.0 1.28
CF/int/CAMB 0.48 0.48 1.62 1.28 0.0

Fig. 2. For the photometric survey with pessimistic settings, and
for selected pair of Fisher matrices obtained with different meth-
ods, comparison of each Fisher marginalised (blue dot/light grey)
and unmarginalised (orange dot/dark grey) error on each cosmo-
logical and nuisance parameters, for: (First) CF/ext/CAMB ver-
sus CF/int/CAMB; (Second) CF/ext/CLASS versus CF/int/CLASS;
(Third) CF/int/CLASS versus CF/int/CAMB; (Fourth) CF/int/CLASS
versus MP/Fisher. Each forecasted error σi for each case and param-
eter is compared to the median of the two cases (see footnote 13). The
discrepancy is expressed in percent.

threshold set in the EP:VII publication, all five methods are val-
idated – that is, are in sufficiently good agreement with EP:VII
results. We provide a more detailed discussion below.

To begin, we observe that the two methods that use
CosmicFish combined with CAMB are highly consistent with
each other. The largest difference across all errors is only
of 1.2%. Individual marginalised and unmarginalised errors
for these two cases are compared in Fig. 2 (first panel). In
such plots, sticking to the plotting conventions of previous
papers such as EP:VII, we show the percentage discrepancy
of each marginalised or unmarginalised error σi with respect
to the median13. This comparison proves that the integration
of CAMB within CosmicFish has been done consistently. Note
that CF/ext/CAMB uses only the CAMB Fortran code, while
CF/int/CAMB uses also the CAMB Python wrapper to extract
quantities. The order 1% differences found here can be attributed
to details in the numerical algorithms used within this Python
wrapper or within CosmicFish, or different ways to interpret
precision parameters in the CAMB Fortran code and Python wrap-
per, see Sect. 6 for details on accuracy settings. These differences
are anyway hardly relevant and do not deserve further attention.

The two methods using CosmicFish combined with CLASS
are even more consistent, with a worst error of 0.02%. Individual
marginalised and unmarginalised errors for these two cases are

13 In Fig. 2 each panel presents a comparison between two cases only.
Thus the median is just the average of the two errors and the plotted dis-
crepancy stands for one half of the relative difference between the two
errors. In other figures such as in Fig. 3 the median is instead computed
across four different cases.

compared in Fig. 2 (second panel). This proves that the integra-
tion of CLASS within CosmicFish has also been done correctly.
In the CLASS case, there is less room for differences, because the
Python wrapper classy is used by both the external and internal
methods14.

At this point, we know that using CosmicFish in external
or internal mode makes no difference, and we can investigate the
level of consistency of the CAMB and CLASS predictions. Compar-
ing for instance the CF/int/CAMB and CF/int/CLASSmethods,
we find again excellent agreement, with a worst error of 0.10%.
All individual marginalised and unmarginalised errors for these
two cases are compared in Fig. 2 (third panel). Other compar-
isons between the CAMB-based and CLASS-based methods are
nearly as good, as can be checked from Table 4. This shows that
using CAMB or CLASS as our theory code makes no difference at
the level of sensitivity of Euclid. Note that, in order to reach such
a conclusion, we had to enhance the settings of a few accuracy
parameters in the two codes and to ensure a very good match of
the physical assumptions that they use, for example on the neu-
trino sector. These precise settings are detailed in Appendix A
and commented in Sect. 6. We recommend using at least the pre-
cision settings discussed in Sect. 6 in any forecast or real data
analysis for Euclid or experiments with comparable sensitivity.

At this stage, we have validated all the methods involv-
ing CosmicFish. We are only left with the comparison of the
CosmicFish versus MP/Fisher results.

We see in Table 4 and in the fourth panel of Fig. 2 that the
worst discrepancy between the CosmicFish and MontePython
pipelines reaches about 2.0%. Since this is much lower than
the validation threshold, the MontePython Fisher pipeline is
validated. We even performed a more demanding test: We com-
pared all the pipelines presented in this paper to the final
average results of EP:VII, available in the public repository
fisher_for_public9. Figure 3 shows a final comparison
between the Fisher marginalised and unmarginalised error from
CosmicFish, MontePython, and EP:VII. We find a maximum
deviation with respect to the mean of 5%, which confirms val-
idation. Note that CosmicFish results are already known to
agree with the results of EP:VII, since an older Fortran-based
version of this code was one of the codes employed for the
code-comparison project of EP:VII. However, these last tests
demonstrates that the CosmicFish pipeline used in this work
is fully consistent with the older CosmicFish implementation.

Moreover, the visual comparison of Fisher ellipses with
MCMC confidence contours presented in Fig. 4 for cosmo-
logical parameters (and in Figs. C.1 and C.2 for nuisance
parameters) is enlightening. The MCMC contours turn out
to be almost perfectly elliptical for all parameters. Thus, the

14 The extremely small (0.02%) differences can be attributed to very
small details in the sampling of functions, rounding errors when writing
in files, etc. They are totally irrelevant at the Euclid sensitivity level.
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Fig. 3. For the photometric survey with pessimistic settings, com-
parison of each Fisher marginalised (light grey) and unmarginalised
(dark grey) errors on the cosmological and nuisance parameters, for:
CF/int/CLASS (blue circles) versus CF/int/CAMB (orange squares)
versus MP/Fisher (green stars) versus the public EP:VII results (red
crosses, referred in the legend as IST:F). Each forecasted error σi for
each case and parameter is compared to the median of the four cases,
and the discrepancy is expressed in percent.

Fig. 4. For the photometric survey with pessimistic settings, compari-
son of 1D posteriors and 2D contours (for 68 and 95% confidence level)
from different methods: MP/MCMC (grey lines/contours), MP/Fisher
(orange lines), CF/int/CLASS (blue lines). We only show here the cos-
mological parameters, but our contours involving nuisance parameters
are shown in Appendix C. Plotted using GetDist.

approximation of a multivariate Gaussian likelihood, assumed in
the Fisher method, is a good one. In all cases, the MCMC con-
tours remain very close to the Fisher ellipses. This excludes the
possibility that our Fisher results agree with each other acciden-
tally, while being far from the actual confidence limits associated
to the full likelihoods. It also confirms that, for each one of our
Fisher methods, the numerical derivative step sizes have been
chosen in a sensible way, that is, large enough to overcome
numerical noise and small enough to remain in the region where
the likelihood is approximately Gaussian (see Appendices B.2
and B.3 for details).

Fig. 5. Same as Fig. 2 with optimistic settings.

4.2.2. Optimistic setting

In this case, our results are summarised in Table 5 and Fig. 5.
Qualitatively, all the conclusions reached for the pessimistic case
also apply to this case.

A priori, with optimistic settings, we may expect larger dif-
ferences between our four CosmicFish pipelines, because the
likelihood is more sensitive to theoretical predictions for the
nonlinear matter power spectrum. Indeed, the optimistic likeli-
hood probes a larger range of k values in the nonlinear power
spectrum and has smaller observational errors. Thus, numerical
errors are less likely to be masked by observational errors. How-
ever, we find that the differences between the four CosmicFish
pipelines (with internal/external CAMB/CLASS) increase only
marginally. For instance, CF/int/CAMB and CF/int/CLASS still
agree at an impressive 0.55% level (instead of 0.11% with pes-
simistic settings). The agreement between CF/int/CAMB and
CF/ext/CAMB is a bit worse (1.3%), showing that the CAMB
Fortran code and the CAMB Python wrapper handle accuracy
settings differently, with a small but noticeable impact on small-
scale predictions for the nonlinear power spectrum. The bet-
ter agreement of the CF/int/CAMB pipeline with the CLASS
pipeline suggests that CAMB is more accurate when called through
the Python wrapper – consistent with the fact that this implemen-
tation is the most recent one15.

Besides, differences between CosmicFish and
MontePython also increase with respect to the pessimistic
case, but only to the level of 4.3%. Figure 5 (bottom plot) shows
that the difference is now dominated by the marginalised error
on (w0, wa), that is, by the calculation of correlations between
dark energy parameters and other parameters. However, the
10% validation threshold is fulfilled. Even when we include
the official EP:VII results in the comparison, as in Fig. 6, the
(un)marginalised errors differ from the median by at most 9%.

In conclusion, our pipelines are also all validated in the
photometric optimistic case. As a final check, the comparison
between MCMC contours and Fisher ellipses in Fig. 7 brings
a final confirmation of the robustness of our forecasts against
possible issues related to numerical noise or non-Gaussian poste-
riors (Fig. 7 only includes cosmological parameters, but the plots
for nuisance parameters are available in our public repository16).

15 The small deviation of the CF/ext/CAMB pipeline with respect to
the other ones may have to do with a small unexplained feature in the
derivative of the nonlinear power spectrum with respect to wa observed
in Fig. B.1 of Appendix B.2. We leave this issue for future investigation.
16 In the GitHub repository https://github.com/sabarish-vm/
Euclid_w0wa.git, these plots are located in plots/photometric/
optimistic/WLxGCPh_Opt_nuisance.pdf and plots/photomet-
ric/optimistic/WLxGCPh_Opt_cross.pdf.
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Table 5. Same as Table 4 with optimistic settings.

CF/ext/CLASS CF/int/CLASS MP/Fisher CF/ext/CAMB CF/int/CAMB

CF/ext/CLASS 0.0 0.01 4.27 1.51 0.56
CF/int/CLASS 0.01 0.0 4.26 1.51 0.55
MP/Fisher 4.27 4.26 0.0 4.26 4.25
CF/ext/CAMB 1.51 1.51 4.26 0.0 1.35
CF/int/CAMB 0.56 0.55 4.25 1.35 0.0

Fig. 6. Same as Fig. 3 with optimistic settings.

Fig. 7. Same as Fig. 4 with optimistic settings.

4.3. Spectroscopic likelihood

4.3.1. Pessimistic setting

In this case, our results are summarised in Table 6 and Fig. 8.
Qualitatively, there are no big differences between the con-
clusions to be drawn from the photometric and spectroscopic
surveys.

As a matter of fact, the two pipelines using CosmicFish
combined with CAMB are consistent with each other, with small
differences in the errors of at most 2.1% – caused again by dif-
ferences in the treatment of accuracy between the Fortran and

Fig. 8. Same as Fig. 2 for the spectroscopic survey with pessimistic
settings.

Fig. 9. For the spectroscopic survey with pessimistic settings, compar-
ison of each Fisher marginalised (light grey) and unmarginalised (dark
grey) errors on the cosmological and nuisance parameters, for the cases
of: CF/int/CLASS (blue circles) versus CF/int/CAMB (orange squares)
versus MP/Fisher (green stars) versus EP:VII results from SOAPFish
(SF, red crosses). Plotting conventions are the same as in Fig. 3.

Python methods for calling CAMB. Once more, the pipelines using
CosmicFish combined with CLASS are even more consistent,
with a largest differences of 0.12%. When CosmicFish switches
from the CF/int/CAMB method to the CF/int/CLASS method,
the errors remain unchanged up to 0.26% differences.

The MP/Fisher pipeline gets validated in the spectro-
scopic/optimistic case, with differences of at most 2.9% with
respect to CF/ext/CAMB and 1.4% with respect to the other
CosmicFish methods. This was comparable to our results for
the photometric probe. Our pipelines also passed successfully
a more demanding test: when we add to the comparison set
some previous EP:VII results, all errors remain within 5% of
the median, as shown in Fig. 9. In this case, previous EP:VII
results are represented by those of the SOAPFish code, as already
mentioned in Sect. 4.1.

Our Fisher forecasts agree very well not only among each
other, but also with the MCMC forecast shown for compari-
son in Fig. 10 for cosmological parameters (and Figs. C.3 and
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Table 6. Same as Table 4 for the spectroscopic survey with pessimistic settings.

CF/ext/CLASS CF/int/CLASS MP/Fisher CF/ext/CAMB CF/int/CAMB

CF/ext/CLASS 0.0 0.12 1.35 2.1 0.24
CF/int/CLASS 0.12 0.0 1.32 2.12 0.26
MP/Fisher 1.35 1.32 0.0 2.91 1.45
CF/ext/CAMB 2.1 2.12 2.91 0.0 2.02
CF/int/CAMB 0.24 0.26 1.45 2.02 0.0

17 In the GitHub repository https://github.com/
sabarish-vm/Euclid_w0wa.git , these plots are located in
plots/spectroscopic/optimistic/GCsp_Opt_nuisance.pdf

Fig. 10. Same as Fig. 4 for the spectroscopic survey with pessimistic
settings.

C.4 for nuisance parameters). Here, we can see by eye a small
level of non-Gaussianity in the 1D and 2D posteriors. However,
the Fisher ellipses appear to be excellent approximations to the
actual confidence contours.

In a previously published work by Yahia-Cherif et al.
(2021), the emphasis was placed on validating only the spectro-
scopic likelihood for stage-IV surveys. The authors conducted
a thorough evaluation of various numerical derivative methods,
assessing their impact on the stability of the Fisher matrix. Addi-
tionally, they compared the results of their analysis with those
obtained through MCMC runs. Our findings align with those of
Yahia-Cherif et al. (2021), demonstrating a comparable level of
agreement.

4.3.2. Optimistic setting

This last case is very similar to the previous one. Switching
to optimistic settings in the spectroscopic likelihood does not
degrade nor improve significantly the comparison between the
various approaches as can be seen by comparing Fig. 8 to
Fig. 11. The difference between all marginalised CosmicFish
and MontePython Fisher errors is below the 2.5% level, see
Table 7. When adding SOAPFish to the comparison set, the
difference increases to 6%, see Fig. 12, still small enough to
validate our MP/Fisher pipeline. The very good agreement
between all Fisher forecasts and an MP/MCMC forecast is shown

Fig. 11. Same as Fig. 2 for the spectroscopic survey with optimistic
settings.

Fig. 12. Same as Fig. 9 with optimistic settings.

for comparison in Fig. 13 for cosmological parameters (and in
the repository17 for nuisance parameters).

5. Forecast results

5.1. Photometric survey alone

In Tables 8 and 9 we show the absolute 1σ errors on each
cosmological parameters obtained for the photometric probe
with our CosmicFish, MP/Fisher, and MP/MCMC pipelines. We
compare them with the mean values obtained by EP:VII. For
CosmicFish, we take here numbers from the CF/int/CLASS
case – but we know from previous sections that other cases give
essentially the same results.

Previous tables showed the largest percentage difference
between error bars across all cosmological and nuisance param-
eters. Here, by comparing different columns, one can check

17 In the GitHub repository https://github.com/sabarish-vm/
Euclid_w0wa.git, these plots are located in plots/spectro-
scopic/optimistic/GCsp_Opt_nuisance.pdf and plots/spec-
troscopic/optimistic/GCsp_Opt_cross.pdf
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Table 7. Same as Table 4 for the spectroscopic survey with optimistic settings.

CF/ext/CLASS CF/int/CLASS MP/Fisher CF/ext/CAMB CF/int/CAMB

CF/ext/CLASS 0.0 0.25 1.28 1.63 0.2
CF/int/CLASS 0.25 0.0 1.03 1.8 0.25
MP/Fisher 1.28 1.03 0.0 2.49 1.12
CF/ext/CAMB 1.63 1.8 2.49 0.0 1.71
CF/int/CAMB 0.2 0.25 1.12 1.71 0.0

Fig. 13. Same as Fig. 4 for the spectroscopic survey with optimistic
settings.

Table 8. For the photometric survey with pessimistic settings,
marginalised 1σ errors on cosmological parameters found by: the
average of EP:VII results, CF/int/CLASS (the other versions of
CosmicFish give nearly the same results), MontePython in Fisher
mode, MontePython in MCMC mode.

EP:VII CF/int/CLASS MP/Fisher MP/MCMC

Ωb,0 0.0027 0.0027 0.0027 0.0026
h 0.020 0.020 0.021 0.021
ns 0.0097 0.010 0.010 0.011
σ8 0.0039 0.0041 0.0042 0.0044
Ωm,0 0.0035 0.0036 0.0036 0.0038
w0 0.042 0.043 0.044 0.045
wa 0.17 0.17 0.18 0.18

for individual parameters that these percentage differences are
always very small – even if the error bars of EP:VII are usually
more optimistic than other errors by a tiny amount.

5.2. Spectroscopic survey alone

In Tables 10 and 11 we show the absolute 1σ errors on each
cosmological parameters obtained with the same pipelines, but
now for the spectroscopic probe. Note that there is a minor

Table 9. Same as Table 8 for the photometric survey with optimistic
settings.

EP:VII CF/int/CLASS MP/Fisher MP/MCMC

Ωb,0 0.0023 0.0022 0.0022 0.0022
h 0.014 0.013 0.013 0.013
ns 0.0037 0.0037 0.0037 0.0038
σ8 0.0018 0.0019 0.0020 0.0020
Ωm,0 0.0019 0.0020 0.0021 0.0020
w0 0.027 0.028 0.031 0.028
wa 0.10 0.11 0.11 0.11

Table 10. Same as Table 8 for the spectroscopic survey with pessimistic
settings.

SoapFish CF/int/CLASS MP/Fisher MP/MCMC

Ωb,0 0.0021 0.0022 0.0023 0.0020
h 0.0038 0.0038 0.0038 0.0034
ns 0.014 0.015 0.015 0.014
σ8 0.013 0.013 0.013 0.012
Ωm,0 0.011 0.011 0.011 0.0106
w0 0.10 0.10 0.11 0.10
wa 0.33 0.35 0.35 0.33

Table 11. Same as Table 8 for the spectroscopic survey with optimistic
settings.

SoapFish CF/int/CLASS MP/Fisher MP/MCMC

Ωb,0 0.0019 0.0019 0.0020 0.0019
h 0.0032 0.0032 0.0032 0.0029
ns 0.013 0.013 0.013 0.013
σ8 0.012 0.012 0.012 0.011
Ωm,0 0.010 0.010 0.010 0.0095
w0 0.090 0.093 0.095 0.087
wa 0.29 0.31 0.31 0.28

difference between our implementation and the EP:VII one
regarding the nonlinear modelling. As a matter of fact, our
pessimistic and optimistic cases agree in the kmax used for
the probes, namely 0.25h Mpc−1 and 0.30h Mpc−1, respectively.
However, the pessimistic case of EP:VII is more conservative,
since it marginalizes over the nonlinear parameters σp and σv,
while here we keep them both fixed at the fiducial cosmology,
as already explained in Sect. 3.2. Moreover, the recipe of EP:VII
assumes a separation into shape- and redshift-dependent param-
eters for the observed galaxy power spectrum. In that recipe,
the redshift-dependent parameters – which are H(zi), dA(zi),
fσ8(zi) and bσ8(zi) – are varied freely at each redshift bin i
and then projected onto the final cosmological parameter basis
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Table 12. For the combined photometric and spectroscopic surveys with various combinations of pessimistic and optimistic settings, marginalised
1σ errors on cosmological parameters found by CF/int/CLASS (the other versions of CosmicFish give nearly the same results).

Combined photometric/spectroscopic
pess/pess pess/opt opt/pess opt/opt

Ωb,0 0.00099 0.00095 0.00075 0.00072
h 0.0016 0.0015 0.0012 0.0011
ns 0.0047 0.0046 0.0019 0.0019
σ8 0.0033 0.0032 0.0018 0.0018
Ωm,0 0.0031 0.0031 0.0019 0.0019
w0 0.036 0.035 0.026 0.025
wa 0.14 0.13 0.096 0.094

(or marginalized over in the case of the galaxy bias). This is
again more conservative, firstly, because it assumes more free-
dom in the modelling of the observables, and secondly, because
the marginalization over a larger parameter space degrades the
constraints. Since EP:VII did not publish a Fisher matrix using
our direct full-shape method approach, we compare against the
code SoapFish, which does contain the same implementation
and is one of the validated codes of the EP:VII group.

5.3. Combined surveys

We finally combine the photometric and spectroscopic probes,
which amounts in summing up their Fisher matrices. We con-
sider all four combinations of pessimistic or optimistic settings
for each probe. The absolute 1σ errors on each cosmological
parameters obtained with CosmicFish are shown in Table 12.
We take here numbers from the CF/int/CLASS case – but we
cross-checked that other cases give essentially the same num-
bers. To visualise the way in which the combined probe lifts
parameter degeneracies, the best is to compare the Fisher ellipses
coming from individual and combined probes. These are shown
in Fig. 14 for the optimistic-optimistic case, in Appendix D for
the pessimistic-pessimistic case, and in our repository for other
cases18.

Note that, in principle, there is a correlation between
data from the photometric and spectroscopic galaxy clustering
probes at the redshifts where they overlap. In this section, we
neglect this correlation for simplicity, which makes our forecasts
slightly too optimistic. This differs from the ‘EP:VII pessimistic’
approach, in which high-redshift data were removed from the
photometric survey, leading instead to slightly too pessimistic
results.

The combination is particularly efficient for the determina-
tion of Ωb,0 and h, for which the photometric and spectroscopic
surveys probe different degeneracy directions. The combination
reduces significantly the error on these parameters compared to
each individual probe. For other parameters the measurement is
dominated by the photometric probe.

A traditional estimate of the constraining power of a survey
dedicated to the study of dark energy is the dark energy Figure
of Merit (DE FoM), which is defined as

FoM =
√

det(F̃w0wa ), (38)

18 In the GitHub repository https://github.com/sabarish-vm/
Euclid_w0wa.git these plots are located in plots/combined/
combined_pess_opt_cosmo.pdf and plots/combined/combined_
opt_pess_cosmo.pdf

where F̃w0wa is the 2 × 2 Fisher matrix after marginalizing over
all other cosmological and nuisance parameters except w0 and
wa. For a Gaussian posterior (i.e. for elliptical Fisher contours)
this quantity is related to the area S of the 1σ probability
contours by

FoM =
2.3π

S
. (39)

For a Fisher matrix the computation of the determinant is a triv-
ial operation, while for MCMC chains there are two options. The
first option, and most common in the literature, is to compute
the covariance matrix of the chains, which is a good approxima-
tion if the posterior is Gaussian: then, the covariance matrix is
equivalent to the inverse of the Fisher matrix. However, since the
covariance matrix is by definition symmetrical, computing the
DE FoM from it might under- or over-estimate the constraining
power of the probe in the w0-wa parameter space. The difference
would depend on the exact shape of the MCMC contours and
how non-Gaussian they are. The second option is to use Eq. (39)
to calculate the FoM from the enclosed area of the MCMC con-
tour itself. The computation of such contours is a well-known
problem in the literature. The reader can refer to Lewis (2019)
and Brinckmann & Lesgourgues (2019) for more details on the
estimation of the probability contours from a discrete set of
Markov chains.

For the photometric probe, since our approach is exactly
equivalent to the one of EP:VII, we also find exactly the same
DE FoM. For the spectroscopic one, we have highlighted and
proved in this work that, while using the same likelihood recipe,
we adopt a different parametrisation: we directly compute the
Fisher matrix in the space of cosmological parameters, while
EP:VII computed it with respect to a basis of phenomenologi-
cal parameters and then used a non-trivial transformation to go
to the space of cosmological parameters. Thus we find a slightly
different FoM, that we provide for completeness in Table 13 –
using either one of the CosmicFish Fisher pipelines or the
MCMC pipeline with an evaluation of the area enclosed by the
marginalised contours.

6. Impact of accuracy settings in
Einstein–Boltzmann solvers

CAMB and CLASS have been proved to agree remarkably well
with each other when using very high accuracy settings
(see Lesgourgues 2011b). The settings defined in Lesgourgues
(2011b) are however unpractical because they slow down both
codes considerably. The question of properly choosing the
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Fig. 14. For the individual and combined photometric and spectroscopic surveys with optimistic settings, 1D posterior and 2D contours (for 68%
and 95% confidence level) on cosmological parameters from CF/int/CLASS (dotted lines) and MP/Fisher (solid lines). Plotted using GetDist.

Table 13. Dark energy Figure of Merit for the spectroscopic survey with
optimistic and pessimistic settings, found by: the determinant of the
CosmicFish Fisher matrix and the area of the MontePython MCMC
contours.

Dark energy Figure of Merit (FoM)

CosmicFish
determinant

MontePython
MCMC area

GCsp pessimistic 69 76
GCsp optimistic 87 92

default value of each precision parameter in CAMB and CLASS
has been extensively investigated and tested by various groups
from 2011 to 2013, that is, during the first stages of the Planck
data analysis (see Hamann et al. 2009; Lesgourgues 2011b;
Lesgourgues & Tram 2014). Since then, both codes are provided
with default-precision settings designed to avoid biasing the
results of MCMC analyses of, typically, Planck and SDSS/BOSS
data, while keeping them as fast as possible.

Accuracy settings in CAMB and CLASS deserve to be revis-
ited in the present context, mainly for three reasons. First, in
general, Fisher analyses require more precision than MCMC
runs. Indeed, the calculation of numerical derivatives involves
the comparison of power spectra obtained under very small
variations of cosmological parameters. These variations should

be dominated by physical effects rather than numerical errors.
MCMC runs avoid such an issue because, in MCMCs random
numerical errors tend to be averaged out each time that results
are marginalised over unwanted parameters. Thus, in this work,
MCMC runs are always performed with default CLASS precision.
Second, among the Fisher methods used here, the MP/Fisher
method, which requires the calculation of second derivatives
of the likelihood, tends to require even higher precision. Third,
Euclid probes the matter power spectrum with much higher accu-
racy than SDSS/BOSS. Precision parameters that are particularly
relevant for computing the matter power spectrum need to be
tuned accordingly.

6.1. Accuracy settings and fiducial spectra

In Appendix A we detail the list of all fixed parameters passed
to CAMB and CLASS before each run. The list includes a few
options concerning the setting of key precision parameters. Here
we summarise these different settings and we show how they
impact the accuracy of the power spectrum calculation for a
given cosmological model – in this section we just chose to focus
on the fiducial model19. For more details the reader can consult
Appendix A.

19 In this section we only compared the linear and nonlinear power
spectra from CAMB and CLASS. Internally, we also compared the func-
tions D(z), f (z), and σ8(z). For the latter, we did not find any noticeable
difference that would be worth reporting.
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Fig. 15. For the linear (left) and nonlinear (right) matter power spectrum of the fiducial model at redshift z = 0 (top) and z = 2 (bottom), percentage
difference between the predictions of CLASS and CAMB. Here, the reference is the CLASS high-precision (HP) result. We compare it with CLASS
Default Precision (DP) and CAMB with the precision settings defined as P1, P2, P3 in the text. In the linear case (left), the CAMB P1 curve is always
overdrawn by the P2 one, since the difference between P1 and P2 is only relevant at the level of the nonlinear spectrum.

For CAMBthe two parameters accuracy_boost and
l_accuracy_boost play an essential role for the calculation of
background, thermodynamical, and perturbation quantities for
each cosmology. In this work, we never consider values of these
parameters below 2 (2 was the setting adopted in EP:VII). Addi-
tionally, in the context of Fisher forecasts one must be aware
of the role of a tolerance parameter in the version of Halofit
implemented in CAMB. This tolerance governs the accuracy with
which the algorithm finds the scale of nonlinearity for each
cosmology, using a bisection method. In CAMBthis tolerance is
hard-coded to 10−3. We replaced it by a new accuracy parameter
passed in input, halofit_tol_sigma, and we explored values
down to 10−6 (we checked that even smaller values make no
difference within CosmicFish forecasts). We define three
precision settings for CAMB, which we call P1, P2, P3 in order of
growing precision:
CAMB (P1 / P2 / P3)

accuracy_boost = 2 / 2 / 3
l_accuracy_boost = 2 / 2 / 3
halofit_tol_sigma = 1.e-3 / 1.e-6 / 1.e-6

Thus, (P1) corresponds to settings of EP:VII, (P2) shows the
impact of decreasing the Halofit tolerance by 3 orders of mag-
nitude, and (P3) stands for our most enhanced settings, used by
default in the rest of this work.

For CLASSwe considered the default-precision (DP) set-
tings of the public code and compare them with high-precision
(HP) settings. In order to define the latter, we recall that
CLASS is downloaded together with an optional input file called

pk_ref.pre, designed to push the code to extreme accuracy,
and used in Lesgourgues (2011b) to demonstrate that boosted
versions of CAMB and CLASS do agree at the 0.01% level for the
matter power spectrum and other observables. These settings are
unpractical for forecasting purposes due to their CPU cost. Addi-
tionally, many parameters in pk_ref.pre are irrelevant for the
calculation of the matter power spectrum. In Appendix A.5 we
propose a more concise set of accuracy parameters that define
our HP settings. We have shown here that these HP settings lead
to a very good convergence of the matter power spectrum with-
out slowing CLASS down in an exaggerated way. The tolerance
parameter of Halofit is set by default to 10−6 within CLASS (as
well as in our CAMB P2 and P3 settings). We lower it to 10−8 in
CLASSHP settings (this is lower than in CAMB P2 and P3, because
CLASS is used within the MP/Fisher pipeline which, as argued
before, requires extra precision).

In Fig. 15 we compare the linear and nonlinear spectrum of
the fiducial model at redshift z = 0 and z = 2, computed with
each version of CAMB and CLASS. Here, CLASSHP is always used
as a reference.

First, we can compare the results with the highest settings:
in Fig. 15 the red curves show the ratio of the CAMB P3 over
CLASS HP spectra. We see that the relative difference is always
below 0.07% for the linear spectrum. This is not as small as the
0.01% agreement found in Lesgourgues (2011b), because this
reference relied on even higher precision settings, with accu-
racy boost parameters as large as (4, 8) in CAMBand settings
from pk_ref.pre in CLASS. Nevertheless, a 0.07% agreement
is remarkable and definitely sufficient for the purpose of our
forecasts, as demonstrated by the agreement between the various
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Fisher matrices derived in the previous sections. For the nonlin-
ear power spectrum the level of agreement is similar (excepted
for a narrow spike of 0.2% at k ≃ 3.3 × 10−3 Mpc−1 coming
from the transition from linear to nonlinear calculations in both
codes – but a feature at such a low values of k is harmless for
Euclid predictions).

Next, we can investigate the impact of degrading precision
in the two codes. With CLASS DP the error remains below the
0.1% level on large scales, but slightly exceeds 0.12% on small
scales for the linear power spectrum. This is anyhow a very small
degradation compared to the sensitivity of Euclid. As a mat-
ter of fact, we only observe very small differences between the
CosmicFish results obtained with either CLASSDP or HP. How-
ever, the HP settings provide more stability against the choice of
step sizes when computing the second derivatives of the likeli-
hood with the MP/Fisher approach, as shown in Appendix B.3.
Thus, in the rest of this work, we decided to stick everywhere to
CLASS HP settings.

Comparing the results from CAMB P2 and P3 in Fig. 15, we
see that CAMB P2 is a bit further away from CLASS HP than
CAMB P3 on small scales, but this is rather unimportant. The
results for P1 and P2 are identical at the level of the linear spec-
tra, since these settings only differ at the level of one Halofit
parameter. However, the nonlinear spectra from P1 and P2 differ
significantly – at the 0.25% for our fiducial model. This shows
that a Halofit tolerance of 10−3 is insufficient. It leads to a
poorly converged bisection in Halofit, and thus to a spurious
step-like response of the nonlinear spectrum to small variations
in the cosmological parameters. Thus, it compromises the cal-
culation of numerical derivatives. We believe that the EP:VII
group overcame this difficulty by using advanced methods for
the calculation of derivatives, based on multiple steps. With sim-
ple two-sided derivatives, it would be nearly impossible to obtain
stable derivatives with P1 settings, as we shall see better in the
next subsection.

As a small technical detail, we note that in order to pro-
duce Fig. 15 we adjusted two parameters in a slightly different
way than in the rest of this paper. Instead of passing the same
value of σ8 to both codes, we passed the same value of As in
order to be insensitive to very small differences in the σ8-to-
As conversion performed inside CAMB or CLASS. This choice is
relevant only for the sake of producing Fig. 15. Indeed, in the
rest of this work we only want to compute the variation of the
spectra in the vicinity of the fiducial model. Thus, a very small
difference in the absolute value of one cosmological parame-
ter (As) is irrelevant. Therefore, in other sections we can safely
adopt the same input value of σ8 in the two codes. In order to
match the scale k∗ at which both codes start computing non-
linear corrections to the power spectrum, we adjusted manually
the transition scale parameter in CLASS to its CAMB value, that
is, halofit_min_k_nonlinear=3.3e-3. Otherwise, nonlin-
ear corrections are computed by CLASS for any k > kCLASS

∗ =
10−4 Mpc−1 and by CAMB for any k > kCAMB

∗ = 3.3×10−3 Mpc−1.
This produces a small degradation of the CAMB-CLASS agreement
for kCLASS

∗ < k < kCAMB
∗ . However, Euclid does not probe accu-

rately such huge scales or tiny wavenumbers. Thus, in other parts
of this work, we stick to the default value of the CLASS parameter
halofit_min_k_nonlinear.

6.2. Accuracy settings and first derivatives of the spectra

We now bring our precision tests to the level of first deriva-
tive calculations. Since we use the Limber approximation for the
photometric probe, the quantities of interest for both probes

are the derivatives of the matter power spectrum. We
have shown here the derivatives ∂α ln P(k, z) of the lin-
ear and nonlinear power spectrum at z = 0 for all cos-
mological parameters α. Like in our CosmicFish runs we
use two-sided derivatives with step sizes ∆pα set to 1%
of fiducial values (or 0.01 in the case of w0 and wa).
Figure 16 shows the derivatives ∂α ln P(k, z = 0) as a function
of k computed with CLASS DP, HP, and CAMB P1, P2, P3. To see
better the difference between these curves, we show in Fig. 17
the difference between the derivatives computed with either
CLASS DP, CAMB P1, CAMB P2, or CAMB P3 and those computed
with CLASS HP.

For the linear power spectrum all codes and all accu-
racy settings predict derivatives that are visually identical
in Figs. 16 and 17 reveals tiny differences. By comparing
the two figures, we see that differences are typically two
order of magnitude smaller than the derivative themselves (the
biggest discrepancy is a 5% difference between the CAMB and
CLASS predictions for the derivative with respect to h). Such
a high level of agreement on linear derivatives explains the
very good match between the Fisher matrices obtained with
CosmicFish/CAMB and CosmicFish/CLASS for the spectro-
scopic probe.

At the level of the nonlinear power spectrum, we see in both
figures that CAMB P1 predictions are very discrepant – espe-
cially for (Ωb, σ8), but also for (Ωm,0, h, ns). This is due to the
glitches generated by insufficient settings for the Halofit toler-
ance parameter. However, the level of agreement between CLASS
DP, HP and CAMB P2, P3 is again excellent, typically of the same
order of magnitude as for the linear spectrum – which proves
that Halofit is implemented consistently and accurately in the
two codes.

From a glance at Figs. 16 and 17 it is difficult to assess
whether the Fisher matrix of the CosmicFish pipeline should
be computed with DP or HP for CLASS and with P2 or P3 for
CAMB: these settings seem roughly equivalent at the level of
these plots. However, tiny differences at the level of derivatives
– and thus of Fisher matrices – can be amplified by the Fisher
matrix inversion. Thus the only way to check the required level of
accuracy is to compare the marginalised errors obtained with dif-
ferent precision levels. We performed such tests using the CF/ext
pipeline.

We show the difference between the error inferred from
CAMB P2 versus P3 or from from CLASS DP versus HP in Fig. 18.
In each test we consider the case of the photometric/optimistic
probe (top panels) and spectroscopic/optimistic probe (bottom
panels). Here we always use the CF/ext pipeline.

The largest differences appear between CAMB P2 and CAMB P3
for the spectroscopic probe: they are of the order of 1% on
marginalised errors. These differences are still small, which sug-
gests that results obtained with P2 are already reasonable, while
those of P3 are likely to be well converged. We checked that the
results obtained with P3 are the closest ones to the average of
other pipelines, and thus, as expected, the most accurate. This
motivates our choice to stick to P3 precision in the rest of this
work. We recall that the matrices of EP:VII were based on P1
settings and that the significant error introduced by such set-
tings was mitigated through the use of the SteM scheme for the
calculation of derivatives.

Between CLASS DP and CLASS HP, we never find differences
exceeding 0.5%. Thus, running with HP is not strictly necessary,
but it confers extra precision and robustness to the results. In all
previous sections, our Fisher matrices were obtained with HP
settings.
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Fig. 16. Derivative of the logarithm of the linear (left) and nonlinear (right) matter power spectrum with respect to each cosmological parameter in
our basis, computed with CLASS (with either DP or HP) and CAMB (with either P1, P2, or P3 precision). The derivatives are computed at z = 0. In
the linear case (left), the CAMB P1 curve is always overdrawn by the P2 one, since the difference between P1 and P2 is only relevant at the level of
the nonlinear spectrum. Moreover, P2 is always nearly overdrawn by P3.

6.3. Accuracy settings and second derivatives
of the likelihood

The MP/Fisher pipeline relies on the calculation of second
derivatives of the likelihood, which potentially require even more
precision than the evaluation of first derivatives. We can do var-
ious tests of the impact of accuracy settings on such second
derivatives, that is, on the direct calculation of the Fisher matrix
coefficient.

In Appendix B.3 we show how the prediction of a given
Fisher matrix coefficient varies with the CLASS precision set-
ting (DP versus HP) and the step size. We find that with small
step sizes the results can be affected by random numerical
noise, while with large step sizes they pick up higher-order
contributions related to the non-Gaussianity of the likelihood.
Adopting HP settings offers an opportunity to decrease the step
sizes without being dominated by numerical noise, and thus,
to have a safe and robust calculation of Fisher matrix coeffi-
cients, closer to the Gaussian approximation. This supports our

decision to stick to HP settings throughout this work – while
in the CosmicFish pipeline, based on the calculation of first
derivatives, CLASS DP settings would suffice, as shown in the
last subsection.

We can also compare the marginalised and unmarginalised
errors on all parameters obtained with the MP/Fisher pipeline,
using either CLASS DP or HP. For this test, we stick to the
same small step sizes as in the rest of this work, that is,
for the photometric probe, 10% of the marginalised error on
each parameter, and for the spectroscopic probe, 5% of them
(as explained in Appendix B.3). This test leads to tiny dif-
ferences (1%) on unmarginalised errors, but large errors on
the marginalised one, reaching 11% for the spectroscopic/op-
timistic probe and even much more for the photometric/opti-
mistic probe. Thus we conclude that the use of HP is optional
for the CosmicFish pipeline and absolutely required for the
MP/Fisher pipeline. We reiterate that the MP/MCMC pipeline
is the least sensitive to numerical errors and can be safely run
in DP.
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Fig. 17. Same Fig. 16 but now for the difference between the derivative of the logarithm of the linear (left) and nonlinear (right) matter power
spectrum computed with one of CLASS DP or CAMB (with either P1, P2, or P3 precision) with the same derivative computed with CLASS HP.

7. Conclusions

For the purpose of Euclid forecasts we have thoroughly vali-
dated the MP/Fisher pipeline against a bunch of CosmicFish
Fisher forecast pipelines and a few other previous results from
EP:VII. Despite of the very different method through which
MontePython and CosmicFish compute Fisher matrices, we
found a spectacular level of agreement between them. Typically,
with pessimistic Euclid settings, all errors agree at least at the
2% level between the MP/Fisher and CosmicFish pipelines
for both the photometric and spectroscopic cases. Even when
involving additional forecast pipelines from EP:VII, all error
bars agree much better than the “10% with respect to the median”
threshold fixed by the latter group. We also showed that fore-
casts performed with CLASS or CAMB agree very well with each
other, especially when both codes are called through their Python
wrappers (leading to sub-0.5% differences between all errors
computed with CF/int/CAMB versus CF/int/CLASS). Addi-
tionally, we proved that the Gaussian approximation on which all
Fisher forecasts are relying is valid in the context of Euclid and
of the ΛCDM+{w0, wa} model, since the Fisher ellipses overlap
with the contours derived from an MCMC run using the same
MontePython mock Euclid likelihoods.

This validation step is interesting by itself, because it allows
us to cross-check the impact and the self-consistency of several
details in the recipes used for modelling the Euclid photometric
and spectroscopic probes and by the same occasion to validate
some new ways of using the CosmicFish code with four dif-
ferent interfaces with the CAMB and CLASS Einstein–Boltzmann
solvers. In the present paper we tried to document thoroughly
all the physical assumptions and numerical methods used by
these pipelines, reporting things exactly as they are implemented
in the codes. We also reported our predictions for the sensitiv-
ity of Euclid to the parameters of the ΛCDM+{w0, wa} model
when the photometric and spectroscopic probes are used either
independently or in combination with each other.

However, in the context of preliminary work for Euclid the
most important consequence of this work of validation is to pave
the way to further robust forecasts. As a matter of fact any cos-
mological model implemented in the CLASS code can now be
immediately used in a forecast: for this, one just needs to add to
the input file of MontePython one line per free parameter. If this
parameter is known by CLASS, there is nothing else to be done.
Thanks to the new CF/int/CAMB pipeline presented here, this
is actually also true for any parameter or model implemented
in CAMB. However, the version of the mock likelihoods used in
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Fig. 18. For the photometric survey (top panels) and spectroscopic sur-
vey (bottom panels) both with optimistic settings, comparison of the
Fisher marginalised and unmarginalised errors on each cosmological
and nuisance parameters for CAMB P2 versus CAMB P3 precision (first
and third panels), or CLASS DP versus HP precision (second and fourth
panels). Plotting conventions are the same as in Fig. 2.

this paper relies on a few model-dependent assumptions (such as
the standard Poisson equation or the fact that galaxies trace the
total matter power spectrum). These assumptions require some
generalisation in the case of massive neutrinos or modified grav-
ity models. A generalisation of the MontePython Euclid mock
likelihoods to the case of massive neutrinos will be released soon
(together with a forthcoming publication). Since MontePython
calls the very same functions (describing the two Euclid mock
likelihoods) when computing the Fisher matrix or when running
an MCMC forecast, and since MP/Fisher forecasts have been
validated against EP:VII forecasts, we automatically know that
MP/MCMC forecasts can be trusted on equal footing with EP:VII
forecasts, with the additional advantage of taking consistently
into account a possible non-Gaussianity of the posteriors.

The MontePython Euclid mock likelihoods should not be
confused with the official Euclid likelihood that is currently
being developed within the collaboration. The latter is more
ambitious and includes effects that are neglected here (such as
super-sample covariance, different intrinsic alignment models,
redshift-space distortions and magnification in the photomet-
ric galaxy clustering, or nonlinear galaxy biasing, just to name
a few). Nonetheless, the MontePython Euclid likelihoods pro-
vide a robust tool against which the official likelihood can be
compared and tested.

Another more general benefit from our analysis is that we
have established and documented a list of accuracy settings for
the EBSs CAMB and CLASS that prove to be sufficient for the pur-
pose of Euclid forecasts, and thus, in principle, for the analysis
of real Euclid data.
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Appendix A: Input and precision settings in
Einstein–Boltzmann solvers

We list below the input parameter passed to either CAMB or CLASS
in our Euclid forecasts. Section 6 discusses the relevance of
precision parameter settings for such forecasts.

Appendix A.1. Fiducial cosmology parameters

We use the same fiducial value of cosmological parameters as in
EP:VII:
CAMB

use_physical = T # to pass big Omegas

sigma8 = 0.815584
hubble = 67
omega_baryon = 0.05
omega_m = 0.32
scalar_spectral_index(1) = 0.96
w = -1.0
wa = 0.0

dark_energy_model = PPF # use PPF scheme in DE
perturbations, as in CLASS

helium_fraction = 0.2454006
temp_cmb = 2.7255 # relevant in neutrino mass

conversion
reionization = F # Reio is irrelevant here. Switching

it off gives a small
# speedup. Not possible when CMB

included.

We get the same fiducial cosmology in CLASS with the
following settings:

CLASS

sigma8 = 0.815584
h = 0.67
Omega_b = 0.05
Omega_m = 0.32
n_s = 0.96
w0_fld=-1.
wa_fld=0.

Omega_Lambda=0 # setting the true cosmological
constant to zero, in order

# to activate the DE fluid (fld) with
a CPL equation of state

YHe = 0.2454006 # Helium fraction
T_cmb = 2.7255 # relevant in neutrino mass conversion
reio_parametrization = reio_none

Appendix A.2. Neutrino settings

This issue is actually tricky because by default CAMB and CLASS
model the details of the neutrino sector differently. The mod-
elling used in CLASS aims at being closer to reality (that is, to
the results of the most detailed studies of neutrino decoupling,
such as Froustey et al. (2020); Bennett et al. (2021)). However,
for the purpose of comparing our forecast pipelines – rather than

fitting real data – the quest for realism is irrelevant: we just want
the neutrino modelling to be reasonable and identical in the two
codes. Then, it is easier to set up CLASS parameters in such way
to mimic the CAMB neutrino model.

The CAMB neutrino model used here is the one corresponding
to the option share_delta_neff = T, explained in its docu-
mentation website 20. The relevant neutrino parameters that we
pass to CAMB are:

CAMB

share_delta_neff = T
num_mass_eigenstates = 1
massless_neutrinos = 2.046
massive neutrinos = 1
mnu=0.06

In CAMBthese settings trigger several non-trivial operations,
with the goal of having the same temperature shared by the three
neutrino species. The true effective number of ultra-relativistic
degrees of freedom (i.e. massless neutrinos) actually used in
the CAMB equations is redefined internally from 2.046 to a new
number:

Nur = 2 +
2
3
× (2.046 − floor[2.046]) ≃ 2.030666 , (A.1)

while the massive neutrinos are modelled as a perfect Fermi-
Dirac species with a temperature Tν and fractional density Ων
computed as

Tν
Tγ
=

(
4

11

)1/3 (
1 + 2.046

3

)1/4

= 0.7164864 ,

Ωνh2 =

0.06 eV
94.07 eV

(
1 + 2.046

3

)3/4

= 6.451439 × 10−4

⇒ Ων = 1.437166 × 10−3.

(A.2)

To mimic exactly the same settings, we must pass these last
numbers to CLASS:

CLASS

N_ncdm = 1
N_ur = 2.030666
T_ncdm = 0.7164864
Omega_ncdm = 0.001437166

Appendix A.3. Linear matter power spectrum settings

The following output settings allow CAMB and CLASS to output
the matter power spectrum with a fine enough sampling to avoid
interpolation errors within the likelihood codes.
CAMB

transfer_high_precision = T
transfer_kmax = 50
transfer_k_per_logint = 50

20 https://cosmologist.info/notes/CAMB.pdf
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CLASS

P_k_max_h/Mpc = 50.
k_per_decade_for_pk = 50
k_per_decade_for_bao = 50

(The CosmicFish internal mode expects a kmax in units of
1/Mpc: in this case we pass P_k_max_1/Mpc = 50.)

Appendix A.4. Nonlinear power spectrum settings

The following parameters are only relevant for the photometric
likelihood, which requires a nonlinear power spectrum in input.
We stick to the choice of EP:VII to use the Halofit version of
Takahashi et al. (2020), including neutrino corrections found by
Bird et al. (2012) and implemented in both CAMB and CLASS:
CAMB

do_nonlinear = 1
halofit_version = 4

Besides, it is crucial to change the value of a tolerance
parameter in the version of the Halofit algorithm implemented
in CAMB. The file fortran/halofit.f90 contains a function
THalofit_GetNonLinRatios() that computes a characteris-
tic radius rmid with a bisection method. The bisection accuracy
is set by the line

if (abs(diff).le.0.001) then
It is essential to substitute this tolerance by a new precision

parameter or a hard-coded value equal to (or smaller than) 10−6.
Otherwise, the error on rmid is way too large given the Euclid
sensitivity, and leads to inaccurate derivatives in the Fisher
matrix calculation. In our implementation, this new CAMB preci-
sion parameter is called halofit_tol_sigma. We discuss our
settings for this parameter together with that of other important
accuracy parameters in Appendix A.5.

The Halofit version implemented in CLASS coincides with
the “Halofit version 4” of CAMB. We need to ask CLASS to use
a large enough kmax for the sake of convergence of the Halofit
algorithm even at high redshift:

CLASS

non linear = halofit
nonlinear_min_k_max = 80.

Within CLASSthe tolerance parameter mentioned above is
also called halofit_tol_sigma and set by default to 10−6,
which proves to be sufficient for computing Euclid Fisher
matrices with the CosmicFish method. However, as discussed
in Appendix B.3, the calculation of Fisher matrices with the
MontePython method requires even higher precision. We dis-
cuss our settings for this parameter together with that of other
important accuracy parameters in Appendix A.5.

Appendix A.5. High-precision settings

High-precision settings slow down the two codes substantially,
but they guarantee excellent mutual agreement between them, as
well as a low level of numerical noise that allows us to com-
pute numerical derivatives w.r.t. cosmological parameters using
smaller stepsizes. These settings relate mainly to the multipole
ℓmax at which the various Boltzmann hierarchies are truncated,
to the sampling of perturbations in wavenumber space, to inte-
gration time steps and to the use of various approximation
schemes.

For CAMBwe always use the following precision settings:

CAMB

do_late_rad_truncation = T
high_accuracy_default=T
transfer_interp_matterpower = T
accurate_reionization = F

There are three additional parameters playing a particularly
important role, and for which we define three levels called P1,
P2, P3:
CAMB (P1 / P2 / P3)

accuracy_boost = 2 / 2 / 3
l_accuracy_boost = 2 / 2 / 3
halofit_tol_sigma = 1.e-3 / 1.e-6 / 1.e-6

We compare P1, P2, and P3 in Sect. 6, but in the rest of this
work we stick to P3.

For CLASSwe show in Sect. 6 that default precision (DP)
is usually sufficient when computing the Euclid Fisher matri-
ces with the CosmicFish method. However, the calculation
of Fisher matrices with the MontePython method requires
enhanced settings:

CLASS(HP)

l_max_g=20
l_max_pol_g=15
radiation_streaming_approximation = 2
radiation_streaming_trigger_tau_over_tau_k = 240.
radiation_streaming_trigger_tau_c_over_tau = 100.
tol_ncdm_synchronous = 1.e-5
l_max_ncdm=22
ncdm_fluid_trigger_tau_over_tau_k = 41.

background_Nloga = 6000
thermo_Nz_log = 20000
thermo_Nz_lin = 40000
tol_perturbations_integration = 1.e-6

halofit_tol_sigma = 1.e-8

The first eight parameters increase the precision of the
system of perturbation equations (by truncating Boltzmann hier-
archies at higher multipoles, better sampling neutrino momenta
and using approximations in a smaller region). The next four
parameters reduce the integration stepsize in the ordinary dif-
ferential equations describing respectively the background, ther-
modynamical and perturbation evolution. They also reduce
interpolation errors when the perturbation equations require the
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Table B.1. Fiducial values and MCMC marginalised errors for all free parameters in the photometric probe.

fiducial σ
marg.
α

parameter value pessimistic optimistic
Ωb,0 0.05 2.6 ×10−3 2.2 ×10−3

Ωm,0 0.32 3.8 ×10−3 2.0 ×10−3

h 0.67 2.1 ×10−2 1.3 ×10−2

ns 0.96 1.1 ×10−2 3.8 ×10−3

σ8 0.815584 4.4 ×10−3 2.0 ×10−3

w0 −1 4.5 ×10−2 2.8 ×10−2

wa 0 1.8 ×10−1 1.0 ×10−1

AIA 1.72 1.8 ×10−1 1.2 ×10−1

ηIA −0.41 1.1 ×10−1 7.4 ×10−2

b1 1.0998 7.8 ×10−3 2.4 ×10−3

b2 1.2202 9.0 ×10−3 3.3 ×10−3

b3 1.2724 9.8 ×10−3 3.8 ×10−3

b4 1.3166 1.0 ×10−2 4.2 ×10−3

b5 1.3581 1.1 ×10−2 4.7 ×10−3

b6 1.3998 1.2 ×10−2 5.1 ×10−3

b7 1.4446 1.3 ×10−2 5.6 ×10−3

b8 1.4965 1.3 ×10−2 5.8 ×10−3

b9 1.5652 1.4 ×10−2 6.3 ×10−3

b10 1.7430 1.6 ×10−2 7.1 ×10−3

evaluation of background and thermodynamical quantities at a
given value of the scale factor a. The last parameter reduces
random errors in Halofit caused by a bisection algorithm.

In DP mode none of these parameters are passed to the
code. We illustrate the impact of DP versus HP in Sec. 6,
and we stick to HP everywhere else when computing Fisher
matrices. Instead, for MCMC runs we always stick to DP
settings.

Appendix B: Fiducial parameter and choice of step
sizes

Appendix B.1. Fiducial parameters

In Table B.1 (resp. Table B.2), we summarise our choice of
fiducial values and step sizes for the cosmological and nui-
sance parameters of the photometric (resp. spectroscopic) probe.
The fiducial values are the same as in EP:VII. In the last two
columns of each table we show the marginalised errors (inferred
from MCMC runs), which play a role in the discussion of
Fig. B.3.

Appendix B.2. Stepsizes in CosmicFish

In EP:VIIthe different codes always computed the first-order
derivatives ∂αCℓ or ∂αP(k, µ, z) with the SteM method or the n-
point stencil method, which rely on the evaluation of the Cℓ’s
or P(k, z) at a few different values of the parameter pα – see
Appendix B of Camera et al. (2017) for further details. However,
in this work, we checked explicitly that the CosmicFish results
stay the same when switching to a simpler two-sided derivative
scheme, with steps roughly of the order of 1% of the fiducial
parameter values (or 0.01 in the case of w0 and wa).

We attribute this feature mainly to our use of higher precision
settings in CAMB, and in particular to the reduction of the toler-
ance parameter of CAMB’s Halofit version from 10−3 to 10−8,
see Appendix A.4. This leads to a significant reduction of the
numerical noise in the CAMB output, mainly for nonlinear spec-
tra used by the photometric probe. Thus, it removes the need to
average the noise over several output spectra, as done implicitly
within the SteM scheme. The main CosmicFish results of this
work have been obtained with step sizes set to exactly 1% of the
fiducial values of Table B.1 and B.2 (or to 0.01 for w0 and wa).
We checked that changing the step sizes by a factor two does
not impact the results. CosmicFish does not use a finite dif-
ference method to evaluate derivatives with respect to the shot
noise parameters because these are trivial (for α = p(zi), one gets
∂αPobs = 1).

Appendix B.3. Stepsizes in MontePython/Fisher

Since the MP/Fisher and CosmicFish pipelines need to com-
pute some intrinsically different numerical derivatives (second
derivatives of L versus first derivatives of Cℓ’s or P(k)’s), the
step sizes also need to be optimised independently in the two
cases.

When the step sizes are too small, there is a risk that
the difference ∆L between likelihood values computed at
(pα ± ∆pα, pβ ± ∆pβ) is dominated by numerical errors rather
than physical effects. When the step sizes are too big,
we may exit from the region in which the likelihood is
Gaussian, that is, χ2(p1, ..., pN) is quadratic. The χ2 would
then pick up higher order contributions, starting from cubic
terms. As a result, the matrix ∂α∂β(− lnL) would strongly
depend on step sizes and would no longer represent the
Fisher matrix.
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Table B.2. Fiducial values and MCMC marginalised errors for all free parameters in the spectroscopic probe.

fiducial σ
marg.
α

parameter value pessimistic optimistic
Ωb,0 0.05 2.0 ×10−3 1.9 ×10−3

Ωm,0 0.32 1.1 ×10−2 9.5 ×10−3

h 0.67 3.4 ×10−3 2.9 ×10−3

ns 0.96 1.4 ×10−2 1.3 ×10−2

σ8 0.815584 1.2 ×10−2 1.1 ×10−2

w0 −1 9.6 ×10−2 8.7 ×10−2

wa 0 3.3 ×10−1 2.8 ×10−1

PS 1 0 35 19
PS 2 0 34 19
PS 3 0 36 20
PS 4 0 36 22

ln[b1σ8(z1)] −0.3256 1.4 ×10−2 1.3 ×10−2

ln[b2σ8(z2)] −0.3160 1.4 ×10−2 1.3 ×10−2

ln[b3σ8(z3)] −0.3117 1.4 ×10−2 1.3 ×10−2

ln[b4σ8(z4)] −0.3203 1.3 ×10−2 1.2 ×10−2

If the precision of the EBS and of the likelihood code are
sufficient, there should exist a range of intermediate step sizes
such numerical noise is under control while Fi j is nearly constant
as a function of step sizes. This can be checked explicitly. For
diagonal coefficients of the Fisher matrix, one can plot Fαα =
∂2
α(− lnL) as a function of the step ∆pα. One should be able to

see three regions: for too small ∆pα, Fαα should feature random
fluctuations; For intermediate ∆pα, it should remain flat; For too
large ∆pα, it should either raise or decrease, depending on the
sign of higher order corrections. For non-diagonal coefficients
one may plot Fαβ as a two-dimensional function of (∆pα, ∆pβ),
and draw similar conclusions.

After performing such tests, one can choose some arbi-
trary step sizes provided that they lay within the intermediate
region. These tests also allow us to check the accuracy of
the Einstein–Boltzmann and likelihood codes. If both codes
are accurate enough for the purpose of computing the Fisher
matrix, there exist a wide range of intermediate step sizes
for each parameter. If one of the codes is not sufficiently
accurate, there is no intermediate region, that is, derivative
curves show no transition between the unstable region and the
non-Gaussian region.

Since doing all these tests can be very time-consuming, we
do not want to perform them extensively before each new cal-
culation of a Fisher matrix. In this work, we adopt a pragmatic
approach:
1. We first compute the marginalised errors on each parame-

ter pα, σ
marg.
α , using either CosmicFish, or MP/MCMC runs,

or preliminary runs of MP/Fisher – this makes no differ-
ence. We set these σmarg.

α ’s as reference values with respect
to which we can calibrate our step sizes. Our values of σmarg.

α

are listed in the last two columns of Tables B.1 and B.2.
2. We compute a few diagonal and non-diagonal Fisher matrix

elements Fαβ with the step sizes (∆pα = x σmarg.
α ,∆pβ =

x σmarg.
β ) for various values of x (typically in the range 0.01 <

x < 1) and we plot the curves Fαβ(x).
3. We check that there exist an intermediate range of values of

x such that the curves are stable and flat. If not, we push the
accuracy settings of the codes and we start the test again. If
yes, we choose an arbitrary value of x sitting comfortably
within the intermediate region.

4. Once this test has been done once for each probe, we can
make general recommendations to use a given accuracy in
the codes and to set correctly the order of magnitude of the
steps relatively to the marginalised errors.

5. Then, there is no need to repeat this test again and again.
The user can trust the fact that with such recommendations,
the Fisher matrix is accurate and stable against small varia-
tions of the step sizes. At most, as a cross-check, the user can
try once to increase or decrease all step sizes (for instance,
by ∼30%), recompute the Fisher matrix, and verify that it
remains stable.

We have performed such tests for each probe and for a few matrix
elements Fαβ. We focused particularly on the non-diagonal ele-
ment Fw0 wa , which is among the most difficult ones to compute
accurately given the strong correlation between w0 and wa.

For each probe, we have computed the function Fw0 wa (x)
for 40 values of x ranging from 0.025 to 1 with a spacing
∆x = 0.025, while using CLASS with either the default-precision
(DP) or high-precision (HP) settings defined in Appendix A.5.
Once the value of x has been set, we multiply it with the
marginalised errors of Tables B.1 and B.2 to get our actual step
sizes (these errors are derived from our MCMC runs, but we
could have indifferently taken some marginalised errors from
CosmicFish). For sufficiently large values of x the points lay on
a parabola (Fw0 wa (x) ∝ x2) that corresponds to the leading-order
deviation from a Gaussian likelihood (since an exact Gaussian
likelihood would give Fw0 wa (x) = constant). This happens typi-
cally for x ≥ 0.1 with HP or above a larger threshold with DP.
We then infer the asymptotic value Ffit

w0 wa
(0) from a parabolic fit

to the set of points computed with high-precision settings in the
range 0.1 ≤ x ≤ 1. Finally, in Fig. B.1, we show the quantity

y ≡ 100
(

Fw0 wa (x)
Ffit
w0 wa (0)

− 1
)

(B.1)

as a function of the step-size-to-error ratio x = ∆pα/σ
marg.
α ,

for each accuracy setting. The quantity y can be considered as
the percentage error on the estimate of the second derivative
Fw0 wa (x) that comes from random numerical noise or the non-
Gaussianity of the likelihood, that is, from the kind of errors
that can be controlled by an adequate step size. (Of course, y
does not include contributions from some possible systematic
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errors in the EBS or in the likelihood code, but we can esti-
mate those errors independently from the CAMB-versus-CLASS
and CosmicFish-versus-MontePython comparison of Sect. 4.)
We computed y(x) in the range 0.025 ≤ x ≤ 1, but in Fig. B.1
we only show the range 0.025 ≤ x ≤ 0.4 which is the most
interesting (for larger x, we obtain a nearly perfect parabola).
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Fig. B.1. Percentage error on the estimate of the second derivative
Fw0 wa (x) as a function of the step-size-to-marginalised-error ratio x, for
15 values in the range 0.025 ≤ x ≤ 0.4 and each of the two probes (top:
photometric and bottom: spectroscopic) and case (left: pessimistic and
right: optimistic). In each panel, we show the results from CLASS with
default-precision (DP) or high-precision (HP) settings. The black line is
a parabolic fit to the HP points.

For the photometric survey Fig. B.1 shows that, with DP, the
points feature random fluctuations below x < 0.2. Indeed, when
computing the Fisher matrix, we get unstable results with DP
and such small step sizes (for instance, the inverse Fisher matrix
is not always positive definite and the marginalised errors fluc-
tuate a lot with the step size). The solution consists in switching
to HP: then, the points follow smoothly the parabola down to
x ∼ 0.1 and even lower. Additionally, we see that non-Gaussian
corrections are small: even at x = 0.4 they affect Fw0 wa by only
0.1% (resp. 0.04%) in the pessimistic (resp. optimistic) case. As
expected, the optimistic case features a more Gaussian likelihood
(thanks to its enhanced constraining power). Our overall recom-
mendation for the photometric survey is to use HP settings with
an x roughly in the range [0.1, 0.5], although it would also be
possible to get good result while sticking to DP with x roughly
in the range [0.3, 0.5]. We did various tests to check explicitly
that with such recommendations, we always get stable predic-
tions for all unmarginalised and marginalised errors. However,
in the result sections, we always used HP and x = 0.1. The abso-
lute step sizes ∆pα for the pessimistic and optimistic cases are
thus given by the last two columns of Table B.2 divided by 10.

For the spectroscopic survey Fig. B.1 shows that with either
DP or HP the points are smoothly distributed and follow a
parabola for any x ≥ 0.05. The non-Gaussianity is much stronger
in this case: with x = 0.4 the error on Fw0 wa reaches 1% (resp.
0.5%) in the pessimistic (resp. optimistic) case. Thus one should
restrict to x < 0.1 in order to keep the non-Gaussian contami-
nation below approximately 0.1%. For x in the range [0.05, 0.1],
the DP and HP points are always following a smooth parabola,
and indeed we checked that the Fisher matrix and errors are

always stable in this range. However, the results obtained with
HP are more correct because the physical effects of the param-
eters are captured with higher accuracy. In Fig. B.1 this appears
in the form of an overall shift of Fw0 wa by approximately −0.1%
when sticking to DP. We observed similar shifts in other ele-
ments of the Fisher matrix. Instead, when further increasing
precision beyond our HP settings, we checked that the results
remain stable. Between DP and HP, the (un)marginalised Fisher
errors only move by one or two percent, but for better accuracy
we recommend using HP with x in the range [0.05, 0.1]. In the
result sections we always used HP and x = 0.05. The absolute
step sizes ∆pα for the pessimistic and optimistic cases are then
equal to the last two columns of Table B.2 divided by 20.
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Appendix C: Contour plots for nuisance parameters

Appendix C.1. Photometric survey with pessimistic settings

Fig. C.1. For the photometric survey with pessimistic settings, comparison of 1D posterior and 2D contours (for 68% and 95% confidence level)
from different methods: MP/MCMC (grey lines/contours), MP/Fisher (orange lines), CF/int/CLASS (blue lines). We only show here the nuisance
parameters. The triangle plot for cosmological parameters was shown in the main text. Plotted using GetDist.
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Fig. C.2. Same as Fig. C.1 for the correlation between cosmological and nuisance parameters.

Appendix C.2. Spectroscopic survey with optimistic and pessimistic settings
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Fig. C.3. Same as Fig. C.1 for the nuisance parameters of the spectroscopic survey with pessimistic settings. For illustration purposes, we have
labelled the parameters ln[biσ8(z1)] as ln(bs8i).
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Fig. C.4. Same as Fig. C.3 for the correlation between cosmological and nuisance parameters.
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Appendix D: Contour plots for combined probes with pessimistic settings

Fig. D.1. For the individual and combined photometric and spectroscopic surveys with pessimistic settings, 1D posterior and 2D contours on
cosmological parameters from CF/int/CLASS (dotted lines) and MP/Fisher (solid lines). Plotted using GetDist.
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