
HAL Id: hal-04053806
https://hal.science/hal-04053806v1

Submitted on 20 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Chiral Ring of a Symmetric Orbifold and its Large
N Limit

Sujay K Ashok, Jan Troost

To cite this version:
Sujay K Ashok, Jan Troost. The Chiral Ring of a Symmetric Orbifold and its Large N Limit. Journal
of High Energy Physics, 2023, 2023, pp.4. �10.1007/JHEP08(2023)004�. �hal-04053806�

https://hal.science/hal-04053806v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


J
H
E
P
0
8
(
2
0
2
3
)
0
0
4

Published for SISSA by Springer

Received: March 27, 2023
Revised: July 10, 2023

Accepted: July 12, 2023
Published: August 1, 2023

The chiral ring of a symmetric orbifold and its
large N limit

Sujay K. Ashoka,b and Jan Troostc
aThe Institute of Mathematical Sciences, IV Cross Road, C.I.T. Campus,
Taramani, Chennai, 600113, India
bHomi Bhabha National Institute, Training School Complex, Anushakti Nagar,
Mumbai, 400094, India
cLaboratoire de Physique de l’École Normale Supérieure, CNRS, ENS, Université PSL,
Sorbonne Université, Université Paris Cité, 24 rue Lhomond 75005 Paris, France

E-mail: sashok@imsc.res.in, jan.troost@ens.fr

Abstract: We analyze the chiral operator ring of the symmetric orbifold conformal field
theory on the complex two-plane C2. We compute the large N limit of the ring and exhibit
its factorized leading order behaviour. We moreover calculate all structure constants at
the subleading and sub-subleading order. These features are coded as properties of the
symmetric group and we review the relevant mathematical theorems on the product of
conjugacy classes in the center of the group algebra. We illustrate the efficiency of the
formalism by iteratively computing broad classes of higher point extremal correlators.
We point out generalizations of our simplest of models and argue that our combinatorial
analysis is relevant to the organization of the large N perturbation theory of generic
symmetric orbifolds.

Keywords: Conformal Field Models in String Theory, Topological Field Theories, 1/N
Expansion

ArXiv ePrint: 2303.09308

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP08(2023)004

mailto:sashok@imsc.res.in
mailto:jan.troost@ens.fr
https://arxiv.org/abs/2303.09308
https://doi.org/10.1007/JHEP08(2023)004


J
H
E
P
0
8
(
2
0
2
3
)
0
0
4

Contents

1 Introduction 1

2 The symmetric group combinatorics 1
2.1 The multiplication of orbits in the semi-group 2

2.1.1 The semi-group of partial permutations 2
2.1.2 The orbits of the semi-group 2
2.1.3 The orbit structure constants at infinite order 3

2.2 The multiplication of conjugacy classes 4

3 The large N limit of one model 5
3.1 The topological structure constants 6
3.2 Graphical representations 6

3.2.1 The Farahat-Higman properties of graphs 7
3.2.2 Stringy Farahat-Higman graphs 7

3.3 The large N chiral ring 7
3.4 Generic structure constants 9

3.4.1 All leading order structure constants 9
3.4.2 All order one structure constants 10
3.4.3 Order two structure constants 12
3.4.4 Single cycle fusion 14
3.4.5 A structure constant at all orders 16

4 Higher-point functions from fusion 17
4.1 A four-point function 17
4.2 A broad class of higher extremal correlators 19

5 The symmetric orbifold at large N 20
5.1 The covering surface is a sphere 20
5.2 The generic large N limit 21

5.2.1 The large N limit of symmetric orbifolds reviewed 21
5.2.2 The finite and large N counting revisited 22

6 Conclusions 24

A The proof of the fusion formula 26
A.1 The recursion 26
A.2 Cayley’s tree joins the Farahat-Higman graph 27

– i –



J
H
E
P
0
8
(
2
0
2
3
)
0
0
4

1 Introduction

There is an interesting construction in two-dimensional conformal field theory that generalizes
the permutation symmetry between identical particles omnipresent in statistical physics and
field theory. One considers the tensor product of N identical seed conformal field theories
and mods it out by the permutation of all the factors. This gives rise to an infinite set of
symmetric orbifold conformal field theories labelled by the integer N . In two dimensions
the quotient by the symmetric group SN introduces twisted sectors. The symmetric group
can be thought of as a gauge group and the large N limit has features in common with
the ubiquitously studied ’t Hooft large N limit of SU(N) gauge theories [1]. The resulting
theory has been well-studied, including its characters and partition function [2] as well
as its large N limit and relation to holography. See e.g. [3–9] for a few interesting recent
contributions among many.

In this paper, we study group theoretic aspects of the combinatorics of the symmetric
group to identify interesting properties of the generic theory. To isolate the group theoretic
properties, we concentrate on one of the simplest symmetric orbifold conformal field theories,
which is the topologically twisted orbifold of the complex two-plane C2 [10]. This theory
has the strongly simplifying feature of having a seed theory with a trivial chiral ring.
As a consequence, we will be able to use powerful mathematical theorems and large N
perturbation theory to compute the leading, subleading and sub-subleading large N structure
constants of the theory in all generality. We also obtain exact finite N results and partial
results at arbitrarily large order in the 1/

√
N expansion. We moreover greatly enlarge the

set of known higher point extremal correlators in this theory. We believe that these results
on the gauge invariant operator algebra capture important aspects of the gauge symmetry
which is universally present in symmetric orbifold conformal field theories.

The paper is structured as follows. In section 2 we analyze generic features of the
product of symmetric group conjugacy classes that carry information about correlations
functions in all symmetric orbifold conformal field theories. Section 3 studies how these
generic results simplify in the chiral ring of the topological symmetric orbifold of C2. In
this section, we compute a large variety of structure constants of the ring of operators at
infinite and at finite N . A broad class of higher point functions is computed in section 4.
Section 5 connects our results to generic treatments of the large N limit in symmetric
orbifold theories and demonstrates a useful cross-fertilization between the generic approach
and the tactic of concentrating on the gauge group dynamics. We conclude in section 6
with a summary and final remarks on open problems. Appendix A contains the detailed
proof of an operator product stated in the bulk of the paper.

2 The symmetric group combinatorics

In this section, we review symmetric group combinatorics and powerful theorems governing
the N dependence of the product of conjugacy class sums. These theorems will find very
useful applications in the topological symmetric orbifold conformal field theory in section 3.
They also carry information on the large N limit of a generic symmetric orbifold theory as we
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will discuss in section 5. A clear a priori motivation to delve deeply into this mathematical
domain is the fact that chiral ring operator products in the symmetric orbifold of C2 are
captured by the product of conjugacy classes of the symmetric group Sn [10–12].1 This fact
has been discussed in detail and with a large amount of physics background in [10].

2.1 The multiplication of orbits in the semi-group

The first step in our analysis is to define a semi-group which has structure constants which
are independent of the order n of the symmetric group Sn [13]. This property will be used
to prove general theorems on the multiplication of conjugacy classes in the symmetric group,
including the polynomial n-dependence of the structure constants. While this will initially
appear to be a detour, the construction will pay off handsomely. Thus, we review the
semi-group construction of [13] and the theorems proven therein. After this mathematical
prelude, we will exploit these results in a physics context in subsequent sections.

2.1.1 The semi-group of partial permutations
We introduce the semi-group Pn of partial permutations of the set Pn = {1, 2, . . . , n} which
consists of pairs (d, π) where d is a subset of Pn and π is an arbitrary bijection of the subset
d. A partial permutation π can always be extended to a permutation π̃ of the whole of the
set Pn. The product of two partial permutations is:

(d1, π1)(d2, π2) = (d1 ∪ d2, π1π2) . (2.1)

Thus, the set of partial permutations becomes a semi-group. The unity element is the empty
set with the trivial permutation.2 The complex semi-group algebra C[Pn] is comprised of
the complex linear combinations of the semi-group elements. There is an action of the
symmetric group Sn on the semi-group Pn by [13]:

(d, π) 7→ (σd, σπσ−1) (2.2)

where σ ∈ Sn. Two partial permutations are conjugate if and only if the sizes of their
supports are equal and their cycle types are the same.

2.1.2 The orbits of the semi-group
The orbits of the partial permutations Aρ;n can therefore be labelled by partial partitions
ρ ` r where 0 ≤ r ≤ n. We denote the permutation ρ as follows:

ρ = [1m1(ρ), 2m2(ρ), . . .] , (2.3)

where mk(ρ) denotes the multiplicity of k-cycles in the permutation. We also introduce the
convention that the conjugacy class Cρ;n is the conjugacy class of elements of the group Sn
of the type ρ̃ = ρ ∪ 1n−r. The number of elements in the orbit Aρ,n is equal to:

|Aρ;n| =
(
n− r +m1(ρ)

m1(ρ)

)
|Cρ;n| . (2.4)

1We will use the symbol capital N for the order of the symmetric group when referring to the large N

limit and we will use the spaciously advantageous notation minuscule n otherwise.
2The semi-group is therefore a monoid.
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Let us understand this count. Consider a given permutation σ in the conjugacy class C. It
has type ρ ∪ 1n−r. There are n− r +m1(ρ) fixed points in the set Pn. How many choices
of Aρ;n correspond to this choice of permutation? The support d of (d, π) must contain
the non-fixed points of the permutation σ. Note that Aρ;n depends on ρ, which codes
the number r and in particular, may contain 1’s. Thus, d must also contain m1(ρ) fixed
points, but we can choose them freely among all the n − r + m1(ρ) fixed points and the
corresponding extended permutation will still coincide with σ. Hence we find that the
number of elements in the conjugacy classes is related as in equation (2.4) above, since for
each unique conjugacy class element, one performs the same count.

Next, we identify the orbit Aρ;n with the element Aρ;n of the algebra C[Pn]:

Aρ;n ≡
∑

(d,π)∈Aρ;n

(d, π) . (2.5)

Moreover, we define the homomorphism ψ which forgets about the support of the partial
permutation and which extends the permutation:

ψ : Pn → Sn : (d, π) 7→ π̃ . (2.6)

By extending the homomorphism ψ to the algebras, one finds the relation:

ψ(Aρ;n) =
(
n− r1 +m1(ρ)

m1(ρ)

)
Cρ;n , (2.7)

where Cρ;n is the element in the group algebra which corresponds to the sum of all elements
in the conjugacy class Cρ;n.

2.1.3 The orbit structure constants at infinite order

We can project the algebra C[Pn] with n ≥ m into the algebra C[Pm] by mapping to zero
all elements with support outside the set Pm, and otherwise the identity mapping. This
is a homomorphism θm and commutes with the symmetric group action. One can also
define a limit algebra C[P∞] with an action of the infinite order symmetric group and
A∞ is then the set of orbits in this limit. The elements are formal infinite sums. The
homomorphism θn projects the infinite algebra back down to the finite n case. We define
the orbits Aρ =

∑
(d, π) where |d| = r and the permutation π is of cycle type ρ. These form

the set A∞. The elements Aρ where ρ is labelled by the set of all partitions form a basis of
A∞. A crucial point is that the algebra of elements Aρ does not depend on the number n.
We have:

AσAτ =
∑
ρ

gστ
ρAρ (2.8)

and the structure constants gστ ρ are independent of n. Moreover, we have the homomorphism
θn : A∞ → An : Aρ 7→ Aρ;n which ensures that the structure constants are inherited by the
finite n algebra:3

Aσ;nAτ ;n =
∑
ρ

gστ
ρAρ;n . (2.9)

3Proposition 6.1 in [13].
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The fact that the semi-group structure constants are independent of n will be the basis for
understanding properties of the conjugacy class structure constants. In particular, it will
greatly help us to understand their n dependence.

We provide a first example of the above constructions. It is straightforward to compute
the following multiplications [13]:

A[2]A[2] = A[12] + 3A[3] + 2A[22]

A[2];2A[2];2 = A[12];2

A[2];3A[2];3 = A[12];3 + 3A[3];3

A[2];4A[2];4 = A[12];4 + 3A[3];4 + 2A[22];4 . (2.10)

For instance, the elements ({1, 2, 3, 4}, (12)(34)) in A[22] can be obtained from A[2] times
A[2] via the partial permutations ({1, 2}, (1, 2)) and ({3, 4}, (3, 4)), or vice versa, giving rise
to the factor of 2 on the right hand side.

Some structure constants gστ ρ can be computed generically. For instance, the refer-
ence [13] gives the structure constant for a union of any partitions σ and τ :

gσ,τ
σ∪τ =

∏
k≥1

(
mk(σ) +mk(τ)

mk(σ)

)
. (2.11)

It is straightforward to understand the origin of this structure constant, as in the example
above. We will recompute it in a different manner later on.

2.2 The multiplication of conjugacy classes

We are ready to return to determining the structure constants of the algebra of conjugacy
classes of the symmetric group. Firstly, we define proper partitions, which have no 1 entries.
Each partition ρ can be canonically projected onto a proper partition ρ̄ where we removed
all 1’s. We have the equality Cρ;n = Cσ;n if and only if ρ̄ = σ̄. The set of conjugacy classes
labelled by proper partitions is a basis of the center of the infinite group algebra. To
understand the structure constants of the conjugacy classes, we proceed as in [13] and take
into account the factor between the orbits A and the classes C.

Recall the support forgetting homomorphism ψ:

ψ(Aρ;n) =
(
n− r +m1(ρ)

m1(ρ)

)
Cρ;n . (2.12)

The map preserves structure constants:

ψ(Aσ;n)ψ(Aτ ;n) =
∑
ρ

gστ
ρψ(Aρ;n) . (2.13)

We also know that the sum on the right hand side is independent of n for sufficiently large
n. Note though that the sum on the right hand side has linearly dependent terms because
multiple partitions label the same conjugacy class. We therefore need to gather terms and
obtain a better description, in terms of a basis. This is done by labelling the equation by
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proper partitions. For proper partitions σ̄, ρ̄, τ̄ , we have after applying the homomorphism
ψ and gathering terms:4

Cσ̄;nCτ̄ ;n =
∑
|ρ̄|≤n

qσ̄τ̄
ρ̄(n)Cρ̄;n (2.14)

where the conjugacy class structure constant q equals the gathered sum of terms:

qσ̄τ̄
ρ̄(n) =

∑
k≥0

gσ̄,τ̄
ρ̄∪[1k]

(
n− |ρ̄|
k

)
. (2.15)

This result determines all the n-dependence of the conjugacy class structure constants
through the polynomials arising from the binomial coefficient.

We consider once more an example from [13]. We have the multiplication of orbits:

A[3]A[3] = 2A[32] + 5A[5] + 8A[22] + 3A[31] +A[3] + 2A[13] . (2.16)

After performing the projection and gathering operation, we find the multiplication of
conjugacy classes:

C[3]C[3] = 2C[32] + 5C[5] + 8C[22] + (3n− 8)C[3] + n(n− 1)(n− 2)
3 C∅ . (2.17)

We label conjugacy classes by proper partitions. The terms labelled by proper partitions in
the right hand side of equation (2.16) are simply inherited by the conjugacy class product.
However, the term 3A[31] gives rise to a term 3(n − 3)C[3] on the right hand side which
combines with the A[3] term to give the claimed coefficient for the conjugacy class C[3] on
the right hand side of equation (2.17).

Summary. In summary, the theorems of [13] are powerful in determining the polynomial
n dependence of the structure constants of the product of conjugacy class sums of the
symmetric group. We will need this generic symmetric group combinatorics in the context
of our discussion of the large N limit of symmetric orbifold models in section 5. However,
for a while we will concentrate on a particularly simple orbifold model in which further
powerful restrictions apply.

3 The large N limit of one model

The symmetric orbifold of the supersymmetric conformal field theory on the complex
two-plane C2 has N = 2 superconformal symmetry (and more) and therefore the model
has a chiral ring [14]. The chiral ring is captured by a topological conformal field theory.
The operator product in the chiral ring is isomorphic to the product of elements of the
cohomology of the Hilbert scheme of points on C2. The latter is in turn isomorphic to
the product of conjugacy class sums of the symmetric group, restricted to their top degree
terms [11]. The necessary background to all these statements was reviewed in [10] to which
we must refer for more details. The upshot is that we restrict to the top degree or R-charge

4Proposition 7.3 in [13].
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preserving product of symmetric group conjugacy classes if we wish to study the operator
algebra of the topological conformal field theory.

In this section, we first recall that the top degree operator product structure constants
are automatically N independent when expressed in terms of conjugacy class sums [15].
Next, we analyze how the operator product can be organized in terms of structure constants
that have a particular order (which becomes the large N order only after a renormalization
of the operators). Our analysis will make for a hands-on illustration of the large N analysis
of symmetric orbifold conformal field theories in which we can make a considerable amount
of headway in computing generic structure constants and any product of operators, far
beyond the single-cycle sector.

3.1 The topological structure constants

The top degree structure constants are those that satisfy R-charge conservation in the
untwisted theory [10]. The R-charge of (a chiral primary operator uniquely associated to) a
permutation is defined to be the sum of contributions from each n-cycle, which is n − 1.
For a given permutation of cycle type ρ, the R-charge q(ρ) therefore equals:

q(ρ) =
n∑
l=2

ml(ρ)(l − 1) . (3.1)

In a term ρ in the operator product (σ, τ)→ ρ, R-charge is conserved if

q(σ) + q(τ) = q(ρ) . (3.2)

These processes either leave cycles as they are, or involve purely joining operations [10, 11].
There is a powerful theorem regarding the structure constants that preserve R-charge. The
theorem states that if a conjugacy class structure constant is R-charge preserving, it is n
independent [15].5

For clarity, let us illustrate this phenomenon in an example. In the product (2.17),
there are two R-charge preserving terms on the right hand side. Their product ∗R restricted
to the top degree terms is:

C[3] ∗R C[3] = 2C[32] + 5C[5] . (3.3)

More rigorously, the ring of conjugacy class sums is filtered by the R-charge degree and by
filtration we can define a new ring with a product that respects the degree [16].

3.2 Graphical representations

We introduce two graphical representations of the R-charge or degree preserving operator
product. These graphical representations will help us associate an order to each term in
the product of two operators. The order will keep track of the number of joining operations
one performs. It will also turn out to count the number of string coupling constants one
inserts, or the order in the large N expansion.

5The converse is not true.
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Figure 1. An example of a Farahat-Higman graph of strands.

Figure 2. We provide a cyclic version of the Farahat-Higman graphs in which we represent strands
by closed strings.

3.2.1 The Farahat-Higman properties of graphs

We recall a graphical representation of the permutations [15]. Firstly, we decompose a
permutation π into a minimal number of transpositions τi: π = τ1 . . . τq. The minimal
number of transpositions is equal to the R-charge of the permutation. We draw a graph with
vertices 1, 2, . . . , n and a line joining the vertices i and j if τk = (ij) appears in the chosen
minimal factorization of the permutation. The components of the graph are the cycles of
the permutation. A factorization is minimal if and only if the graph has no loops [15]. In
figure 1, we exhibit an example graph of a conjugacy class of type C[2,3,3].

3.2.2 Stringy Farahat-Higman graphs

We may equivalently close the strands and represent each k-cycle as a circle with k beads;
see figure 2 for the representation of the same operator C[2,3,3]. The latter graphs are useful
to intuitively connect the calculations we perform in this section to a stringy interpretation
of the interactions involved. We will come back to them in section 5. In this section, we
work with the Farahat-Higman graphs of strands which have their own advantages.

3.3 The large N chiral ring

We define the order of a structure constant arising as the coefficient of a term in the product
of two operators C[π1] and C[π2] as follows. Consider permutations π1 and π2 contributing
to the structure constant under consideration. Define the smallest subsets of the set Pn that
are closed under the actions of π1 and π2. We will refer to these subsets as the connected
parts. For each connected part, we define the order of the connected part to be the number
of common active colours (or vertices) in π1 and π2 in that connected part. The total order

– 7 –
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Operator 1 Operator 2 Term in Product

Figure 3. We illustrate Farahat-Higman graphs that represent the multiplication of two operators.
Each connecting line represents a joining operation which increases the order. Terms in the operator
product of order zero, one and two are drawn.

of a structure constant is the sum of the orders of the connected parts. The implicit claim
that we will corroborate later on the paper is that the order we define here is tantamount
to the order in a gs = 1/

√
N expansion at large N .6

We illustrate the concept of the order of structure constant in increasing order in
figure 3. The leading order structure constant has no overlap between the first and second
permutation. The operators multiply as if they are disjoint. At order one, only a single
cycle in permutations π1 and π2 can overlap in a single vertex. These two single cycles join
and the rest of the permutations remains disjoint. At order two, there are two overlapping
colours, and the possible joining of cycles is sketched in the last two lines in figure 3. Note
that the last diagram has two disconnected contributions, each of order one.

If the diagram on the left hand side of our figure has a closed loop, then the diagram is
inconsistent with R-charge conservation [15]. An example of such a forbidden diagram is

6Namely, when one normalizes the operators such that they have physical two-point functions equal
to one.
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Operator 1 Operator 2 Term in Product

Figure 4. An example of an R-charge violating process. There is a loop in the diagram on the left.

shown below in figure 4. One can see that the R-charge of the fusing operators is 3 + 2 = 5,
while the R-charge of the final state is 4, thereby violating R-charge conservation.

3.4 Generic structure constants

Our next task is to compute a number of structure constants Cστ ρ for the product ∗R:

Cσ ∗R Cτ = Cστ ρCρ . (3.4)

We perform the calculations in the most general case at order zero and at order one. At
order two, we explicitly compute the novel connected diagram. We will also review a
theorem that computes all structure constants in the fusion of a conjugacy class labelled
by a single cycle with one labelled by an arbitrary permutation [15]. This allows for the
recursive calculation of all structure constants. Finally, we are able to identify the structure
constant associated to the single-cycle term on the right hand side of an operator product
to all orders and in closed form.

3.4.1 All leading order structure constants

The leading order structure constants Cσ,τ σ∪τ for the product ∗R are those for the union
of partitions. We shall compare the structure constants we compute to equation (2.11)
momentarily. Firstly, we provide a bottom-up derivation that illustrates a general method
that can be applied to compute specific structure constants. We begin with two permutations
σ and τ in particular conjugacy classes:

σ ∈ [1m1(σ), 2m2(σ), . . .] , τ ∈ [1m1(τ), 2m2(τ), . . .] . (3.5)

Our goal is to compute the number of times the class Cρ0 appears in the product of the
conjugacy classes Cσ and Cτ , where the partition ρ0 is given by the union

ρ0 = σ ∪ τ ∪ 1n−
∑

k≥2 kmk(σ)−
∑

l≥2 lml(τ)
. (3.6)

We have the relations between multiplicities:

m1(ρ0) = n−
∑
k≥2

k(mk(σ) +mk(τ)) , and mk(ρ0) = mk(σ) +mk(τ) , for k ≥ 2 .

(3.7)
We proceed in steps indicated by roman numerals.

– 9 –
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i. Count number of terms in the first factor in the product of operators:

|Cσ;n| =
n!
zσ
, (3.8)

where zσ is the size of the stabilizer of the permutation σ, and given by

zσ =
∏
k≥1

kmk(σ)mk(σ)! . (3.9)

ii. We count the number of terms in the second factor that will give rise to the union of
partitions on the right hand side:

(n−
∑
k=2 kmk(σ))!
zτ ′

, (3.10)

where τ ′ = τ ∪ 1n−
∑

k≥2 k(mk(σ)+mk(τ).

iii. We divide by the number of terms in the union conjugacy class on the right hand side:

zρ0

n! . (3.11)

iv. The product of these factors gives the leading structure constant:

Cσ̄τ̄ ρ̄0 = n!
zσ
× (n−

∑
k=2 kmk(σ))!
zτ ′

× zρ0

n!

= 1∏
k=1 k

mk(σ)mk(σ)!
× (n−

∑
k=2 kmk(σ))!∏

k=2 k
mk(τ)mk(τ)!(n−

∑
k=2 k(mk(σ) +mk(τ))!

× (n−
∑
k=2

k(mk(σ) +mk(τ))!
∏
k=2

kmk(σ)+mk(τ)(mk(σ) +mk(τ))!

=
∏
k=2

(mk(σ) +mk(τ))!
mk(σ)!mk(τ)! . (3.12)

Compared to equation (2.11), the product omits the factor corresponding to the 1 entries in
the partition. This guarantees the n-independence of the structure constants. Indeed, when
we compare to the structure constants (2.11) using equations (2.14) and (2.15) we must
recall that the latter equations are labelled by proper partitions. Thus, the results agree.

3.4.2 All order one structure constants

The subleading order structure constants are determined by the single cycle joining operation.
We assume that there is an n1-cycle in σ and an n2-cycle in τ . The permutations overlap
in one colour in these two cycles and otherwise do not. The resultant conjugacy class ρ1 is
given by

ρ1 = σ̄ ∪ τ̄ \ {n1, n2} ∪ {n1 + n2 − 1} ∪ 1n−
∑

k=2 kmk(σ)−
∑

l=2 lml(τ)+1 . (3.13)

– 10 –
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It has the cycle multiplicities:

mk(ρ1) = mk(σ) +mk(τ) , for k 6= {1, n1, n2, n1 + n2 − 1}

mn1(ρ1) = mn1(σ) +mn1(τ)− 1

mn2(ρ1) = mn2(σ) +mn2(τ)− 1

mn1+n2−1(ρ1) = mn1+n2−1(σ) +mn1+n2−1(τ) + 1

m1(ρ1) = n−
∑
k=2

kmk(σ)−
∑
l=2

lml(τ) + 1 . (3.14)

In the following calculation, we assume that n1 6= n2 for simplicity — it can be easily
generalized. As in the previous calculation, the idea is to count the number of ways of
making the conjugacy class ρ1, starting with the σ and τ conjugacy classes.

i. We count permutations of the type σ, which gives the number of terms in the first
factor. This provides a factor

|Cσ;n| =
n!∏

k≥1 k
mk(σ)mk(σ)!

. (3.15)

ii. We pick one n1-cycle in σ, leading to the factor:

mn1(σ) . (3.16)

iii. We single out one element in the chosen n1 cycle which is the element that overlaps
between permutations σ and τ . The number of choices is

n1 . (3.17)

iv. We pick a further n2 − 1 colours out of the colours that are non-active in σ to fill out
the n2 cycle: (

n−
∑
k=2 kmk(σ)
n2 − 1

)
(3.18)

v. We choose the first colour in the n2 cycle to be the one that is in common with the n1
cycle. We can then order the other n2 − 1 colours in

(n2 − 1)! (3.19)

ways. These are our choices of interacting n2-cycles.

vi. We still need to count the number of choices left for the rest of τ , by which we mean,
τ ′ = τ \ n2 \ 1(

∑
k=2 kmk(σ))−1. This is counted in Sn−∑

k=2 kmk(σ)+1−n2
. The total number

of possibilities is:

∣∣∣Cτ ′;n−∑n

k=2 kmk(σ)−n2+1

∣∣∣ = (n−
∑n
k=2 kmk(σ)− n2 + 1)!

zτ ′
. (3.20)
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To compute zτ ′ , it is useful to record the multiplicities of the τ ′ conjugacy class:

m1(τ ′) = m1(τ)−
∑
k=2

kmk(σ) + 1 (3.21)

= n−
∑
k=2

kmk(τ)−
∑
k=2

kmk(σ) + 1 (3.22)

mn2(τ ′) = mn2(τ)− 1 , (3.23)

and otherwise as in τ .

vii. We have counted all the terms that contribute to the correct conjugacy class on the
right. To get the overall factor for the sum over conjugacy classes, we need to divide the
total number of possibilities by the number of terms in the conjugacy class of ρ1. We
therefore multiply by the fraction:

1
|Cρ1;n|

= n!
zρ1

. (3.24)

To compute zρ1 , one uses the relations recorded in equations (3.14). The structure constant
of interest is obtained by multiplying all these factors together:

Cστ ρ1 = n!
zσ
×mn1(σ)× n1 ×

(
n−

∑
k kmk(σ)

n2 − 1

)
× (n2 − 1)!

× (n−
∑n
k=2 kmk(σ)− (n2 − 1))!

zτ ′
× zρ1

n! . (3.25)

Simplifying the resulting expressions, we find the subleading structure constant for n1 6= n2:

Cστ ρ1 = (n1 + n2 − 1)(mn3(σ) +mn3(τ) + 1)
∏

k 6=1,n1,n2

(
mk(σ) +mk(τ)

mk(σ)

)

×
(
mn1(σ) +mn1(τ)− 1

mn1(σ)− 1

)
×
(
mn2(σ) +mn2(τ)− 1

mn2(τ)− 1

)
.

(3.26)

This is the structure constant at subleading order for the conjugacy classes C. We recognize
the standard structure constant n3 = n1 + n2 − 1 [17–19] as well as the multiplicity factors
associated to all non-interacting cycles. These factors are as in the leading order interaction.
There is one extra factor of mn3(σ) + mn3(τ) + 1 because we can choose to make any
n3-cycle on the right we please.

3.4.3 Order two structure constants

Next, we consider the fusion of two permutations σ and τ that overlap in two elements.
These two elements can belong to the same cycle in σ and different cycles in τ or vice
versa, or they belong to different cycles in both σ and τ . These three cases will give rise
to three terms in the operator product. The second term is obtained from the first term
by symmetry. The third case is a disconnected diagram that consists of two first order
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calculations. We therefore concentrate on the most interesting first case. Locally, the
process is the third entry in figure 3.

Let us assume that the two overlapping elements belong to the same cycle of σ and
different cycles in τ . We concentrate on a right hand side product that results from joining a
p cycle and a n1 and n2 cycle. The end product is an n1 +n2 +p−2 cycle. For simplicity, we
take p, n1, n2 and n1 + n2 + p2 − 2 all distinct. We denote by ρ2 the permutation conjugacy
class corresponding to the final state:

ρ2 = σ̄ ∪ τ̄ \ {n1, p1, p2} ∪ {n1 + p1 + p2 − 2} ∪ 1n−
∑

k=2 kmk(σ)−
∑

l=2 lml(τ)+2 . (3.27)

We can list the multiplicities of ρ2 in terms of those of the initial states:

mk(ρ2) = mk(σ) +mk(τ) , for k 6= {1, p, n1, n2, n1 + n2 + p− 2}

mp(ρ2) = mp(σ) +mp(τ)− 1

mn1(ρ2) = mn1(σ) +mn1(τ)− 1

mn2(ρ2) = mn2(σ) +mn2(τ)− 1

mn1+n2+p−2(ρ2) = mn1+n2+p−2(σ) +mn1+n2+p−2(τ) + 1

m1(ρ2) = n−
∑
k=2

kmk(σ)−
∑
l=2

lml(τ) + 2 . (3.28)

We proceed as before by listing all the possible ways in which the fusion can occur, giving
rise to the final permutation.

i. Count the number of terms in the first factor.

|Cσ;n| =
n!∏

k≥1 k
mk(σ)mk(σ)!

. (3.29)

ii. We then need to pick a p cycle in σ. We also need to single out two elements in the
chosen p cycle. We pick one element that will interact with the n1 cycle and we choose a
second element that will interact with the n2 cycle. We have a factor of p(p− 1).

mp(σ)× p× (p− 1) . (3.30)

iii. We now start specifying τ further. We choose n1 − 1 colours out of those that are
non-active in σ. We have (n1 − 1)! ways of ordering them in the n1 cycle. Out of the
remaining inactive colours of σ we pick n2 − 1 and order them in (n2 − 1)! ways in the
n2-cycle.(

n−
∑
k=2 kmk(σ)
n1 − 1

)
× (n1 − 1)!×

(
n−

∑
k=2 kmk(σ)− n1 + 1

n2 − 1

)
× (n2 − 1)! . (3.31)

iv. We now count the number of choices left for the rest of τ i.e. for τ ′ = τ \ n1 \ n2 \
1(
∑

k=2 kmk(σ))−2. The relevant order of the remaining entries is n′ = n−
∑
k=2 kmk(σ) +

2− n1 − n2. The total number of possibilities is again a conjugacy class cardinal number:∣∣∣Cτ ′;n−∑n

k=2 kmk(σ)−n1−n2+2

∣∣∣ = (n−
∑n
k=2 kmk(σ)− n1 − n2 + 2)!

zτ ′
. (3.32)
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We have zτ ′ determined by its own multiplicities, which are the same as those in τ except for:

m1(τ ′) = n−
∑
k=2

kmk(τ)−
∑
k=2

kmk(σ) + 2 (3.33)

mn1(τ ′) = mn1(τ)− 1 (3.34)

mn2(τ ′) = mn2(τ)− 1 . (3.35)

v. Lastly we divide by the number of elements in the product conjugacy class ρ2:

|Cρ2;n| =
n!∏

k≥1 k
mk(ρ2)mk(ρ)!

. (3.36)

We obtain the final structure constant by multiplying all these factors:

Cσ̄τ̄ ρ̄2 = n!∏
k≥1 k

mk(σ)mk(σ)!
×mp(σ)×1 ×(p− 1)

×
(
n−

∑
k=2 kmk(σ)
n1 − 1

)
× (n1 − 1)!×

(
n−

∑
k=2 kmk(σ)− n1 + 1

n2 − 1

)
× (n2 − 1)!

×
(n−

∑n
k=2 kmk(σ)− n1 − n2 + 2)!∏

l=1 l
ml(τ ′)ml(τ ′)!

×
∏
k=1 k

mk(ρ2)mk(ρ2)!
n! . (3.37)

All the multiplicities of the partitions σ, τ , τ ′ and ρ2 have been listed above. Substituting
and simplifying the resulting expression, we obtain

Cσ̄τ̄ ρ̄2 = (n1 + n2 + p− 2)(p− 1)(mn1+n2+p−2(σ) +mn1+n2+p−2(τ) + 1)

×
(
mp(σ) +mp(τ)− 1

mp(σ)− 1

)
×
(
mn1(σ) +mn1(τ)− 1

mn1(τ)− 1

)(
mn2(σ) +mn2(τ)− 1

mn2(τ)− 1

)

×
∏

k 6=1,p,n1,n2

(
mk(σ) +mk(τ)

mk(σ)

)
. (3.38)

Given our initial remarks, this basically settles the question of determining the generic next
to next to leading order structure constants.

3.4.4 Single cycle fusion

There is another important result regarding the structure constants that allows for the
recursive calculation of all fusion processes. It gives the structure constant for the fusion of
a single-cycle permutation with an arbitrary permutation, such that R-charge is preserved
in the process [15]. The derivation is pedagogically discussed in [15] and we only review the
result of the calculation. We present the fusion product between a single-cycle conjugacy
class C[p] and a conjugacy class Cπ1 labelled by a proper partition π1:

π1 = [2m2(π1) . . . kmk(π1) . . . ] . (3.39)

The R-charge preserving terms in the product are:

C[p] ∗R Cπ1 =
∑
{bi}

(mp+q(b)(π) + 1)!(p+ q(b))(p− 1)!
b1!b2! . . . Cπ1\πb+[p+q(b)] . (3.40)
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Figure 5. Joining of the Farahat-Higman strands for the fusion of a single cycle with a double
cycle at zeroth order, first order and second order.

Here π = π1 \ πb + [p+ q(b)], and the sum is over all proper partitions [πb] = [2b23b3 . . . ],
with b1 + b2 + · · · = p. The partitions must be contained in π1 and cannot have more than
p parts. We illustrate this formula for a few cases. Firstly, we present the formula in detail
by writing π1 = [n1, n2, . . . , nk], and choosing p 6= ni 6= nj . The formula (3.40) can then be
written out as:

C[p]∗RCπ1 =C[p,n1,...nk]+
k∑

`1=1
(p+n`1−1)C[.../n`1 ...p+n`1−1,...]

+
∑
`1,`2

(p+n`1 +n`2−2)(p−1)!
(p−2)! C[.../n`1 .../n`2 ...p+n`1+n`2−2,...]

...

+
∑
`1...`m

(p+
∑m
j=1n`j−m)(p−1)!

(p−m)! C[.../n`1 .../n`2 .../n`m ...p+
∑m

j=1n`j−m,...]

...

+ (p+
∑
ni−k)(p−1)!
(p−k)! C[p+

∑k

i=1ni−k] . (3.41)

Each term on the right hand side arises from m joining operations (with m = 0 being the
first term in the series). At order m there are k choose m different cycle structures that
arise. We study the simplest examples of this formula. We begin with the single cycle
fusion, with the proper partition π1 = [n]. We find with the single cycle fusion formula that
we obtain exactly two terms on the right hand side:7

C[p] ∗R C[n] = C[m,n] + (p+ n− 1) C[p+n−1] . (3.42)

7In case p = n, we obtain a coefficient of two for the first term.
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Figure 6. Many cycles fuse with one cycle to give a single-cycle.

We next turn to the fusion of the single cycle C[p] with a double cycle C[n1,n2], with none of
the integers being equal. The product of conjugacy classes takes the form:

C[p] ∗R C[n1,n2] = C[p,n1,n2] + (p+ n1 − 1)C[n2,p+n1−1] + (p+ n2 − 1)C[n1,p+n2−1]

+ (p+ n1 + n2 − 2)(p− 1)C[p+n1+n2−2] . (3.43)

The result of this fusion is illustrated in figure 5.

3.4.5 A structure constant at all orders

We want to further exploit a large set of structure constants computed in [20] and already
featured in [10]. The structure constant for a final single-cycle state at n = nfinal resulting
from any two initial operators is known [20]. From this we can extract a slew of structure
constants at any order in the expansion we defined. Indeed, the structure constant is
independent of n and therefore it is sufficient to know it at the one value of n = nfinal. This
structure constant captures all joining processes that give rise to a single-cycle end result.

We fuse two arbitrary conjugacy classes, labelled by

σ = [1m1(σ)2m2(σ) . . . ] , and τ = [1m1(τ)2m2(τ) . . . ] . (3.44)

The structure constant is the coefficient of the final state, given by the single-cycle C[nfinal].
If we make the definitions

l(σ) =
∑

mj(σ) , and l(τ) =
∑

mj(τ) , (3.45)

we then have the structure constant [20]:

c[(nfinal]
στ = nfinal

(l(σ)− 1)!(l(τ)− 1)!
m1(σ)!m2(σ)! . . .m1(τ)!m2(τ)! . . . . (3.46)

The order of the structure constant can be arbitrarily high. As an example, let us consider
the case in which the permutation τ consists of a single-cycle π2 = [p], linking up all single
cycles appearing in an arbitrary permutation π1 to give rise to the single-cycle [nfinal]. See
figure 6. Assuming ni 6= nj 6= p, we have

σ = [n1, . . . , nk] , τ = [p] , nfinal =
k∑
j=1

(nj − 1) + p = n (3.47)
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The structure constant is given by

cgeneral =
( k∑
j=1

nj + p− k
)(k + n−

∑
ni − 1)!(1 + n− p− 1)!

(n−
∑
ni)!(n− p)!

=
( k∑
j=1

nj + p− k
) (p− 1)!

(p− k)! . (3.48)

This matches the result in (3.41) obtained from single cycle fusion as it must.

Concluding remarks. We wrap up this section with various observations. The first
notable fact is that all structure constants can be computed recursively. This is because the
single-cycle conjugacy classes generate the whole ring.8 This is a consequence of the fact
that the multiplication of conjugacy classes is upper triangular in an appropriate sense.9

Finding closed expressions however can remain hard.
The generic three-point functions we obtained are our main result. Higher point

functions do not contain extra information (see e.g. [22]), but it can be combinatorially
interesting and challenging to compute them. In the next section we explicitly illustrate
this point by calculating the four point function of single-cycle operators of [23] entirely
within the topological theory. We then go on and exhibit a formula for the fusion of k
single-cycles, that captures a host of extremal correlators in a single formula.

4 Higher-point functions from fusion

The topological conformal field theory is entirely determined by the structure constants
of the operator products [22]. The product of more than two operators can be computed
using the product of two operators, and then continuing the multiplication. For instance,
the operator product of three operators in the topological theory codes extremal four-point
functions in the untwisted theory. To make these points manifest, firstly we provide a
sample calculation in the topological theory that recomputes a known extremal four-point
function [23] in an alternative and conceptually simpler manner. Next, we compute a much
large class of extremal higher point functions than those that are presently known. Our
calculation proceeds entirely within the chiral ring. The observation that this calculation
(and similar ones) can be done in this manner is part of the logic of [10] — we make this
observation concrete and provide classes of explicit results. From a certain point of view,
the higher-point functions are auxiliary data — only the structure constants of the ring
matter. Still, the explicit calculation of the higher point functions poses an interesting
combinatorial challenge.

4.1 A four-point function

We start with a warm-up example. In [23], the four-point function:

〈(Oc.p.
[n4])

†Oc.p.
[n3]O

c.p.
[n2]O

c.p.
[n1]〉phys (4.1)

8See remark 3.11 in [21].
9See theorem 3.10 in [21].
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of chiral primary operators Oc.p.
[ni] is considered in the untwisted theory, with n4 = n1 + n2 +

n3 − 2. Each chiral primary operator Oc.p.
ρ has a corresponding conjugacy class sum Cρ in

the topological theory [10]. The analogue to consider in the topological theory is therefore
the operator product coefficient:10

C[n3] ∗R C[n2] ∗R C[n1] = C123
4 C[n4] + · · · (4.2)

Using the factorization in the topological theory, we can rewrite the desired four-point
structure constant as:

C123
4 =

∑
i

C32
iCi14 , (4.3)

where the sum is over all intermediate operators i. The two single-cycle operators we start
with can either join to form a single cycle, or remain separate. Thus, the intermediate
operator i can either be the single-cycle operator C[n3+n2−1] or the double cycle operator
C[n3,n2]. We have already computed the structure constants for these in equation (3.42):

C[n3] ∗R C[n2] = 1 · C[n3,n2] + (n3 + n2 − 1)C[n3+n2−1] . (4.4)

In the next step, we perform the successive product with the conjugacy class C[n1]. The
relevant structure constants are in equations (3.42) and (3.43):

C[n3+n2−1] ∗R C[n1] = C[n3+n2−1,n1] + (n3 + n2 + n1 − 2)C[n3+n2+n1−2] , (4.5)

C[n3,n2] ∗R C[n1] = C[n3,n2,n1] + (n1 + n2 − 1)C[n3,n1+n2−1] + (n1 + n3 − 1)C[n2,n1+n3−1]

+ (n1 − 1)(n1 + n2 + n3 − 2)C[n1+n2+n3−2] .

(4.6)

The four point function we study here is given in expression (4.1) and we are therefore only
interested in the coefficient of the single-cycle term. An elementary calculation gives the
desired structure constant:

C123
4 = (n1 − 1)(n1 + n2 + n3 − 2) + (n3 + n2 − 1)(n3 + n2 + n1 − 2)

= (n3 + n2 + n1 − 2)2 ≡ n2
4 . (4.7)

This is the Hurwitz number that [23] finds as well.11 It is interesting to compare this
calculation that resides entirely within the chiral ring to the computation of [23] which
uses a regulator that embeds the calculation in the full untwisted theory. E.g. the total
contribution of double cycle operators is the same, but the operators that contribute differ.

In fact, the extremal correlators of single-cycle operators with any anti-chiral primary
is encoded in the product of single-cycle operators. For instance, the fusion of three
single-cycles takes the full form:

C[n3]∗RC[n2]∗RC[n1] =C[n3,n2,n1]+(n1+n2−1)C[n3,n1+n2−1]+(n1+n3−1)C[n2,n1+n3−1]

+(n3+n2−1)C[n1,n3+n2−1]+(n3+n2+n1−2)2 C[n1+n2+n3−2] .

(4.8)
10Note that in our non-compact setting, we are lacking a topological metric or two-point function.
11This can be confirmed by writing C123

4 = C1234† g4†4 and using the two- and four-point functions of [23].
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Our previous calculation of the four-point extremal correlator determines the coefficient of
the single-cycle operator on the right hand side. The full product determines the four-point
functions which contain any other anti-chiral primary and three single-cycle chiral primaries.
This is already a non-trivial extension of known results. Still, it is only the beginning of a
combinatorial adventure.

4.2 A broad class of higher extremal correlators

By the same logic of the topological bootstrap, we can compute a much larger class of
extremal higher point functions. We can calculate the successive fusion of k single-cycle
operators. To parameterize the general formula, we introduce some notation. Consider a set

N = {n1, n2, . . . , nk} (4.9)

and consider set partitions {Ni} of this set such that Ni ∩Nj = ∅ for i 6= j and ∪iNi = N
and the subsets Ni are not empty. Every set partition will give rise to one term on the
right hand side in the formula for the product of k single-cycle operators. To write out the
formula, we also introduce the cardinal numbers

li = |Ni| (4.10)

of the subsets Ni. We moreover define a function L that maps a subset Ni to L(Ni) which
is the length of the joining of the cycles in Ni:

L(Ni) =
∑
nj∈Ni

nj − li + 1 . (4.11)

Then the fusion of k single-cycle classes of length n1, n2, . . . , nk can be written in the
compact form:

C[n1] ∗R · · · ∗R C[nk] =
∑

{Ni}∈Part(N)

∏
j

L(Nj)lj−1C[L(N1),L(N2),... ] , (4.12)

where Part(N) is the set of partitions of the set N and the product is over all subsets
in the set partition. The conjugacy class has cycles of lengths determined by the set
partition. The sum is over B|N| set partitions where B|N| is the Bell number associated
to the cardinal number |N| of the set N. A detailed recursive proof of this formula is
provided in appendix A. This fusion equation encodes structure constants for extremal
correlators involving k single-cycle operators and one anti-chiral primary operator labelled
by an arbitrary conjugacy class. All these coefficients are Hurwitz numbers for coverings
associated to these permutation conjugacy classes. For instance, the Hurwitz number
associated to the single-cycle anti-chiral primary (Oc.p.

[nk+1])
† is equal to

L(N)k−1 = (n1 + . . .+ nk − (k − 1))k−1 = nk−1
k+1 , (4.13)

where in the last equality, we have used R-charge conservation.12

12This number was determined indirectly in [23] through exploiting the known count of the number of
covers. In our proof, it is determined directly from the three-point functions in the topological theory.
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We note that all of the correlators we compute are Hurwitz numbers [10, 23]. These
also have an interpretation in pure Yang-Mills theory in two dimensions [24] as well as in the
intersection theory on moduli spaces of curves, i.e. in two-dimensional string theory. In this
context, the Hurwitz numbers at any genus and with any number of transposition insertions
and a single generic conjugacy class at infinity has been computed in [25]. We computed
the Hurwitz number for generic single cycle insertions (of different lengths) complemented
with a generic conjugacy class at infinity. These formulas are complementary.

5 The symmetric orbifold at large N

In the previous section we saw that the structure constants of the R-charge preserving
product on conjugacy classes is N -independent. In this section we analyze to what extent
this is an indication of the planarity of the topological theory and how to make sense of the
large N expansion both in the topological and in untwisted symmetric orbifold conformal
field theories.

5.1 The covering surface is a sphere

Let us first consider a product of p − 1 operators Oi that gives rise to a single-cycle
operator Op:

p−1∏
i=1

Oi = · · ·+Op + . . . (5.1)

The single-cycle permutations πi and πp associated to the operators satisfy the relation∏p−1
i=1 πi = πp. When we define a surface that covers a sphere and with branchings equal

to these permutations, then the Riemann-Hurwitz formula determines the genus of the
covering surface:

g = 1
2

p∑
j=1

(nj − 1) + 1− c (5.2)

where nj are the length of the cycles of the permutations and c is the number of sheets of
the surface, equal to the number of active colours in the permutations. In this subsection,
we prove that this genus always equals zero in the topological theory.

It is known that if the product of two permutations π1 and π2 preserves R-charge, then
the set of active colours in π1π2 is the set of active colours under the set of permutations
{π1, π2} [15]. Thus, the set of active colours in the permutations πi=1,...,p−1 equals the
set of active colours in the permutation πp which has cardinal number np. Moreover,
from R-charge conservation we have np − 1 =

∑p−1
i=1 (ni − 1). Using these two insights, we

immediately conclude that the genus g of the covering surface is equal to zero. We have
proven that the covering surface genus is zero for the surface associated to the operator
product of single-cycle operators.

Suppose now that we have a k-cycle operator O[n1,...,nk]. Using the multiplication ∗R,
we can write (each term in) the operator as the product of a k − 1 cycle operator with a
single-cycle operator as well as a sum of terms of lower-than-k cycle operators. We can do
this recursively. Thus, products of multi-cycle operators reduce to products of single-cycle
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operators. As we just demonstrated, each of such single-cycle terms is associated to a
genus zero surface and therefore all terms are. Alternatively, another way to think of the
same conservation of the genus zero property in more complicated operator products is to
understand that there are two rules which are valid for each term in the operator sum. The
first is that R-charge is preserved. The second rule is that the number of active colours in
the permutations is preserved. Moreover, the formula (5.2) for the genus of a connected
covering surface only depends on those numbers. Thus, the topological theory on the
symmetric product of C2 is planar in the sense that all associated covering surfaces have
genus zero.

Finally, let us provide an intuitive way to rapidly guess the result. Under the R-charge
preserving product, only the joining of cycles is allowed. To make a loop diagram, one
needs to split as well as join cycles. Hence, loop diagrams are absent.

5.2 The generic large N limit

In this section we establish the relation between our classification of conjugacy class structure
constants and the standard large N limit of symmetric orbifold conformal field theories.
We also glean information on how the combinatorics we determined in section 2 informs us
on the large N limit in generic symmetric orbifold conformal field theories.

5.2.1 The large N limit of symmetric orbifolds reviewed

Let us recall briefly that the large N limit of gauge theories is a standard topic of study
in theoretical high energy physics since the identification of the genus expansion of Yang-
Mills amplitudes [1]. The large N limit of symmetric orbifold conformal field theories
has a relation to this subject, through the identification of the symmetric group with the
Weyl group of an SU(N) gauge group via instanton moduli spaces. Our calculations with
symmetric group conjugacy classes are therefore directly relevant to the analysis of the
gauge invariant half BPS operators in N = 4 super Yang-Mills theory — see e.g. [26].
Moreover, both these large N limits allow for the identification of the large N expansion
with a putative holographic dual bulk expansion in terms of a string coupling.

The large N expansion of symmetric orbifold conformal field theories was thus studied
in [17–19, 23, 27–29] among other references. A number of large N results were established
for particular subsectors and in [28] in considerable generality. Firstly, it was argued that
large N factorization holds in symmetric orbifold conformal field theories. In particular, the
leading large N contribution to correlators (of operators with order one quantum numbers)
is given by Wick contractions [27, 28]. Concretely, if we normalize gauge invariant operators
such that the two-point function in the untwisted theory is unity, it was argued that a
p-point correlator in the theory corresponding to a connected covering surface of genus g is
of order [28, 29]:

〈O1 . . . Op〉phys ∝ N1−g− p2 (5.3)

in the large N limit. In these calculations, the manifold on which the conformal field theory
lives is taken to be a sphere. There is a conjecture [29], confirmed by numerous insights
(see e.g. [3]) that the covering surface is a string world sheet. From this point of view,
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the genus of the covering surface is the order in the bulk string theory genus expansion.
Generically, there is an infinite series of subdominant terms in the large N or string coupling
expansion. In [28] it is argued in more detail that three-point function diagrams which have
a non-trivial overlap between cycles in n3 tensor product factors of the symmetric orbifold
have a large N behaviour which goes like:

〈O1O2O3〉phys ∝ N−
n3
2 . (5.4)

This illustrates the factorization property at large N since the dominant term has n3 = 0,
i.e. no triple overlap and reduces to two-point functions. The first non-trivial connected
three-point function has order N−

1
2 .

5.2.2 The finite and large N counting revisited

Our topological symmetric orbifold provides a concrete realization of these generic insights
and has its own informative features. To connect to the physical normalization of operators,
we can normalize the conjugacy class sums C by a factor of 1/

√
|C|. If we do perform this

renormalization, different structure constants behave differently in the large N limit. In
particular, given the general theory above, we know that the three-point structure constant
has order N−n3/2 where n3 is the number of points at which the three permutations involved
in the three-point function overlap. We wish to show that this order estimate agrees with
the order we defined in section 3, i.e. that order agrees with the large N counting.

Firstly, we recall that the number of active colours in the permutation in the term on
the right hand side of the operator product is equal to the number of colours active in the
two permutations on the left [15]. Hence we have that there are as many colours which are
active in the three permutations at once as there are active in the two permutations on
the left hand side. Furthermore, the number of joining operations in the permutations in
the multiplying operators is precisely equal to the number of colours in which they overlap.
Indeed, any strand in permutation one that has an overlap with a strand in permutation
two is joined in the Farahat-Higman graph by the definition of the graph. We conclude
that the order defined by the number of joinings is equal to the number of overlaps in
permutations one and two which equals the number of triple overlaps n3. Thus the order
of the structure constants that we defined previously in terms of the number of joining
operators agrees with the generic large N counting.

This fact can be rendered intuitive further. Indeed, single strings in a putative dual
correspond to states in the untwisted sector of the orbifold, or to single-cycle twisted sector
operators.13 This can graphically be represented by closing the Farahat-Higman strands
into the cycles of the permutation. See figure 7. At N = ∞, the single-cycle operators
generate the ring of all operators freely. By a state-operator map, each single-cycle operator
corresponds to a creation operator in a Fock space. We can think of these creation operators

13Subtleties can arise. See [30] as well as the discussions in [23, 31].
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Figure 7. Closing Farahat-Higman strands.

as generating single string states.14 Once we have closed the strands into strings, we can
think of the joining operations in time as strings joining along tubes. See figure 8.15

We have the traditional pants diagram at order one and multiple joinings of strings at
higher order. The coupling gs = 1/

√
N acts as the string coupling constant. The absence

of loops is due to the fact that a loop automatically involves strings splitting.
Finally, we want to make the point that the symmetric group combinatorics of section 2

should turn out to be useful not only in analyzing the topological theory we concentrated
on, but also to lay bare generic features of full-fledged symmetric orbifold conformal field
theories with arbitrary seeds. After all, the universal feature of symmetric orbifold conformal
field theories is precisely the symmetric group gauge symmetry. Indeed we can perform
an analysis of the combinatorics that is independent of the non-trivial operator entries
that do occur in any theory. While this is naive, we believe it does capture interesting
information on the untwisted theory and informs us on how to better organize large N
perturbation theory.

To make this point more concretely, we must recall the more generic facts valid in
the symmetric group discussed in section 2, before imposing R-charge conservation on
the product of conjugacy classes. We recall that all the Aρ orbits in section 2 have N -
independent structure constants. Moreover, this property allows us to compute both the
exact finite as well as the large N -dependence of all conjugacy class structure constants.
This is a powerful property captured in the polynomiality of the C structure constants
before normalization. See e.g. equation (2.17) for a concrete example beyond the topological
theory. Indeed, detailed finite N information is coded in the exact rescaling (2.12) as well as
the gathered structure constants (2.15). These results contains a wealth of information on
precise coefficients, subleading contributions at large N , as well as the fact that certain large
N expansions will terminate at a particular order. However, note that if we renormalize
conjugacy classes by the inverse of the square root of their order, 1/

√
|C|, in the large N

limit, we threaten to obscure the polynomial nature of the N dependence of the structure
constants e.g. by 1/N corrections to Stirling’s approximation to |C| at large N . An
artificial mixing problem would ensue. For concreteness let us illustrate this on the rescaled
equation (2.17):

Φ[3]Φ[3] = 2
|C[32]|

1
2

|C[3]|
Φ[32] + 5

|C[5]|
1
2

|C[3]|
Φ[5] + 8

|C[22]|
1
2

|C[3]|
Φ[22]

+ (3N − 8)
|C[3]|

1
2

|C[3]|
Φ[3] + N(N − 1)(N − 2)

3
|C[∅]|

1
2

|C[3]|
Φ∅ (5.5)

14The finite N algebra is deformation of this algebra. Therefore these notions are approximate, but they
are useful to develop intuition.

15For simplicity we did not decorate these graphs with beads.
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Operator 1 Operator 2 Term in Product String Diagram

Figure 8. We provide stringy versions of the Farahat-Higman graphs in which we represent strands
by closed strings. The multiplication of operators joins strings. Each connecting line represents a
joining operation, and increases the order by a factor of the string coupling. We draw the diagrams
of order g0

s , of order gs and the two diagrams of order g2
s .

where Φρ = Cρ/|Cρ|
1
2 . In the large N limit the expansion becomes:

Φ[3]Φ[3] = 2
|C[32]|

1
2

|C[3]|
Φ[32] + 5

|C[5]|
1
2

|C[3]|
Φ[5] + 8

|C[22]|
1
2

|C[3]|
Φ[22]

+ (3N − 8)
|C[3]|

1
2

|C[3]|
Φ[3] + N(N − 1)(N − 2)

3
|C[∅]|

1
2

|C[3]|
Φ∅

≈
√

2Φ[32] + 3
√

5N−
1
2 Φ[5] + 6

√
2N−1Φ[22] + 3

√
3N−1/2Φ[3] + Φ∅ , (5.6)

with intricate O(1/N) corrections to most terms. The polynomial and integral structure
that was manifest in equation (2.17) has been thoroughly mangled. We believe that
these observations are useful in more handily organizing the large N expansion in generic
symmetric orbifold conformal field theories. The traditional physical normalization threatens
to obscure much of the useful symmetric group combinatorics discussed in section 2.

6 Conclusions

Based on the relation between the chiral ring of the supersymmetric orbifold theory on C2

and the conjugacy class algebra of the symmetric group [10], we explored the consequences

– 24 –



J
H
E
P
0
8
(
2
0
2
3
)
0
0
4

of our knowledge of combinatorics for the topologically twisted conformal field theory.
We identified the mathematical theorems that concretely determine the chiral ring to a
large extent and added significantly to the calculation of the structure constants of the
ring to a given order in large N perturbation theory. For the fusion of two conjugacy
classes labelled by arbitrary permutations, we computed the zeroth, first and second order
structure constants.

In addition we exploited a fundamental result due to Farahat and Higman that computes
the R-charge preserving fusion of a single cycle and an arbitrary conjugacy class. A
diagrammatic representation of the Farahat-Higman fusion brought out the simplicity of
the topological theory. In particular we could prove that the topological theory is planar in
that the genus of the covering surfaces that compute these correlators is zero.

In a topological theory one expects the higher point functions to be determined by
three point functions, which in turn are determined by the fusion of any two chiral ring
operators. The Farahat-Higman fusion therefore provides us with the tool to implement this
in practice, by successively fusing single-cycle operators in the topological theory. Another
highlight of our work is a closed form expression for the fusion of k single-cycle operators,
which encodes all extremal correlators involving k single-cycle operators and one anti-chiral
primary operator labelled by an arbitrary conjugacy class. We believe this a useful addition
to the literature on extremal correlators.

Finally we analyzed operator products in a generic symmetric orbifold theory. We
identified its large N perturbation theory in terms of symmetric group properties and
pointed out various results that hold to all orders in the large N expansion. One of the
takeaways of our analysis is how the physical normalization of the operators (dividing by
the square root of the size of the conjugacy class that labels the operator) leads to structure
constants with a complicated N -dependence. That normalization obscures the polynomial
dependence in N of the structure constants that is evident in the operator products of the
sums of permutations with weight one. Thus our results are likely to provide insight into
the combinatorics of gauge invariant operators in generic symmetric orbifold theories.

Our analysis was limited to the four-manifold M = C2 but it can be extended to more
general seed manifolds M . In particular for the ALE manifolds M = C2/Γ equally powerful
theorems are available [21]. For instance, one knows the N -(in)dependence of the structure
constants, the formula for single cycle fusion, the fact that the algebra is generated by
recursion, and so on. Moreover, the ring we study here appears as a quotient ring. For
compact manifolds M like M = T 4 or M = K3, the generalization of the topological
symmetric orbifold was discussed in [10] based on [32]. It will certainly be interesting to
extend our large N analysis and the application or derivation of powerful mathematical
theorems to the case of M = K3 where there is a finite topological two-point function and
there are genus one corrections to the multiplication formulas as well [10]. Similarly, it
would be instructive to study whether our analysis extends to other permutation orbifolds
that admit a holographic interpretation [33, 34].

More generally, it remains interesting to advance our hands-on understanding of an
analogue of a large N limit of four-dimensional gauge theory in a context in which we may
hope to get a firm handle on non-planar aspects of the theory and even finite N results.

– 25 –



J
H
E
P
0
8
(
2
0
2
3
)
0
0
4

After all, through holography, these become results exact in the quantum gravitational
coupling. For example, it would be interesting to explicitly exhibit the same operator
ring we have studied here in the bulk string theory dual to the topological symmetric
orbifold. The works [3, 35, 36] are bound to be useful in this regard. Rendering the
well-established connection between boundary and bulk theories even more concrete will
improve our understanding of holography further.

A The proof of the fusion formula

In the body of the paper, we provided a general formula for the coefficients of conjugacy
classes that arise from the fusion of an arbitrary number of single-cycle operators:

C[n1] ∗R · · · ∗R C[nk] =
∑

{Ni}∈Part(N)

∏
j

L(Nj)lj−1C[L(N1),L(N2),... ] , (A.1)

where Part(N) is the set of partitions of the set N and the product is over all subsets in the
set partition. We shall divide the proof of this formula into two steps. Firstly, we simplify
what is to be proven by studying a recursion relation. Secondly, we will need to prove a
combinatorial stepping stone needed at each recursive step.

A.1 The recursion

Suppose we have that the desired formula holds at all levels smaller or equal to k. Let us
then analyze the next product:

C[nk+1] ∗R C[nk] ∗R · · · ∗R C[n1] = C[nk+1] ∗R
(
C[nk] ∗R · · · ∗R C[n1]

)
. (A.2)

We now use the recursion hypothesis, and fuse the single cycle C[nk+1] with the result
of equation (A.1), by repeatedly using the Farahat-Higman formula. Thus, proving the
induction step reduces to proving the identity:∑
{Ñi}∈Part(N)

∏
j

L(Ñj)lj−1C[L(Ñ1),L(Ñ2),... ]
!=

∑
{Ni}∈Part(N)

∏
j

L(Nj)lj−1C[nk+1]∗RC[L(N1),L(N2),... ] .

We have introduced the notation Ñ = {n1, . . . , nk, nk+1}. Our goal is to show equality
between the coefficients of the conjugacy classes that appear on the left and right hand side.

The first step towards this is to compare the sets Ni fused with nk+1 with the sets Ñi.
Each choice of Ñi gives rise to one term, proportional to C[L(Ñ1),L(Ñ2),... ]. We concentrate on
all possible contributions to this given term on the right hand side as well. We distinguish
in the set partition {Ñi} on the one hand the subset Ñp which contains nk+1 and the other
partitions Ñi 6=p. On the right hand side, we know that the desired term must come from a
partition {Nj} which contains as elements the subsets Ñi 6=p. Moreover, the other Nm are a
partition of Ñp \ {nk+1}. The desired equality of coefficients should therefore read:∏

i

L(Ñi)l̃i−1 !=
∑

{Nm}∈Part(Ñp\{nk+1})

Ni=Ñi 6=p

FH({Nm}, {nk+1})×
∏
j

L(Nj)lj−1 . (A.3)
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Here we have, for the moment, symbolically denoted the relevant Farahat-Higman fusion
coefficient FH. The first thing we note is that all the Nj that are common in the left hand
side and the right hand side just factor out of both sides of the supposed equality. Thus it
remains to prove:

L(Ñp)l̃p−1 !=
∑

{Nm}∈Part(Ñp\{nk+1})

FH({Nm}, {nk+1})×
∏
m

L(Nm)lm−1 . (A.4)

We can make this formula more concrete as follows. We begin by setting |Ñp| = r + 1.
Without loss of generality, we can then relabel all elements of Ñp \ {nk+1} such that
they have indices in Pr = {1, 2, . . . , r}. Then, any element of the set partition {Nm} ∈
Part(Ñp \ {nk+1}) maps to a set partition Θ ∈ Part(Pr). We will denote any particular set
Nm of the chosen set partition by J in what follows. We also relabel nk+1 → nr+1.

With this relabelling, we have the identities:

l̃p = r + 1 , L(Ñp) =
r+1∑
i=1

ni − r . (A.5)

Furthermore, the relevant Farahat-Higman coefficient takes the explicit form

FH({Nm}, {nr+1}) =
( r+1∑
i=1

ni − r
) (nr+1 − 1)!

(nr+1 − |Θ|)!
. (A.6)

For each element J ∈ Θ, we also have

L(J) =
∑
i∈J

ni − |J |+ 1 . (A.7)

If we plug all of these into the purported equality in (A.4), one factor of L(Ñp) cancels on
both sides and we are left with proving the identity (∀ r ≤ k):

(
r+1∑
i=1

ni − r)r−1 !=
∑

Θ∈Pr

(nr+1 − 1)!
(nr+1 − |Θ|)!

∏
J∈Θ

(∑
i∈J

ni − |J |+ 1
)|J |−1

. (A.8)

A.2 Cayley’s tree joins the Farahat-Higman graph

The proof of the identity (A.8) is based on the weighted Cayley formula for counting
trees [37, 38]. We reproduce the proof which we learnt from [39] with minor modifications.
We rewrite the expression on the right hand side of (A.8) in terms of the R-charges qi = ni−1
of the single-cycle operators:

I =
∑

Θ∈Part(Pr)
qr+1(qr+1 − 1) . . . (qr+1 − |Θ|+ 2)

∏
J∈Θ

(1 +
∑
i∈J

qi)|J |−1 . (A.9)

We now manipulate each of the factors in the product such that it becomes a sum over
set partitions that we can exchange with the first sum. To this end, we use the weighted
Cayley formula. Consider vertices labelled by the set Pm+1 = {1, 2, . . . ,m+ 1}. A spanning
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tree is a connected graph that passes through all vertices and that has no closed circuits.
We have the weighted Cayley formula [37, 38]:∑

spanning trees T
zT =

∑
spanning trees T

∏
{i,j}=E(T )

zizj

= z1z2 . . . zm+1(z1 + z2 + · · ·+ zm+1)m−1 , (A.10)

where the product is over all elements in the set E(T ) of the edges of the spanning tree. The
proof of the weighted Cayley theorem is by induction on joining the m+ 1-st vertex [37, 38].
We will apply it to the set of vertices inside the set J and one more. We temporarily relabel
the vertices in J with the set Pm and label the extra vertex with the number m+ 1. We
set z1 = q1, . . . , zm = qm, zm+1 = 1. The theorem then states:

m∏
i=1

qi(1 + q1 + · · ·+ qm)m−1 =
∑

spanning trees T

∏
{i,j}∈E(T )

zizj (A.11)

We have distinguished vertex m+ 1 since zm+1 = 1. At the start, we have for each term a
single spanning tree. We now delete the distinguished vertex m+ 1 as well as the edges
associated with this vertex. We then have a union of one or more trees, namely, a forest.
Moreover, the trees have one distinguished vertex or root each. It is the vertex that was
connected to the distinguished vertex m + 1 by an edge. Thus, we have a rooted forest,
namely, a union of one or more rooted trees. For the root vertices i in the forest, in the
product on the right hand side of formula (A.11) we obtain a factor qi. Therefore, these
factors cancel left and right in the formula. We are left with a product of only those qj for
which the vertices j are not roots. Dividing out this factor gives:

(1 + q1 + · · ·+ qm)m−1 =
∑
F

∏
{i,j}∈E(F ) qiqj∏
i not a root qi

. (A.12)

The sum on the right hand side is on all the rooted forests F on m vertices. The original
spanning tree would be reconstituted by connecting all the unique roots of all trees in the
forest to a m+ 1-st vertex. By this reasoning, we have for each set J the identity:(

1 +
∑
i∈J

qi

)|J |−1
=
∑
F (J)

∏
{i,j}∈E(F (J)) qiqj∏
i not a root qi

, (A.13)

where we sum over rooted forests F (J) on the set of vertices J . In the expression I in
equation (A.9), we take the product of this tree theorem over all the sets J in the partition
Θ. On the right hand side, we will then be summing over all forests which refine the
partition Θ, namely, those forests which have no vertex connecting vertices in different sets
J . To each forest, we can associate a partition Π(F ) of sets of vertices which reside on the
same tree. We have that Π(F ) must refine Θ, which we denote by Π(F ) ≤ Θ. Thus, we
find a restricted sum over rooted forests on the vertices 1 to r:

I =
∑

Θ∈Part(Pr)
qr+1(qr+1 − 1) . . . (qr+1 − |Θ|+ 2)

∑
F,Π(F )≤Θ

∏
{i,j}∈E(F ) qiqj∏
i not a root qi

. (A.14)
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We can exchange the restricted sum over Π with the summation over the partitions Θ as
long as we apply the restriction to the latter:

I =
∑

Π∈Part(Pr)

∑
Θ≥Π

qr+1(qr+1 − 1) . . . (qr+1 − |Θ|+ 2)
∑

F of typeΠ

∏
{i,j}∈E(F ) qiqj∏
i not a root qi

. (A.15)

We can then perform the sum over partitions Θ rougher than the partition Π:

Sum of Falling Factorials =
∑

Θ≥Π
qr+1(qr+1 − 1) . . . (qr+1 − |Θ|+ 2) . (A.16)

Since the summand only depends on the number of parts |Θ|, we need to count the number
of partitions of a set of |Π| elements into |Θ| parts (representing the joining of the partitions
in Π to make the rougher partition Θ). By definition, this is the Stirling number S(|Π|, |Θ|)
of the second kind and we therefore have:

Sum of Falling Factorials =
|Π|∑
|Θ|=1

S(|Π|, |Θ|)qr+1 . . . (qr+1 − |Θ|+ 2) . (A.17)

The Stirling numbers of the second kind moreover satisfy the identity (for r ≥ 1):
n∑
l=1

S(n, l)x(x− 1) . . . (x− l + 1) = xn . (A.18)

This yields:

Sum of Falling Factorials = (qr+1 + 1)|Π|−1 . (A.19)

We conclude that

I =
∑

Π∈Part(Pr)
(1 + qr+1)|Π|−1 ∑

F of typeΠ

∏
{i,j}∈E(F ) qiqj∏
i not a root qi

= 1
q1 . . . qr(1 + qr+1)

∑
Π∈Part(Pr))

(1 + qr+1)|Π|
∑

F of typeΠ

∏
i a root

qi
∏

{i,j}∈E(F )
qiqj . (A.20)

The number of roots for a given set partition Π is equal to |Π|. Therefore, this expression is
again of the form to which the weighted Cayley formula (A.10) applies after reintroducing a
r + 1-st vertex which connects to all the roots and which has weight 1 + qr+1. We conclude
that the final equality is [39]:

I =
∑

Θ∈Part(Pr)
qr+1(qr+1 − 1) . . . (qr+1 − |Θ|+ 2)

∏
J∈Θ

(
1 +

∑
i∈J

qi

)|J |−1

=
(

1 +
r+1∑
i=1

qi

)r−1
, (A.21)

which by the change of variables qi = ni − 1 is the recursive stepping stone (A.8) that we
wished to prove. That wraps up the full proof of all the structure constants appearing in
the fusion of single-cycle operators.
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As a final remark, we note that the recursive step in appendix A.1 clearly represents
the further Farahat-Higman joining of a single cycle to an arbitrary permutation. On the
other hand, the recursive nature of the stepping stone proven in this subsection A.2 is
hidden in the recursive proof of the weighted Cayley tree formula [38]. Moreover, in our
context, we would like to think of the vertices in the Cayley tree as the Farahat-Higman
strands and the edges of the tree as the lines joining the strands. There may be a version
of the proof that makes both this intuition and its recursive nature more manifest.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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