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Abstract

This paper is dedicated to a numerical method based on a random choice as proposed in Glimm’s scheme.
It is applied to the problem of advection of a scalar quantity. The numerical scheme proposed here relies
on a fractional step approach for which: the first step is performed using any classical finite-volume scheme,
and the second step is a cell-wise update. This second step is a projection based on a random choice. The
resulting scheme possesses a very low level of numerical diffusion. In order to assess the capabilities of this
approach, several test cases have been investigated including convergence studies with respect to the mesh-
size. The algorithm performs very well on one-dimensional and multi-dimensional problems. This algorithm
is very easy to implement even for multi-processor computations.

1 Introduction

Scalar advection is a problem that has been widely investigated in the field of numerical simulation. Two im-
portant mathematical properties of scalar advection (whithout diffusion operator), and that are preserved at
a numerical level for industrial applications, is that both local extrema and sharp fronts should be preserved.
Unfortunately, for most classical numerical methods, numerical diffusion tends to smear the scalar profiles
and local extrema may be altered. A large amount of methods have been proposed using low- or high-order
algorithms in order to simulate such advection problems. The numerical diffusion for high-order methods
is in general much lower than for first-order methods. However, one technical difficulty for the former ap-
proaches is to maintain sharp fronts in weak solutions while limiting spurious oscillations that may appear
at this discontinuities. Avoiding such patterns in high-order methods requires sophisticated techniques, this
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difficulty being even more important when dealing with unstructured meshes for multi-dimensional domains.
Among the first-order methods with a low level of numerical diffusion and a good accuracy for weak solu-
tions, the Glimm’s scheme proposed in [8] may be put forward with regards to the present work.

In Glimm’s scheme, the technique for updating cell values is completely different from that which is
classically used for other finite-volume techniques. The new cell values are indeed not obtained by assem-
bling fluxes at the boundaries of each cells, but by picking one value among the possible ones (in the sense
of the system) in a random manner. This results in a very low numerical diffusion and it enhances the
scheme to have a convergence rate of 1 even for weak solutions. At our knowledge, this is the only first-order
finite-volume scheme that allows to approximate solutions of non-linear systems with a convergence rate of
1 even for weak solutions. This is a particularly interesting property. Unfortunately, the Glimm’s scheme is
restricted to 1D problems.

Recently, a scheme has been proposed on the basis of Glimm’s idea for simulating front propagation
[10, 7]. Even if it was restricted to the specific class of the problem of advection of a Heaviside function, it
benefited from the advantage to be able to handle 2D or 3D problems. The projection step nicknamed GRU
[10] (for Glimm Random Update) is based on the idea of Glimm [8], but also on the analysis of the Upwind
scheme proposed in [4]. The GRU step is used as a projection step which is performed at each time-iteration,
just after the prediction of the advection through classical finite-volume methods (for instance the prediction
step can be done using the Upwind scheme). This projection step is based on a random choice. One of the
main advantage of this technique is that the fronts defined by the Heaviside functions remain perfectly sharp
in the sense that no intermediate value is created.

A theoretical study of convergence of this algorithm has been proposed in [7] for a planar front. The
convergence in probability with order 1 has been proved, as for the Glimm’s scheme. This result can also
be connected to the results of [4]. In work [4], the authors present a probabilistic analysis of the classical
finite-volume Upwind scheme. The approximated solutions of the latter are built as the expectation of a
stochastic process, where the characteristics are stochastic and follow a Markov chain. It arises from this
analysis that the effective order of 1/2 of the Upwind scheme can be associated with the fluctuations of
the stochastic characteristics around the average characteristic, and to the expectation operator applied to
recover the Upwind scheme. The basic idea of the scheme proposed in [10, 7] is thus that, following Glimm’s
idea, selecting only one sample of this stochastic process avoid to apply an expectation operator. Doing so,
the effective convergence rate is higher than 1/2 and accuracy of the approximated solutions are significantly
improved.

In the present paper, the GRU step is adapted to the more general problem of the advection of a scalar
quantity. We intend here to perform some tests in the framework of the compressible flows. For that purpose,
we consider in this paper the following one-dimensional system in conservative form:{

∂t (ρ) + ∂x (ρU) = 0,
∂t (ρφ) + ∂x (ρUφ) = 0,

(1)

where the initial condition for the scalar quantity φ(t, x) is: ∀x, φ(t = 0, x) = φ0(x). System (1) involves a
non-negative density ρ(t, x) > 0 and a velocity U(t, x) which are assumed to be bounded. Obviously, since
system (1) is only based on two equations and three unknowns, ρ or U have to be specified. In the sequel, we
focus on two classes of solutions. The first one relies on the linear advection problem for which the velocity
field and the density are constant and uniform, U(t, x) = U0 > 0 and ρ(t, x) = ρ0 for all (t, x). Secondly, the
specific class of solutions described in appendix 6.2 are considered. The latter possesses non-uniform but
smooth profiles for the density and for the velocity.

The paper is organized as follows. After a presentation of the scheme in section 2.1, some of its properties
are studied in section 2.2. One of the most interesting point is that no intermediate values are created by the
scheme. Indeed, at any iteration the cell values are chosen in the existing cell values, so that they already
existed in the approximated initial solution. For simple 1D configuration (i.e. with uniform meshes, and
for uniform density and velocity), the scheme corresponds to the classical Glimm’s scheme [8]. But on the
contrary to the latter, the scheme proposed here extends very easily to the multi-dimensional setting. For
assessing the behavior of this scheme, several tests are performed in section 3 using the GRU step associated
with the Upwind scheme. Comparisons between this scheme and the sole Upwind scheme (without the GRU
step) are proposed on the basis of analytical solutions and convergence curves. An extension of the scheme
to the 2D (or 3D) advection problem is also tested on unstructured meshes with very satisfactory results, as
in [10] for the transport of Heaviside functions. At last, section 4 provides some elements of comparison of
the numerical results when considering different pseudo- or quasi-random sequences. This last section is a
try to assess the behavior of the GRU scheme with regards to the theoretical results obtained in [11] for the
Glimm’s scheme. The numerical tests of section 4 seem to show that the use of pseudo-random sequences
with very low discrepancy is crucial, as pointed out in a theoretical manner in [11].
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2 Extension of the GRU scheme to the one-dimensional ad-
vection problem

The scheme proposed here is a direct extension of the method introduced in [10]. The latter is based on a
two-step algorithm involving: a first step accounting for the convection terms, and for which a wide choice of
numerical scheme are possible; followed by a projection step based on a random choice. The new feature in
this method obviously entirely relies on the projection step which has been denoted in [10] by the acronym
GRU, for Glimm Random Update. In [10], the method has been applied to the front advection and it has
been shown that for simple 1D cases, it is equivalent to the well-known Glimm’s scheme originally proposed
in [8] and studied for instance in [1, 2, 3]. In this section, it is shown that it can be easily extended to the
advection of any scalar function.

It should be emphasized that, even if Upwind-like schemes are considered in the rest of
the paper, many other schemes may be used for the prediction step, see [10].

2.1 Description of the numerical scheme

As mentioned above, the method studied here is based on a prediction step, followed by a projection step.
For the prediction step, we restrict here to an Upwind scheme described in section 2.1.1. Moreover, we
consider system (1) where both the velocity and the density are supposed to be analytically known.

In the following, we use a finite-volume approach: at any time tn and for all cells i, the value of φ is
approximated by φni . The value of the scalar quantity φni is first updated into φn+1,∗

i by the prediction step
described in section 2.1.1. Afterwards, φn+1

i is obtained from the predicted value φn+1,∗
i through the GRU

projection step described in section 2.1.2. For the 1D test cases we consider the domain [0, 1] split into cells
of length ∆xi. Cell i thus corresponds to the interval [xi−1/2, xi+1/2], with xi+1/2 = xi−1/2 + ∆xi. The
center of cell i is xi = xi−1/2 + ∆xi/2. The time-step at iteration n is denoted by ∆tn.

2.1.1 The prediction step

In this work, we use a specific scheme based on the classical Upwind scheme for which the analytical solution
for ρ and U is supposed to be known. The properties of this scheme have been investigated in [10]. The
scheme reads: {

ρn+1,∗
i φn+1,∗

i = ρni φ
n
i − ∆tn

∆xi

(
Qni+1/2φ

n
i+1/2 −Qni−1/2φ

n
i−1/2

)
,

ρn+1,∗
i = ρni − ∆tn

∆xi

(
Qni+1/2 −Qni−1/2

)
,

(2)

with the mass fluxes: Qni+1/2 = ρni+1/2U
n
i+1/2. In our particular case, the density and the velocity are given

by explicit formula, for instance by a solution as those presented in appendix 6.2. We thus choose here:
ρni+1/2 = ρ(tn, xi+1/2), Uni+1/2 = U(tn, xi+1/2) and ρni = ρ(tn, xi). Moreover, it should be noted that in

general ρn+1,∗
i may be different from ρn+1

i = ρ(tn + ∆tn, xi)
1. The interfacial value φni+1/2 is then:

φni+1/2 =

{
φni , if Uni+1/2 > 0

φni+1, otherwise.
(3)

This scheme is based on the classical Upwind scheme but it embeds the analytical solutions for ρ and U . It
is named Upwind in the following but it should not be mistaken with the classical Upwind scheme, except
for the particular cases of constant and uniform density and velocity where both schemes coincide.

Some properties of this scheme are given in [10] when considering uniform meshes, i.e. for ∆xi = ∆x, and
constant time steps ∆tn = ∆t. In particular it is proven that it is monotonicity preserving for φ providing
that the time-step ∆t > 0 fulfills the CFL constraint:

∆t <
∆x

2 max
i

(
|Uni−1/2|

) . (4)

It should be noted that, in order to get this property, it is mandatory for the scheme (2) to be such that
ρn+1,∗
i > 0. For the particular class of solutions that are proposed in appendix 6.2 and that are used for

the numerical tests of section 3, it was shown in [10] that a constraint on the time-step may arise. When
considering the particular solutions used here, this additional constraint is less restrictive that the CFL
constraint (4). Hence, for all the test cases proposed in this work, we have ρn+1,∗

i > 0 and prediction step
(3) with uniform meshes and a constant time step is thus monotonicity preserving. This is an essential
property for the GRU projection step.

1Indeed, thanks to a Taylor expansion, one can easily obtain that: ρn+1,∗
i − ρn+1

i = o(∆t). See the dedicated appendix in [10]
for details.
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2.1.2 The projection step or Glimm Random Update

The GRU step consists in projecting the values φn+1,∗
i obtained after the prediction step. For that purpose,

we consider a quasi-random number ωn that follows a uniform distribution in [0, 1] and denoted by U(0, 1).
The projection step then simply reads:

φn+1
i =

{
φni,m, if φn+1,∗

i < ωni ,
φni,M , otherwise;

(5)

where φni,m and φni,M are respectively the local minimum and the local maximum of the cell values at time
tn when considering the set of the upwind cells with respect to the mass fluxes Qni−1/2 and Qni+1/2:

φni,m = min
j∈Ini,up

(φnj ), (6)

φni,M = max
j∈Ini,up

(φnj ), (7)

Ini,up = {i} ∪
(
{i− 1}δ(Qn

i−1/2
>0)

)
∪
(
{i+ 1}δ(Qn

i+1/2
<0)

)
. (8)

It should be noted that the set Ini,up contains at least the local cell i, it is thus never empty. When Qni+1/2 ≤ 0,
the index i+ 1 is added to the set Ini,up, and when Qni−1/2 > 0 the index i− 1 is added to the set Ini,up. The
number ωni is a renormalization of the number ωn over [φni,m, φ

n
i,M ]:

ωni = φni,m + ωn(φni,M − φni,m), (9)

so that ωni follows the uniform distribution U(φni,m, φ
n
i,M ). An important point to be quoted here is that the

same ωn is used for all the cells. This is a cornerstone of the algorithm, as noticed in [1, 2] for the Glimm’s
scheme. Moreover, the proof of convergence proposed in [7] for the advection of indicator functions also
strongly relies on this feature.

In a practical point of view, ωn is chosen in low-discrepancy sequences with values in [0, 1]. They are
well-suited for the Glimm’s scheme [1, 11, 3] as well as for the GRU step [10]. In the present work, Halton-
Van der Corput sequences are used, except in section 4 where some tests have been performed with other
sequences.

2.2 Properties of the numerical scheme

In this section we investigate some properties of the whole scheme described in the previous section. As the
projection step involves a random choice, these properties are often expressed using probability of occurrence.
Nevertheless, the simplicity of the scheme allows to use very simple probabilistic tools, which facilitate the
understanding of the behavior of the scheme.

For the sake of simplicity, we assume that the velocity field and the density are such that ∂x (ρU) = 0,
and that U(t, x) > 0. The first equation of system (1) then implies that the density is constant: ∂t (ρ) = 0.
The mass flow rate denoted by Q is thus uniform with Q(t) = ρ(x)U(t, x) > 0. Prediction step (2) can
then be simplified since the discrete mass fluxes are Qni+1/2 = Q(tn) for all interface i+ 1/2. Moreover, the

approximated density is constant in each cell ρn+1,∗
i = ρni = ρ0

i , and the update of the approximated value
for the scalar φ reads:

φn+1,∗
i = φni − βni (φni − φni−1) = (1− βni )φni + βni φ

n
i−1, (10)

where we have set:

βni =
Q(tn)

ρ0
i

∆tn

∆xi
.

It is an important to quote that βni does not depend on φni here, it is thus not stochastic.

Provided that βni < 1 for all cells i, it can easily be shown that scheme (10) is monotonicity preserving
and TVD [9]. The time step ∆tn at iteration n is chosen according to the constraint: maxi(β

n
i ) < 1, so that

we have βni ∈ [0, 1]. Therefore, it straightforwardly arises from prediction step (10) that φn+1,∗
i ∈ [φni,m, φ

n
i,M ].

2.2.1 Transitional probabilities

Before pursuing this section, let us exhibit two probabilities that will be used throughout section 2.2.
Considering prediction step (10), update (5)-(9) gives the following transitional probabilities on φn+1

i when
knowing the sequence (φnj )j at iteration n:

P(φn+1
i = φni,m|(φni )i) = αn,∗i , and P(φn+1

i = φni,M |(φni )i) = 1− αn,∗i , (11)
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with

αn,∗i =

 1 if φni,m = φni,M ,(
φn
i,M−φ

n+1,∗
i

φn
i,M
−φn

i,m

)
otherwise.

(12)

When φni 6= φni−1, we thus have αn,∗i = 1− βni if φni < φni−1 and αn,∗i = βni if φni > φni−1. It should be noted
that by definition we have αn,∗i ∈ [0, 1], this is a consequence of the fact that φn+1,∗

i and ωni both belong
to the same interval [φni,m, φ

n
i,M ]. The property of preservation of the monotonicity by the prediction step is

thus essential here. Moreover, the case φni,m = φni,M is singular. Indeed, it implies that φni = φni−1 and that

φn+1,∗
i can be equivalently projected onto φni,m or φni,M , i.e. onto φni or φni−1. For this peculiar situation, we

chose here αn,∗i = 1, but αn,∗i = 0 is a strictly equivalent choice. Furthermore, the projection step written
using formulae (5)-(9) naturally degenerates in the case where φni,m = φni,M .

2.2.2 Statistical consistency of the scheme

On the basis of the transitional probabilities (11), the transitional expectation of φn+1
i knowing (φnj )j can

be written:

E(φn+1
i | (φni )i) = P(φn+1

i = φni,m|(φni )i) φni,m + P(φn+1
i = φni,M |(φni )i) φni,M ,

E(φn+1
i | (φni )i) = αn,∗i φni,m + (1− αn,∗i )φni,M ,

E(φn+1
i | (φni )i) = φn+1,∗

i .

Thanks to prediction step (10), one can easily obtain that:

E(φn+1
i | (φni )i) = φni − βni (φni − φni−1) . (13)

By integrating relation (13) over all the realizations of (φnj )j , and since βni is not stochastic, we obtain:

E(φn+1
i ) = E(φni )− βni (E(φni )− E(φni−1)) . (14)

Relation (14) exactly corresponds to prediction step (10) applied to the expectation of (φnj )j . It expresses
the statistical consistency of the GRU step with the prediction step; or in other word that no statistical bias
with respect to the prediction step is introduced during the projection step. Moreover, it can be deduced
from (14) that:

(i) statistically the whole scheme preserves the monotonicity,

(ii) statistically a maximum principle holds,

(iii) statistically the scheme is conservative.

These three properties are directly inherited from the prediction step which is performed in the sequel
through the Upwind scheme. Counterparts of properties (i) and (iii) do not hold for a single realization, i.e.
for a single sequence (ωn)n, while it will be shown that a maximum principle holds for each realization (i.e.
the counterpart of point (ii)).

Remark. An additional result for the statistical consistency of the algorithm may be found in appendix
6.1. In particular, it appears that the use of the uniform distribution in the GRU step is a key point.

Remark. In a more general setting where ρ and/or U depend on φ, some bias could arise in the statistical
consistency relation. Indeed, expectations and integrations above should be done on products that contain
dependent terms. This difficulty could arise from the coefficient βni that could depend on φ and that could
become stochastic. Or, for instance, when considering the classical partial-mass ρ(Φ)×Φ in two-phase flow
models, we would have:

E(ρ(φ) φ) = E(ρ(φ))× E(φ) + E(ρ(φ)′ φ′),

where Ψ′ = Ψ − E(Ψ) denotes the fluctuation of a quantity Ψ with respect to the expectation E(.). The
additional correlation term E(ρ(φ)′φ′) is in general not null and the statistical consistency could be expressed
in a more complex form than (14). This point may have important consequences when attempting to extend
the present approach for instance to multiphase flows.

2.2.3 Maximum principle and preservation of the monotonicity

It has been shown in the previous section that statistical consistency relation (14) and the form of prediction
step (10) allow to deduce that the scheme statistically preserves the monotonicity and that a maximum
principle statistically holds (i.e. on E(φni )). We examine here these properties for a single realization, i.e.
for one particular sequence (ωn)n.

Maximum principle.
First, since the prediction step preserves the monotonicity, the definition of the projection step obviously
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implies that all the values (φn+1
i )i at iteration n + 1 are equal to one of the value of the sequence (φni )i at

iteration n. Hence the maximum principle naturally holds for the whole scheme. In particular, this also im-
plies that at any iteration n ≥ 0 and for any cell i, the value φni necessarily belongs to the set

{
φ0
i , i = 1..Nc

}
,

where Nc is the number of cells in the mesh. Moreover, between two successive iterations the number of the
different values reached by the sequence (φni )i decreases or remains constant, but it can not increase because
no new cell-value is created.

Preservation of the monotonicity.
Let us assume that at iteration n the sequence (φni )i is decreasing, so that for all i we have φni > φni+1. We
have chosen here a uniform positive velocity field, we then easily get that the local minimum and maximum
used for the projection step are: φni,m = φni and φni,M = φni−1, and thus we have

φni,m = φni+1,M . (15)

Moreover, whatever ωn is, we have φn+1
i ≥ φni,m and φni+1,M ≥ φn+1

i+1 , so that:

φn+1
i ≥ φni,m = φni+1,M ≥ φn+1

i+1 ,

which enables to conclude that (φn+1
i )i is non-increasing.

It is important to emphasize that a decreasing sequence may become non-increasing with a non-null
probablity. Let us estimate this probability by considering a decreasing sequence (φni )i. Such a situation
occurs at iteration n+ 1 between cells i and i+ 1 if and only if: φn+1

i+1 = φn+1
i . Because of (15), this equality

can be obtained if and only if φn+1
i+1 = φni+1,M and φn+1

i = φni,m, or in other words for:
ωni ≥ φn+1,∗

i ,
and

ωni+1 < φn+1,∗
i+1 .

(16)

Since it has been assumed U > 0, we get from the projection step that φni,m = φni and φni,M = φni−1, and
thus that:

ωni = φni + ωn(φni−1 − φni ).

By combining this result and prediction step (10) in relations (16), one obtain the equivalent relations:
ωn ≥ βni ,

and
ωn < βni+1.

(17)

If βni ≥ βni+1, then (17) is not possible. On the contrary, when βni < βni+1, (17) can be fulfilled with
a probability βni+1 − βni (ωn is chosen according to a uniform distribution U(0, 1)). Therefore, it can be
concluded that for a decreasing sequence at iteration n, we can get φn+1

i+1 = φn+1
i with the probability:

P
(
φn+1
i+1 = φn+1

i | (φnj )j decreasing
)

= max (0, βni+1 − βni ) .

Moreover, if we indeed get φn+1
i+1 = φn+1

i at iteration n+ 1 from a decreasing sequence (φnj )j at iteration n,

then we necessary have φn+1
i−1 6= φn+1

i and φn+1
i+1 6= φn+1

i+2 . This is quite straightforward since in this case we
have:

φn+1
i = φni,m = φni < φni−1,m = φni−1

and
φn+1
i+1 = φni+1,M = φni > φni+2,M = φni+1.

In other words, starting with a decreasing sequence (φnj )j at iteration n, the sequence at iteration n + 1
contains sets of at most 2 neighboring cells sharing the same value.

Obviously, the same properties hold when considering increasing sequences. These results can also be
locally extended to sequences that are only locally monotonic.

2.2.4 Behavior at the local extrema and on locally uniform sequences

In the previous section, it has been shown that the scheme fulfills the maximum principle and that a locally
strictly monotonic sequence can become locally uniform from an iteration to the next one. Let us now study
two other properties. Firstly, even if the maximum principle holds, it will be seen that local extrema may
be lost. Secondly, the variation of the width of a plateau in a locally uniform sequence is studied.

Loss of a local extremum.
Let us consider a sequence (φnj )j with a local maximum at cell i + 1. This situation can be depicted by
figure (1b) with N = 1 and with φi−1 = φa and φi+3 = φc. The local extremum of cell i+ 1 is lost between
iteration n and iteration n + 1 if and only if φn+1

i+1 = φni+1,m and φn+1
i+2 = φni+2,m. Considering projection
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step (5) and the choice U > 0, we have: φni+1,m = φni and φni+1,M = φni+1, together with φni+2,m = φni+2 and
φni+2,M = φni+1. Hence, we obtain the following thresholds in cells i+ 1 and i+ 2 for the projection step:{

ωni+1 = φni + ωn(φni+1 − φni ),
ωni+2 = φni+2 + ωn(φni+1 − φni+2).

After some straightforward calculus, the projection step associated with prediction step (10) then gives:{
φn+1
i+1 = φni+1,m,
φn+1
i+2 = φni+2,m,

⇐⇒
{
ωni+1 ≥ φn+1,∗

i+1 ,

ωni+2 ≥ φn+1,∗
i+2 ,

⇐⇒
{

(φni − φni+1) ≥ (φni − φni+1)(βni+1 + ωn),
ωn(φni+1 − φni+2) ≥ (φni+1 − φni+2)βni+2.

(18)

In the present case, we have assumed a local maxima in cell i+1 at iteration n, we then have: φni −φni+1 < 0
and φni+1 − φni+2 > 0. As a consequence, the last set of relations of (18) is equivalent to:

1 ≤ (βni+1 + ωn),
and

ωn ≥ βni+2,
⇐⇒


ωn ≥ 1− βni+1,

and
ωn ≥ βni+2.

(19)

Due to the uniform distribution for ωn, this event occurs with a probability:

P
(
φn+1
i+1 = φni+1,m and φn+1

i+2 = φni+2,m | φni−1 = φni < φni+1 and φni+1 > φni+2 = φni+3

)
= min(1− βni+2, β

n
i+1).

(20)
A similar result can be obtained for a local minimum. Moreover, in the particular case with uniform co-
efficients βni = βn0 , probability (20) becomes min(1−βn0 , βn0 ). It thus reaches a maximum of 1/2 for βn0 = 1/2.

Variation of the width of a plateau.
When the approximated solution contains several successive uniform plateaux, their width in terms of number
of cells can vary with the time-iterations. Such patterns may obviously be part of the approximated solution,
or they may have been created by the projection step from a strictly monotonic sequence as depicted in
section 2.2.3. Let us estimate some probabilities on the width this uniform plateaux. Two typical situations
considered here are depicted in figure 1 (with φb > φc, the cases φb < φc have not been represented). It is
assumed that φa 6= φb and φb 6= φc. In the following, Nn

b denotes the width of the plateau with value φb in
figure 1. It corresponds to the number of successive cells that share the same value φb at iteration n. It is
assumed that Nn

b = N ≥ 2. After prediction step (10), one obtain:
φn+1,∗
i+1 = βni+1φa + (1− βni+1)φb,

φn+1,∗
i+N+1 = βni+N+1φb + (1− βni+N+1)φc,

φn+1,∗
k = φnk , if k /∈ {i+ 1, i+N + 1},

(21)

and the projection thresholds read:{
ωni+1 = ma,b + ωn(Ma,b −ma,b),
ωni+N+1 = mb,c + ωn(Mb,c −mb,c),

(22)

where for the sake of readability it has been set: ma,b = min(φa, φb), mb,c = min(φb, φc), Ma,b = max(φa, φb)
and Mb,c = max(φb, φc). From the definition of the scheme and thanks to (21) and (22), some straightforward
calculus lead to:

φn+1,∗
i+1 < ωni+1 ⇐⇒ Bni+1 =

φb −ma,b

Ma,b −ma,b
+ βni+1

φa − φb
Ma,b −ma,b

< ωn, (23)

and

φn+1,∗
i+N+1 < ωni+N+1 ⇐⇒ Bni+N+1 =

φc −mb,c

Mb,c −mb,c
+ βni+N+1

φb − φc
Mb,c −mb,c

< ωn. (24)

It should be remarked that when φa > φb, the terms in the second equality of (23) are:

(φb −ma,b)/(Ma,b −ma,b) = 0 and (φa − φb)/(Ma,b −ma,b) = 1,

and thus we simply get Bni+1 = βni+1. Conversely, when φa < φb, it yields:

(φb −ma,b)/(Ma,b −ma,b) = 1 and (φa − φb)/(Ma,b −ma,b) = −1,

and hence Bni+1 = 1−βni+1. Obviously, the same remark holds for the ratios involving φb and φc in (24) and for
the definition of Bni+N+1 which can be simplified in: Bni+N+1 = βni+N+1 if φb > φc, and Bni+N+1 = 1−βni+N+1

otherwise. These notations will be helpful hereafter for expressing general expressions for the probabilities.

From now, let us focus on the specific case where φa > φb > φc, i.e. on the case depicted by figure 1b.
After the projection step, the initial front between cells i and i+ 1 (resp. between cells i+N and i+N + 1):
remains between cells i and i + 1 (resp. between cells i + N and i + N + 1) when ωni+1 > φn+1,∗

i+1 (resp.

ωni+N+1 > φn+1,∗
i+N+1) or is translated at the interface between cells i+1 and i+2 (resp. between cells i+N+1

and i + N + 2) when ωni+1 < φn+1,∗
i+1 (resp. ωni+N+1 < φn+1,∗

i+N+1). There are thus four possible configurations
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at iteration n+ 1. Among these four situations, two are such that Nn+1
b = Nn

b and for the two others Nn+1
b

changes while the event |Nn+1
b − Nn

b | ≥ 2 is not possible. Therefore, the three following possibilities are
obtained for Nn+1

b
2:

Nn+1
b = Nn

b ⇐⇒


ωni+1 < φn+1,∗

i+1 and ωni+N+1 < φn+1,∗
i+N+1,

or

ωni+1 > φn+1,∗
i+1 and ωni+N+1 > φn+1,∗

i+N+1,

(25)

Nn+1
b = Nn

b − 1⇐⇒
(
ωni+1 < φn+1,∗

i+1 and ωni+N+1 > φn+1,∗
i+N+1

)
, (26)

Nn+1
b = Nn

b + 1⇐⇒
(
ωni+1 > φn+1,∗

i+1 and ωni+N+1 < φn+1,∗
i+N+1

)
. (27)

Thanks to relations (23) and (24) the probabilities for the three events above can be explicitly written using
Bni+1 and Bni+N+1. The probability to maintain the number of cells in the plateau with value φb is then:

P
(
Nn+1
b = Nn

b | Nn
b

)
= 1 + min (Bni+1, B

n
i+N+1)−max (Bni+1, B

n
i+N+1) , (28)

and the probabilities to decrease or to increase the number of cells with value φb are respectively:

P
(
Nn+1
b = Nn

b − 1 | Nn
b

)
= max (0, Bni+1 −Bni+N+1) , (29)

and
P
(
Nn+1
b = Nn

b + 1 | Nn
b

)
= max (0, Bni+N+1 −Bni+1) . (30)

It is an important point to be quoted that when Bni+N+1 = Bni+1, the number of cells in the plateau with value
φb is maintained from iteration n to n+1 with probability 1 (that point is developed hereafter in this section).

The expectation of the number of cells in the plateau φb knowing Nn
b :

E
(
Nn+1
b | Nn

b

)
= (Nn

b − 1) P
(
Nn+1
b = Nn

b − 1 | Nn
b

)
+ Nn

b P
(
Nn+1
b = Nn

b | Nn
b

)
+ (Nn

b + 1) P
(
Nn+1
b = Nn

b + 1 | Nn
b

)
,

(31)

can be expressed by using probabilities (28), (29) and (30). It yields:

E
(
Nn+1
b | Nn

b

)
= Nn

b − (Bni+1 −Bni+N+1). (32)

Since the second term on the right hand side of relation (32) is not stochastic, we can easily integrate relation
(32) over all the possible Nn

b and we get:

E
(
Nn+1
b

)
= E (Nn

b )− (Bni+1 −Bni+N+1). (33)

In fact the second term on the right hand side of (33) (and (32)) corresponds to a compression/dilatation
term that represents the variation of the number of cells in the plateau φb when the mesh size is not in
agreement with the density profile (which has been assumed constant here). For the present case with
φa > φb > φc, we have:

E
(
Nn+1
b

)
= E (Nn

b ) ⇐⇒ Bni+N+1 = Bni+1 ⇐⇒ βni+N+1 = βni+1 ⇐⇒ ρ0
i+1∆xi+1 = ρ0

i+N+1∆xi+N+1.

This case corresponds to a specific situation where the mesh size is adapted to the density profile for obtaining
the same mass ρ0

j∆xj in the two cells j = i+ 1 and j = i+N + 1. It should be noted that in this case the
probability (28) is equal to 1. When turning to a non-adapted mesh, such that ρ0

i+1∆xi+1 > ρ0
i+N+1∆xi+N+1

for instance, we get:

ρ0
i+1∆xi+1 > ρ0

i+N+1∆xi+N+1 ⇐⇒ βni+N+1 < βni+1 ⇐⇒ Bni+N+1 < Bni+1 ⇐⇒ E
(
Nn+1
b

)
> E (Nn

b ) .

Moreover, from probabilities (28), (29) and (30), we obtain:
P
(
Nn+1
b = Nn

b | Nn
b

)
= 1 +Bni+1 −Bni+N+1 < 1,

P
(
Nn+1
b = Nn

b − 1 | Nn
b

)
= 0,

P
(
Nn+1
b = Nn

b + 1 | Nn
b

)
= Bni+N+1 −Bni+1 > 0.

These relations state that if cell i + 1 contains more mass than cell i + N + 1, then the scheme has to
statistically reduce the number of cells in the plateau φb in order to statistically maintain a constant mass.
This behavior is obviously in agreement with the behavior of the solution of system of equations (1) with
the additional constraint ∂x (ρU) = 0 that has been retained all along section 2.2.

2For the other cases (where φa > φb > φc does not hold), the inequalities on the right-hand side of the events (25), (26) and
(27) have simply to be changed.
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Figure 1: Variation of the width of a plateau, case with an uniform velocity U0 > 0.
The letter M denotes the local maximum φni,M , m denotes the local minimum φni,m,

and ∗ the value φn+1,∗
i . We have φa 6= φb and φb 6= φc.

2.2.5 A word on the convergence of the scheme

One of the great advantages of the Glimm’s scheme is that it has a convergence rate of 1 even for weak
solutions involving discontinuities. Classical first-order schemes have a convergence rate of 1/2 for such
solutions. The explanation of this difference can be found in the work [4]. In this paper, the authors present
a probabilistic analysis of the classical finite-volume Upwind scheme. The approximated solutions of the
latter are built as the expectation of a stochastic process, where the characteristics are stochastic and follow
a Markov chain. It arises from this analysis that the effective order of 1/2 of the Upwind scheme can be
associated with the fluctuations of the stochastic characteristics around the average characteristic, and to
the expectation operator applied to recover the Upwind scheme. The basic idea of the scheme proposed
here is thus that, following Glimm’s idea, selecting only one sample of this stochastic process avoid to apply
an expectation operator. Doing so, we can expect to get an effective convergence rate higher than 1/2 and
we could wait for a better accuracy for the approximated solutions. This idea has also been applied in [10]
for the GRU projection step on Heaviside functions. Convergence rates close to 0.85 have been retrieved
together with a great improvement of the accuracy. In section 3, the behavior oh the GRU projection step
is assessed considering analytical test cases for scalar advection.

It has been proved in [7] that the GRU projection step associated with the Upwind scheme for the
prediction step converges in probability with order 1. This proof has been obtained for solutions based on a
Heaviside function forming a planar front and for an uniform velocity field. For the setting studied in this
work, the proof proposed in [7] could be extended in order to obtain the convergence of the scheme when
considering piecewise constant functions.

3 Numerical tests for assessing the behavior of the scheme

In the following, several numerical tests are performed on the basis of analytical solutions. Two velocity
fields and two intial conditions are considered. In section 3.1, the case of a constant and uniform velocity
field is investigated. It clearly belongs to the class of problems that have been retained in section 2.2 for
studying the properties of the scheme. On the contrary, the velocity fields used in section 3.2 are not uniform
and they correspond to a compression or a dilatation of the initial condition for φ. These velocity fields
arise from the class of analytical solutions described in appendix 6.2. The two initial conditions used for the
different test cases are:

φs0(x) =

{
1 + 1

2 sin
(
x− 0.1

0.3− 0.1

)
, if 0.1 < x < 0.3,

0 otherwise,
(34)

and

φc0(x) =


1.5, if 0.1 < x < 0.2,
0.5, if 0.2 < x < 0.275,
1, if 0.275 < x < 0.3,
0 otherwise.

(35)

These initial conditions correspond to weak solutions of system (1) since they both involves discontinuities.
It should be noted that in section 3.1 the initial condition φc0(x − 0.3) will be considered for performing
periodic simulations. The numerical tests are performed on the interval [0, 1], for uniform meshes and for a
CFL number equal to 1/2.

In the projection/GRU step, ωn should be chosen according to the uniform distribution. In practice,
it has been noticed that equidistributed low-discrepancy sequences give better results [3]. In the following
we consider the Halton-Van der Corput sequences as proposed in [3]. Additional tests have been performed
in section 4 with other sequences. The Halton-Van der Corput sequences have already been tested for the

9



GRU step in [10]. The Halton-Van der Corput sequences depend on a couple of parameters (K1,K2) where
K1 and K2 are prime numbers greater or equal to 3, and such that K1 > K2. Each choice (K1,K2) gives
a different deterministic sequence of numbers in (0, 1) which is denoted by VK1,K2 in the following. For
the projection step, ωn is chosen as the nth element of the sequence VK1,K2 : ωn = VK1,K2(n). Obviously,
each couple (K1,K2) leads to a different approximated solution. More details on the computation of these
sequences may be found in appendix 6.3.

In order to produce convergence curves, several couples (K1,K2) are considered. If we denote by P(n)
the sequence containing the n first prime numbers greater or equal to 3, the couples that are used in the
following are all the couples of the set V(n) = {(K1,K2) ∈ P(n) × P(n); 2 < K2 < K1}. In particular,
the results of the present section have been computed for n = 8, with P(8) = {3, 5, 7, 11, 13, 17, 19, 23}, and
therefore 28 different couples (K1,K2) have been used for each mesh size.

For each mesh size ∆x and for each couple (K1,K2), the L1−error between the approximated solution
and the analytical solution, ε(∆x,K1,K2), is computed. Then, for each mesh size, the L1−errors obtained
for all the couple (K1,K2) are averaged:

ε(∆x) =
1

card(V(8))

∑
(K1,K2)∈V(8)

ε(∆x,K1,K2). (36)

We then get an average error estimate ε(∆x) for each mesh size. It is an important point to be quoted
here that ε(∆x) is the average of the errors between each approximated solution and the ana-
lytical solution and not the error between the average of the approximated solutions and the
analytical solution. Since the L1−error operator is not linear, these two errors are different.
Moreover, according to section 2.2.2 the average of the approximated solutions statistically converges to
the approximated solution of the Upwind scheme. Hence, with the error of the mean approximated solu-
tion we would recover the effective order of convergence 1/2 of the classical Upwind scheme, while using
the GRU step we could expect an effective order of convergence closer to 1, see the discussion of section 2.2.5.

At last, an extension of the GRU step for the two-dimensional advection problem is tested in section
3.3. These 2D results have been performed considering unstructured meshes and analytical solutions. The
GRU step performs very well on these test cases. These satisfactory results could be of great interest for
industrial applications.

3.1 Approximating solutions for the linear advection problem

We consider here a uniform velocity U(t, x) = U0 = 1 and a uniform density ρ(t, x) = 1. The initial condition
for φ is given by φ(0, x) = φ0(x− 0.3), where φ0 = φc0 or φ0 = φs0 is respectively defined by (35) or by (34).
By translating φ0 from +0.3, the initial profile for φ is centered on x = 0.5. We then consider periodic
boundary conditions, so that the analytical solution becomes periodic with a period equal to 1. Several
final times are considered: Tf ∈ {1, 2, 5, 10, 20, 50, 100, 1000}, respectively corresponding to 1, 2, 5, 10, 20,
50, 100 and 1000 periods of the solution. The approximated solutions obtained for 200 cells are plotted in
figure 2 and 3 considering the Halton-Van der Corput sequence V5,3. Convergence curves for the two initial
conditions and for the periods {1, 2, 5, 10, 20, 50, 100, 1000} are reported in figure 4.

On these results, the projection step clearly improves the quality of the approximated solutions. In figure
2, it can be remarked for the test case with φs0 that plateaux are created at each of the three extrema. The
values of these extrema have been altered which is possible thanks to the results of section 2.2.4. Moreover,
for the initial condition φc0, it clearly appears that the plateaux are well advected by the scheme, which is
also in agreement with the results of section 2.2.4. The convergence curves in figure 4a and 4b confirm that
the decrease in time of the accuracy of the approximated solution is small, at least with respect to the Up-
wind scheme. Such a behavior is typical from anti-diffusive schemes as the downwind scheme proposed in [5].

In a quantitative point of view, we recover for the Upwind scheme the classical convergence rate of 1/2,
whereas with the GRU step the effective convergence rate is around 0.85. This effective rate of convergence
was already observed for Heaviside functions in [10]. In terms of accuracy on coarse meshes, the GRU step
provides a gain of one order of magnitude for φc0 and half an order of magnitude for φs0. The former contains
more discontinuities and is piecewise uniform, which is clearly in favor of the GRU step.
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Figure 2: Approximated solutions for the initial condition φc0 for different periods
{1, 2, 5, 10, 20, 50, 100, 1000} and for a projection step using (K1,K2) = (5, 3). The
mesh contains 200 cells.
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Figure 4: Convergence curves for the average error ε(∆x) on the set of Halton-Van
der Corput sequences V(8) and for the periods {1, 2, 5, 10, 20, 50, 100}. The black plain
lines represent the curves for the Upwind scheme, while the red dashed lines denote
the results for the Upwind scheme with GRU projection.

3.2 Approximating solutions with non-uniform velocity fields

In this section we consider the three analytical solutions for U and ρ proposed in appendix 6.2 (see figure
19) with the parameters and the final time Tf :

(i) U0 = 2, R0 = 2, B0 = −1, Tf = 0.4,

(ii) U0 = −2, R0 = 2 ln(2), B0 = −2, Tf = 0.3,

(iii) U0 = 2, R0 = 2 ln(2), B0 = 2, Tf = 0.3.

The velocity and the density are thus not uniform, but the velocity remains constant in time. The first
and third sets of parameters correspond to decreasing velocity with respect to x and the second set to an
increasing velocity. For sets of parameters (ii) and (iii), the velocity vanishes at x = 1/2. The initial
conditions for φ are φc0 and φs0 for set of parameters (i), while for sets (ii) and (iii) the initial conditions are
x 7→ φc0(x − 0.3) and x 7→ φc0(x − 0.3). Due to the divergence of the velocity field, these initial profiles are
compressed (for (i) and (iii)) or dilated (for (ii)) along the streamline. It should be noted that for sets of
parameters (ii) and (iii), the initial conditions overlaps the stationary point U(x = 1/2, t) = 0. Since the
velocity is constant, the CFL constraint has been fulfilled by using a constant time-step.

Figure 5 shows the approximated solutions obtained with the Upwind scheme with and without the GRU
projection step for the three sets of parameters and for the two initial conditions. These results have been
obtained with a (5, 3) Halton-Van der Corput sequence. The convergence curves for the average error ε(∆x)
and for each individual errors ε(∆x,K1,K2) with (K1,K2) ∈ V(8) have been plotted in figure 6. As for
the test of the previous section, the effective convergence rate for the scheme with the GRU step is close
to 0.82 whereas for the Upwind scheme without projection step the convergence rate reaches its classical
value 1/2 (for weak solutions involving discontinuities). Moreover, accuracy is globally improved by the
projection step. Nonetheless, it should be noted that the improvements of the GRU step is not important
for coarse meshes on the test case with parameters (iii) (see figure 6f). This can be explained by the fact
that the initial profile is compressed and becomes thin. For coarse meshes, the number of points in the
profile becomes small and the probability to lose peaks and to flatten the approximated solution becomes
important (see section 2.2.4).
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(e) Test cases for the set of parameter (iii) and with Φc0 as initial
condition.
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(f) Test cases for the set of parameter (iii) and with Φs0 as initial
condition.

Figure 5: Comparison of the approximated solutions for different meshes and for the
three sets of parameters. The GRU step has been performed here using the (5, 3)
Halton-Van der Corput sequence. The black dotted lines correspond to the initial
conditions, and the black dashed lines correspond to the final solutions.
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(c) Convergence curve for φc0 and set of parameters (ii).
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(e) Convergence curve for φc0 and set of parameters (iii).
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(f) Convergence curve for φs0 and set of parameters (iii).

Figure 6: Convergence curves for the average error ε(∆x) (red line with squares) and
for ε(∆x,K1,K2) (turquoise plain lines) on the set of Halton-Van der Corput sequences
V(8).

3.3 Extension for two-dimensional problems

The two-dimensional counterpart of system (1) reads:{
∂t (ρ) + ∂x (ρUx) + ∂y (ρUy) = 0,

∂t (ρφ) + ∂x (ρUxφ) + ∂y (ρUyφ) = 0,
(37)

where Ux and Uy denote respectively the velocity components along the x and y axis. As for the one-
dimensional case, the density ρ and the velocity field (Ux, Uy) are given. For this 2D problem, the prediction
step can be straightforwardly extended from section 2.1.1. In the following, the projection step of section
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2.1.2 is also extended in a naive manner by modifying definitions (6) and (7) of φni,m and φni,M :

φni,m = min
j∈Ni

(
φnj
)
, (38)

φni,M = max
j∈Ni

(
φnj
)

; (39)

where the set Ni corresponds to the following neighborhood of cell i: Ni contains the cell-index i of the local
cell, and the indices of all the cells that share a common face with cell i and such that the normal mass-flux
at this face is oriented inward to cell i. It should be noted that Ni thus does not contain the cells that share
only one vertex with cell i. It gathers the cell i and all the neighboring cells that are upwind of cell i in the
sense of the mass flow.

In order to assess the accuracy of the scheme, numerical approximations are computed on unstructured
meshes. These meshes are built on the basis of structured meshes with N × N square cells. Then, some
vertices are modified in order to “twist” the cells around the center (0.5, 0.5) of the square domain [0, 1]×[0, 1].
The transformation of the vertices is based on the polar coordinates centered on the center of the domain
[0, 1]× [0, 1]. We set:

r(x, y) =
√

(x− 0.5)2 + (y − 0.5)2,

with,

(rx(x, y), ry(x, y)) =

(
0.5− y
r

,
x− 0.5

r

)
if r 6= 0 ; and rx(0.5, 0.5) = ry(0.5, 0.5) = 0.5

and the transformation (X ′p, Y
′
p) of coordinates (Xp, Yp) of vertex p is:{

X ′p = Xp + rx(Xp, Yp) D0 e
−(δr)2 ,

Y ′p = Yp + ry(Xp, Yp) D0 e
−(δr)2 ,

(40)

where D0 = 0.08 and δr = (r(Xp, Yp) − R0)/σ, with R0 = 0.2 and σ = 0.06. Examples of such meshes are
shown in figure 7.

A classical class of problems for assessing scalar transport algorithms consists in simulating the solid
rotation of shapes. We consider here the solid rotation around the center (0.5, 0.5) of the computational
domain [0, 1]×[0, 1]. The analytical solution for the density is ρ(t, x, y) = 1.0 and for the velocity Ux(t, x, y) =
θ0(0.5 − y) and Uy(t, x, y) = θ0(x − 0.5), where θ0 = 1. With these choices, the initial profile for φ rotates
around the point (0.5, 0.5). We consider the final solution at time tend = 2Π, so that the initial profile for φ
has achieved a complete rotation, and thus we have φ(0, x, y) = φ(tend, x, y). Two initial profiles are tested.
We have φ(0, x, y) = 0 everywhere, except in the circle with a center located at (0.5, 0.75) and with a radius
of 0.15. For defining the initial conditions, the distance to the center of this circle (0.5, 0.75) is introduced:

r̃(x, y) =
√

(x− 0.5)2 + (y − 0.75)2.

The first initial condition is piecewise uniform:

φ(0, x, y) =


2 if r̃(x, y) < 0.15 and x > 0.5 and y > 0.75,
1.5 if r̃(x, y) < 0.15 and x ≤ 0.5 and y > 0.75,
1.0 if r̃(x, y) < 0.15 and x ≤ 0.5 and y ≤ 0.75,
0.5 if r̃(x, y) < 0.15 and x > 0.5 and y ≤ 0.75,
0 otherwise;

(41)

while the second one is piecewise regular but contains a discontinuity curve (which corresponds to the circle
r̃(x, y) = 0.15):

φ(0, x, y) =

{
1.5 + cos (Π r̃(x, y)) if r̃(x, y) < 0.15
0 otherwise.

(42)

Convergence curves are plotted in figure 8 for both initial conditions, see respectively figure 8a for initial
condition (41) and figure 8b for initial condition (42). Several remarks arise from these 2D results. First
of all, it should be noticed that the extension of the GRU projection step to 2D case seems to perform in
a satisfactory manner. Indeed, the approximated solutions converge to the exact solution with an effective
rate of convergence close to 0.82 or 0.85. It should be noted that for the test case with initial condition (42),
the Upwind scheme has not yet reached its asymptotic rate of convergence 1/2 on the finest meshes.

The behavior of the scheme is also illustrated by sets of figures 9-10 and by sets of figures 11-12. In the two
former sets, approximated solutions have been plotted at tend for several meshes and for (K1,K2) = (5, 3);
and in the two latter sets the approximated solutions computed for a mesh with 400 × 400 cells has been
plotted for several time-iterations and for (K1,K2) = (13, 11). The sequence (K1,K2) = (13, 11) produces a
very accurate final approximated solution for the mesh 400× 400, in particular it is more accurate than the
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Figure 7: Examples of unstructured “twisted” meshes used for the 2D test case: 20×20
cells, 50× 50 cells and 100× 100 cells.

one obtained with (K1,K2) = (5, 3) (see figure 9).

When considering initial condition (41) and (42), the GRU step improves the accuracy of the approx-
imated solutions with respect to the sole Upwind scheme. It can be observed in figure 9 (resp. 10), by
comparing with figure 11 (resp. 12), that the quality of the approximated solutions strongly depends on
the choice of the parameters (K1,K2). Indeed, even if fluctuations are observed, the convergence rate is the
same for all the couples of parameters. Nonetheless, the accuracy changes with the parameters. This can
clearly be observed for instance in figure 8 when focusing on the finest meshes. For the sequences that have
been used here, the difference between the best approximated solution and the worst one (with respect to
the error ε(∆x,K1,K2)) can be greater than one order of magnitude.
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(a) Convergence curves for piecewise uniform initial condition
(41) and for several for (K1,K2) ∈ V(8).
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(b) Convergence curves for piecewise regular initial condition
(42) and for several for (K1,K2) ∈ V(8).

Figure 8: Convergence curves for the 2D test cases for meshes from 20 × 20 cells to
1500× 1500 cells.
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(a) 100× 100 (b) 200× 200 (c) 400× 400 (d) 800× 800 (e) 1500× 1500

Figure 9: Approximated final solutions for the 2D test cases with (41) as initial con-
dition and for (K1,K2) = (5, 3). The first row of plots shows the approximated
exact solutions (and approximated initial solutions), the second row shows the ap-
proximated solutions computed with the Upwind scheme, and the third row shows the
approximated solutions computed with the GRU step. The first column corresponds
to the mesh 100 × 100, the second one to the mesh 200 × 200, the third one to the
mesh 400 × 400, the forth one to the mesh 800 × 800 and the last one to the mesh
1500× 1500.
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(a) 100× 100 (b) 200× 200 (c) 400× 400 (d) 800× 800 (e) 1500× 1500

Figure 10: Approximated final solutions for the 2D test cases with (42) as initial
condition and for (K1,K2) = (5, 3). The first row of plots shows the approximated
exact solutions (and approximated initial solutions), the second row shows the ap-
proximated solutions computed with the Upwind scheme, and the third row shows the
approximated solutions computed with the GRU step. The first column corresponds
to the mesh 100 × 100, the second one to the mesh 200 × 200, the third one to the
mesh 400 × 400, the forth one to the mesh 800 × 800 and the last one to the mesh
1500× 1500.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 11: Approximated solutions for the 2D test case with initial condition (41)
and for (K1,K2) = (13, 11) for the mesh 400 × 400. Several successive approximated
solutions are plotted along one full rotation from figure (a) to (j).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12: Approximated solutions for the 2D test case with initial condition (42)
and for (K1,K2) = (13, 11) for the mesh 400 × 400. Several successive approximated
solutions are plotted along one full rotation from figure (a) to (j).
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4 Discussion on the choice of the low-discrepancy sequences

The scheme presented in section 2 is based on the uniform distribution U(0, 1), whereas the numerical
tests of section 3 have been performed using a family of deterministic low-discrepancy sequences. This is a
classical approach used for Glimm’s methods or for Monte-Carlo simulations, since the uniform distribution
is a purely mathematical object that has to be approximated when turning to numerical simulations. The
convergence of the Glimm’s scheme has been studied in [11] when deterministic low-discrepancy sequences
are used instead of the uniform distribution. It has been shown in [11] that:

� the sequences have to be equidistributed in the sense that the measure of discrepancy (see in section
4.1) has to tend to zero when the length of the sequences tend to infinity ;

� the rate of convergence depends on how well the sequences are equidistributed.

In [7], a proof of convergence for a uniform distribution has been proposed for the GRU scheme, but there
is no result available when pseudo-random or quasi-random sequences are used. In this section, a numerical
investigation is carried in order to assess the counterpart for the GRU scheme of the theoretical result of
[11] obtained for the Glimm’s scheme. This numerical study is done on the basis of the test case of section
3.2 with Φ0

s as an initial condition (see equation (34)) and by using several pseudo-random or quasi-random
sequences for computing the approximated solutions of the corresponding initial condition problem.

4.1 Some quasi/pseudo-random sequences and simple metrics for assess-
ing their quality

A wide range of low-discrepancy sequences and pseudo-random sequences have been proposed in the lit-
erature and it is not possible to be exhaustive here. Hence, we only consider in this section four classical
low-discrepancy or pseudo-random sequences: the Halton-Van de Corput sequences (reader can refer to
appendix 6.3 for details), the Hammersley sequences, the Linear Congruential Generator (nicknamed LCG
in the following) and the standard pseudo-random generator of the C library (stdlib.h). It should be noted
that the C pseudo-random generator is a LCG with specific choices of parameters that ensure that values
of the sequences are not repeated. It will be nicknamed rand() in the following. Practical information on
the computation of the Hammersley and Halton-Van de Corput sequences can be found for instance in [14],
and the LCG method is widely studied in [12].

All these methods involve a set of parameters, different sets of parameters leading to different sequences.
This point has already been noticed in section 3 for the Halton-Van de Corput sequences. In order to limit
the number of computations, we restrict here to particular choices for these sets of parameters. The Ham-
mersley sequence used in the following is the 2D sequence, s = 2, for p1 = 2 when considering the notation
of [14]. Only the first component of the sequence has been kept for our purpose. The LCG is used with the
multiplier λ = 1, the modulus m = 1 and with the increment chosen as the golden ratio r = (

√
5 − 1)/2.

This set of parameters is known to lead to a sequence with a good quality for the LCG. At last, for the
Halton-Van der Corput sequence, the classical parameters k1 = 5 and K2 = 3 have been retained here.

The first 100 elements of these sequences are plotted in figure 13. A first obvious remark is that for the
rand() sequence the points visually seems less well distributed in the plot. Moreover, for the LCG and the
Halton-Van der Corput sequences, some sets of points are almost aligned. Some objective metrics are then
needed to estimate the quality of these sequences. We focus in this section on four criteria among many
others [12, 6]. Let us assume that we have a sequence X = (Xi)i=1..N with ∀i, Xi ∈ [0, 1]. The average
value and the variance of the sequence X are respectively defined as:

X =
1

N

N∑
i=1

Xi and σ (X) =
1

N

N∑
i=1

(Xi −X)2.

It is recalled that the mean and the variance for the uniform distribution U(0, 1) are respectively equal to
1/2 and 1/12. The following criteria are then defined for all these sequences.

� The mean criterion is: εmN (X) =
∣∣X − 1

2

∣∣.
� The variance criterion is: εvN (X) =

∣∣σ(X)− 1
12

∣∣.
� The star-discrepancy reads:

D∗N (X) = sup
I∈I(0,1)

∣∣∣∣ A(I,X)

N
− |I|

∣∣∣∣ , (43)

where I(0, 1) corresponds to the set of all the intervals of the form [0, b] with 0 ≤ b ≤ 1. For any
interval I = [0, b], |I| = b is its Lebesgue measure. The quantity A(I,X) is the number of elements of
the sequence X that belong to the interval I.

� The auto-correlation with one shift is defined if σ(X) 6= 0 as:

Corr1
N (X) =

1

σ (X)

∑N
i=2

(
(Xi −X)× (Xi−1 −X)

)
N − 1

.
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We use here the star-discrepancy defined by (43) for the sake of simplicity. It is indeed more easy to compute
that the discrepancy DN (X) for which the set of intervals I(0, 1) in definition (43) is replaced by the set
of the intervals of the form [a, b] with 0 ≤ a < b ≤ 1 . Moreover, some bounds on the discrepancy can be
obtained from the star-discrepancy:

D∗N (X) ≤ DN (X) ≤ 4 D∗N (X),

when considering one-dimensionnal sequences, see [6] for instance. A sequence is equidistributed if the dis-
crepancy tends to zero as N tends to +∞.

These four criteria are plotted in figures 14 and 15 for sequences that contain up to 1000000 elements. For
the Halton-Van der Corput, the Hammersley and the LCG sequences, the mean criterion and the variance
criterion tend to zero when N tends to +∞ whereas it decreases very slowly for the sequences obtained by
rand(). On the contrary, it should be noted that the three former sequences have almost constant auto-
correlations which are respectively equal to −0.452, −0.714 and −0.416. They have thus not been plotted in
figure 14. The difference between the rand() sequence on the one hand and the three other sequences on the
other hand is clearly exhibited by these figures. The rand() sequence is a pseudo-random sequence that is
built for providing a low auto-correlation. The latter clearly tends to zero when N increases and it is always
lower than for the three other sequences. This mimics the independence of two tries for a uniform distribu-
tion. On the contrary, the three other sequences are quasi-random sequences for which the equidistribution
property is the most important feature. It can be observed in figure 15 that the rand() sequence has a very
large discrepancy with respect to the three other sequences. Up to N ∼ 120000 (i.e. ln(120000) ∼ 11.7), the
star-discrepancy diminishes with a small slope, and it remains always greater than that of the three quasi-
random sequences. These three sequences behave similarly for the star-discrepancy. In particular, it is very
low even for the short sequences (i.e. for small values of N), which is an important point (see also section 4.2).
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Figure 13: First 100 elements of the sequences used in the present work.
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Figure 14: Mean criterion, variance criterion and auto-correlation for the different
sequences with respect to ln(N) (N is the length of the sequence). A ln-scale is
used for the mean and variance criteria. The auto-correlation for the Halton-Van der
Corput, Hammersley and LCG sequences are almost constant respectively equal to
−0.452, −0.714 and −0.416. They have thus not been plotted here.
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4.2 Comparison of the results for several families of sequences

In the previous section, the quality of the different sequences have been examined. In this section, the
influence of this quality on the simulation results with the GRU scheme is studied. For that purpose, we
consider the test case of section 3.2 with a non-vanishing non-uniform velocity field (set of parameters (i))
and the function Φ0

s defined by (34) as an initial condition. For this test case, the approximated solutions
obtained by using the four sequences described in section 4.1 are compared in terms of the error ε(∆x)
defined by equation (36).

In figure 16, approximated solutions have been plotted for a mesh with 200 cells. It can be observed that
the results obtained with the rand() sequences (for several seeds) is not as good as the results for the three
other sequences. The convergence curves for the error ε(∆x) is plotted in figure 17. It should be noted that
for the rand() sequences and for the Halton-Van der Corput sequences, the convergence curve for a single
sequence can fluctuate, as already shown in section 3. In figure 17, the convergence curves for these two
famillies of sequences have been averaged over 28 sets of parameters in order to reduce these fluctuations.
The convergence curve clearly highlight that rand() generator provides sequences with a poor quality for the
GRU scheme. Both accuracy and convergence rate are degraded when using rand(): the classical upwind
scheme even performs better than the GRU step associated to the upwind scheme. On the contrary, for the
three other quasi-random sequences, an effective convergence rate close to 0.85 is observed together with a
very good accuracy. These three sequences provide very similar accuracy.

In section 4.1, it has been remarked that the star-discrepancy for rand() remains high for sequences with
less that ∼ 120000 elements (i.e. see figure 15 with ln(120000) ∼ 11.7) and is slightly improved for larger
sequences. For the test case used here, due to CFL number of 0.45 and to the final time of the solution,
a mesh that contains ∼ 64000 cells requires ∼ 120000 time-iterations and thus a sequence of ∼ 120000
elements. Hence, to go beyond the limitation mentioned above for the discrepancy, the simulations with
rand() have been performed up to 256000 cells (i.e. ln(256000) ∼ 12.46). No noticeable improvement of the
convergence curve is observed for these finest meshes. Indeed, even with a sequence containing more than
120000 elements, the 120000 first time-iterations are performed thanks to a sequence with a poor discrep-
ancy. It seems that this “pollution” of the approximated solution on the first time-iterations impacts deeply
the quality of the latter even afterwards. The Halton-Van der Corput, Hammersley and LCG sequences have
a good star-discrepancy from the very first elements as shown by figure 15 (in figure 18 the star-discrepancy
of Halton-Van der Corput sequences has been plotted on coarser meshes). This seems to be an important
feature for the GRU scheme to be accurate.
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Comparisons of app. sol. for different sequences - 200 cells

Figure 16: Approximated solutions obtained for the test case with Φ0
s as an initial

condition and a non-vanishing non-uniform velocity field (set of parameters (i)).
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Figure 17: Convergence curves for several sequences. The results obtained with the
Halton-Van de Corput and the rand() sequences have been averaged over several sets
of parameters. The convergence curve for rand() has been computed up to 256000
cells.
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4.3 A short analysis of the results for the Halton-Van de Corput se-
quences

As mentioned in the sections above, the Halton-Van der Corput sequences exhibit fluctuations of the error
with respect to the mesh size and to the choice of the parameters involved in these sequences. In figure 18,
the results for each Halton-Van der Corput sequence in V(8) are plotted with respect to the length of the
sequence N , which is directly linked to the number of iterations and thus, through the CFL number and tend,
to the mesh size ∆x. The error ε(∆x) is shown on the left and the star-discrepancy is shown on the right
for the same values of the length N . The decrease of the star-discrepancy with respect to N has a higher
slope than the decrease of ε(∆x). In that sense, the convergence of the sequence towards an equidistributed
sequence is faster that the convergence of the approximated solutions towards the exact solution when N
increases. Hence, the former may not be a limitation for the latter.

5 6 7 8 9 10 11
ln(N)

-9

-8

-7

-6

-5

-4

-3

ln
(e

rr
o
r)

H-VdC (5,3)

H-VdC avg.

other H-VdC (K1,K2)

slope -0.85

Convergence curves for sinus initial condition
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Figure 18: Convergence with respect to the length of the sequence N for the Halton-
Van der Corput sequences of V(8).
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5 Conclusion

In this work, an extension of the GRU step [10] has been proposed. It was first restricted to the advection
of Heaviside functions and the extension tested here allows to apply this stochastic projection step to the
advection of any scalar quantity. Some properties or behaviors of the GRU projection step have been studied
when coupled to an Upwind-like scheme for the prediction step. In particular, it appears that this scheme
ha s a very low level of numerical diffusion. One of the origin of this behavior lies in the fact that between
two time-iterations the scheme does not create intermediate values. The approximated solution at iteration
n+ 1 is built by choosing each cell-value among the cell-values of the approximated solution at iteration n.
This particularity make the GRU scheme very close to the Glimm’s scheme, even if the former is rectricted
to scalar advection. One major consequence and advantage of this feature is that the discontinuities in the
approximated solutions are computed very accurately. On the other hand, one main drawback of the method
could be that it is not conservative for a single realization (i.e. one quasi-random sequence), but it is only
statistically conservative.

The numerical tests of section 3 clearly show that the GRU step largely improves the accuracy of the ap-
proximated solutions when compared to the sole Upwind scheme. As expected, a convergence rate close to 1
(the effective convergence rate is around 0.82, as in [10]) has been retrieved for piecewise regular functions in-
volving discontinuities. This rate of convergence is higher than that of more classical first-order finite-volume
scheme, which is in general around 1/2 for weak solutions. The interest of the whole scheme is meaning-
ful if one consider that the implementation of the GRU step is very easy. It corresponds to a projection
step that can be added after an existing prediction step, and that only involves a cell and its neighboring cells.

From section 4 it arises that the sequences used in a numerical point of view to mimics the uniform dis-
tribution must be low-discrepancy sequences. For these quasi-random sequences the low level of discrepancy
simulates the independance of the uniform distribution even if they exhibit a high level of auto-correlation.
This has been numerically observed for the GRU scheme in section 4 and a theoretical result of convergence
with deterministic sequences should be investigated on the basis of [7]. Such a theoretical result was obtained
for the Glimm’s scheme in [11].

At last, let us mention some further investigations. First, if a proof of convergence has been proposed in
[7] in the case of Heaviside functions, it should be possible to extend this proof to the scalar case, at least
for simple one-dimensional configurations. Furthermore, one of the feature of the GRU step with respect to
the Glimm’s scheme is that it can be applied for 1D, 2D or 3D domains. Actually, the GRU step extends
easily to 2D and 3D domains and its implementation remains very easy even for multi-processor computing.
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6 Appendices

6.1 A more general result for the statistical consistency of the GRU step

Let us assume that the prediction step is achieved thanks to a three-point scheme that can be written:

φn+1,∗
i = Gi(φni−1, φ

n
i , φ

n
i+1).

This prediction step is supposed to be such that φn+1,∗
i ∈ [φni,m, φ

n
i,M ]. Let us also assume that the random

number wn is chosen accordingly to a probability density function w ∈ [0, 1] 7→ f(w), and that the threshold
projection in cell i is still defined by (9). The projection step then gives the transitional probabilities (11)
with:

αn,∗i =

∫ 1

δni

f(x)dx = 1−
∫ δni

0

f(x)dx, (44)

where:

δni =
φn+1,∗
i − φni,m
φni,M − φni,m

if φni,m 6= φni,M , and δni = 1 otherwise.

A necessary condition to get the statistical consistency is that the expectation of φn+1
i knowing (φnj )j has

to be equal to φn+1,∗
i :

E(φn+1
i |(φnj )j) = φn+1,∗

i . (45)

Thanks to the definition of the GRU step, we have here:

E(φn+1
i |(φnj )j) = αn,∗i φni,m + (1− αn,∗i )φni,M , (46)
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therefore, using relations (45) and (46), the necessary condition to get the statistical consistency reads:

αn,∗i φni,m + (1− αn,∗i )φni,M = φn+1,∗
i , (47)

Let us now assume that φni,m 6= φni,M , so that the equality (47) implies that:

αn,∗i = 1− δni ,

or using definition (44) for the quantity αn,∗i :

δni =

∫ δni

0

f(x)dx. (48)

A first important result is that the only density probability f that fulfills (48) for all δni ∈ [0, 1] is the density
probability of the uniform distribution U(0, 1), that is f(x) = 1 ∀x ∈ [0, 1]. We thus assume from now that
f denotes the density function for U(0, 1), so that we have:

E(φn+1
i |(φnj )j) = φn+1,∗

i = Gi(φni−1, φ
n
i , φ

n
i+1) (49)

By integrating expectation (49) over all the possible sequences (φnj )j , we obtain:

E(φn+1
i ) = E(Gi(φni−1, φ

n
i , φ

n
i+1))

If the function (x, y, z) 7→ Gi(x, y, z) is linear for all i, we then have:

E(φn+1
i ) = Gi(E(φni−1), E(φni ), E(φni+1)), (50)

which gives the statistical consistency of the projection step with the prediction step. The following result
can thus be stated if the prediction step is achieved using a three point linear scheme that preserves mono-
tonicity: a necessary condition for the GRU step to allow to get the statistical consistency with
the prediction step in the sense of relation (50) is that it has to be performed using a uniform
distribution on (0, 1).

The condition stated above is necessary and not sufficient. The particular case φni,m = φni,M is not studied
here in details, but it should be noted that it implies additional constraint for the statistical consistency. In
particular, the scheme Gi has to be defined in agreement with the GRU step. For instance, the statistical
consistency can be lost when using the GRU step defined in section 2.1.2 and the Lax-Friedrichs scheme for
the prediction step.

6.2 A class of analytical solutions for the 1D convection problem with
non-uniform velocity and density

We propose here a very simple class of analytical solution for system (1) on the domain (t, x) ∈ [0, T0]× [0, 1],
with a bounded final time T0 > 0. This class of solutions possesses non-uniform but regular profiles for the
density (which is non-negative) and for the velocity, and the scalar field φ can be piecewise continuous.
When considering regular density and velocity, the first equation of (1) can be written:

∂t (ln(ρ)) + U ∂x (ln(ρ)) + ∂x (U) = 0. (51)

Since system (1) is based on two equations and three unknowns, we can specify one among this unknown.
If the density ρ is chosen such that:

ρ(t, x) = e(R0 (x+B0 t)), (52)

where R0 and B0 are uniform and constant, then through equation (51) the velocity must fulfill:

∂x (U) +R0 (U +B0) = 0. (53)

Equation (53) can obviously be exactly integrated on [0, T0]× [0, 1]. It yields:

U(t, x) = U(t, x = 0) e(−R0x) −B0

(
1− e(−R0x)

)
. (54)

Let us assume that the velocity U(t, x = 0) does not depend on time: U(t, x = 0) = U0, so that the velocity
(54) does not depend on time. If (1 + U0/B0) > 0, the velocity vanishes for a unique abscissa x̃ defined by:

0 = U0 e
(−R0x̃) −B0

(
1− e(−R0x̃)

)
⇐⇒ x̃ =

1

R0
ln (1 + U0/B0) . (55)

We also assume that the initial profile of the scalar field is defined by a function φ0 which is piecewise
continuous:

φ(t = 0, x) = φ0(x), (56)

According to system (1), and since both ρ and U are regular, the solution for φ with initial condition (56) is
advected with the velocity U . Let us consider a fluid particle which is located at x0 at time t = 0. Provided
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that the velocity does not vanish for t ∈ [0, t∗], this fluid particle is located at time t∗ at the abscissa x∗

given by the relation:

t∗ =

∫ x∗

x0

dx

U(x)
. (57)

It should be emphasized that relation (57) holds because the velocity does not depend on time. The velocity
(54) can be written in the form: U = b + e(ax), and the integral in (57) can thus be exactly expressed.
Indeed, we have: ∫ x2

x1

dx

b+ e(ax)
=
−1

ab
ln

(
1 + be(−ax2)

1 + be(−ax1)

)
,

which leads through (57) to the following expression of x0 as a function of t∗ and x∗:

x0(t∗, x∗) = x∗ +B0t
∗ +

1

R0
ln
(

1− (1 + U0/B0) e(−R0x
∗)
(

1− e(−R0B0t
∗)
))

. (58)

Hence, if U0 and B0 are chosen so that the velocity never vanishes, the solution for the scalar field is:

φ(t, x) = φ0(x0(t, x)), (59)

where the position x0(t, x) is given by relation (58). When the velocity field vanishes at a point x̃, solution
(59) defined by characteristic curve (58) has to be defined following the same way but by considering sepa-
rately the domains x < x̃ and x > x̃.

In figure (19), three different analytical solutions are plotted on [0, 1]. These solutions are used in section
(3.2) for assessing the behavior of the numerical schemes. The first two solutions on the left of figure (19)
correspond to solution with a vanishing velocity at x̃ = 1/2.
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Figure 19: Three analytical solutions. Left: dilatation of the scalar profile with a
vanishing velocity at x̃ = 1/2, middle: compression of the scalar profile with a van-
ishing velocity at x̃ = 1/2, right: compression of the scalar profile for a non vanishing
velocity.

6.3 Computing a Halton-Van der Corput sequence

In the numerical tests the random number ωn introduced in the GRU step has been replaced by using
(K1,K2) Halton-Van der Corput sequences. These are low discrepancy sequences on (0, 1). The parameters
of the sequence, K1 and K2, are two integers relatively prime and such that K1 > K2 ≥ 3. The nth element,
ωn, of the sequence is computed using the following algorithm [13]:

ωn =

m∑
i=0

AiK
−(i+1)
1 ,
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with:

Ai = rem(K2ai,K1) and n =

m∑
i=0

aiKi,

and where rem(a, b) is the remainder of the division of a by b.
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