
HAL Id: hal-04053780
https://hal.science/hal-04053780v1

Submitted on 31 Mar 2023 (v1), last revised 11 May 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Object Versioning in the Presence of File-based Version
Control Systems

Tobias Pape, Jakob Reschke, Patrick Rein, Fabio Niephaus, Marcel Taeumel,
Robert Hirschfeld

To cite this version:
Tobias Pape, Jakob Reschke, Patrick Rein, Fabio Niephaus, Marcel Taeumel, et al.. Object Ver-
sioning in the Presence of File-based Version Control Systems. International Workshop on Smalltalk
Technologies, Aug 2019, Koln, France. �hal-04053780v1�

https://hal.science/hal-04053780v1
https://hal.archives-ouvertes.fr

Tracking Objects
Object Versioning in the Presence of File-based Version Control Systems

Tobias Pape

Software Architecture Group

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

tobias.pape@hpi.uni-potsdam.de

Jakob Reschke

Software Architecture Group

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

jakob.reschke@student.hpi.uni-

potsdam.de

Patrick Rein

Software Architecture Group

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

patrick.rein@hpi.uni-potsdam.de

Fabio Niephaus

Software Architecture Group

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

fabio.niephaus@hpi.uni-

potsdam.de

Marcel Taeumel

Software Architecture Group

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

marcel.taeumel@hpi.uni-

potsdam.de

Robert Hirschfeld

Software Architecture Group

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

ABSTRACT
Version control reduces the risk of changing their software

and allows them to manage different configurations and to

collaborate with others. Most version control systems track

files but some programming environments such as Smalltalk

do not operate on files, but on objects instead.

Specialized version control systems, such as the ones avail-

able for Smalltalk systems, focus on a small subset of objects

that can be versioned. Most of these systems concentrate on

the tracking of methods, classes, and configurations of these.

To improve the situation for version control of arbitrary

objects, we propose a framework for tracking, converting,

and storing of objects. It allows version of objects to be stored

in an exchangeable, existing backend version control system.

In particular, we describe a generic way for capturing and

restoring that supports most kinds of objects.

The proposed architecture is evaluated through a proto-

type implementation that can be used to track arbitrary ob-

jects in Squeak/Smalltalk.

Permission to make digital or hard copies of all or part of this work for

personal or classroomuse is grantedwithout fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

IWST, August, 2019, Cologne, Germany
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

The prototype improves the suboptimal standing of user

objects with respect to version control and simplifies some

version control tasks for classes andmethods aswell. Thereby,

it supports collaboration not just on source code artifacts but

also on living object graphs.

CCS CONCEPTS
• Software and its engineering → Software configura-
tion management and version control systems; Classes
and objects; Integrated and visual development environments.

KEYWORDS
Version control, Object-oriented programming, Exploratory

programming, Serialization

ACM Reference Format:
Tobias Pape, Jakob Reschke, Patrick Rein, Fabio Niephaus, Marcel

Taeumel, and Robert Hirschfeld. 2019. Tracking Objects: Object

Versioning in the Presence of File-based Version Control Systems.

In Proceedings of IWST. ACM, New York, NY, USA, 18 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Version control is an established practice for source code

since at least the 1970s [22]. Version control systems (vcss)

typically manage files, as most programming systems use

files to store the source code of programs. However, since

source code files seldom convey the current state of a run-

ning system, such as its objects, those entities are hard to

track with conventional vcss. Yet, using systems that built

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

IWST, August, 2019, Cologne, Germany Tobias Pape, Jakob Reschke, Patrick Rein, Fabio Niephaus, Marcel Taeumel, and Robert Hirschfeld

upon a model of long-living state, such as image-based pro-

gramming systems like Smalltalk and Self, database-oriented

systems, or live- and exploratory programming systems, can

lead to a split experience. The system’s source code can be

put in a vcs, enabling safe changes, easy sharing, and recov-

ery of code from earlier versions of a program. The systems’s

state, however, can hardly be versioned because it does not

easily fit into files. Developers who wish for the benefits of

vcss for state have to e.g. serialize state to source code or

separate files, and manage the loading of it.

When objects must be converted before they can be put

under version control, sometimes there are multiple options

of how this can be done. For any given purpose, there are typ-

ically multiple file formats in use and multiple perspectives

from which an object could be modeled.

Version control supports collaboration.When peoplemake

changes to their local copies of a system simultaneously, con-

temporary version control tools support users in managing

different streams of development (branches). Internet plat-

forms such as GitHub1 have made collaborative, distributed

development of software easier.

We want to provide support for collaboration on artifacts

that are not text, or files, but arbitrary objects built in an

exploratory programming such as Squeak/Smalltalk. We pro-

pose a version control solution for arbitrary objects that

works on top of an established vcs to promote platform

reuse.

Contributions. We present an architecture to put arbitrary

objects under version control. It allows for customization of

how versions of objects are represented and how they could

be stored in files, so the most suitable representation can be

chosen. The storage of versions is delegated to a backend

version control system, so existing systems can be used for

their maturity and familiarity to users, and their platforms

can be reused for their utility and to save costs.

Further, we present an overview of an implementation of

this architecture in Squeak/Smalltalk and discuss its features

and limitations.

We do not propose a solution for synchronous collabo-

rative editing of objects. That is, the proposed architecture

assumes that the users of the exploratory programming en-

vironment need to synchronize their changes to objects ex-

plicitly.

Structure of this work. In the following section (section 2)

we illustrate basic considerations when providing vcs for

objects. We present our architecture for putting objects un-

der version control based on established vcss (section 3). We

illustrate our implementation prototype in Squeak/Smalltalk

(section 4) and discuss its merits and limitations (section 5).

1
http://github.com (last accessed June 10, 2019).

Finally, we discuss related approaches (section 6) and con-

clude the paper (section 7).

2 BACKGROUND
In this section we will first illustrate the challenges of object

version control by looking at two existing approaches. We

then explicate our goals for a vcs for objects in general.

Further, we motivate our approach of basing the vcs on

an established system in order to ease collaboration. Finally,

we describe a set of options the system should provide to

users according to previous work.

Due to the large variety of vcs today, a variety of terms

and concepts exists. In order to clarify our interpretation of

these terms we collected and explained them in Appendix A.

2.1 Challenges of object versioning
In Self, objects are transferred from one image to another

via the Self Transporter [30]. There are no classes in Self.

Objects implementations are reused as prototypes, like in

JavaScript. The prototype objects are fully-capable objects

themselves, which blurs the gap between meta-objects and

“actual instances”. For this reason, the Self Transporter can

transport any object. It does so by traversing a graph of ob-

jects— guided by annotations to objects and slots to fill in

information about user intentions— and writing files that

contain Self source code expressions that rebuild the cap-

tured object graph when evaluated. The serialization format

is therefore text-based and general enough to describe arbi-

trary objects, but it is specific to the Self language. Objects

can be exchanged with file-based vcss, like Smalltalk file

outs, but the version control system is not integrated in the

Self environment.

The Lively Kernel environment comes provides its users

with an exploratory programming environment for JavaScript

entirely inside the web browser [8]. Lively components can

be shared via a parts bin that uses Subversion for version con-
trol and publishing. On top of that, version control features

like difference detection and merging have been integrated

into the Lively Kernel environment [1, 11]. It employs a se-

rialization based on JavaScript Object Notation (json) with

support for object graphs (with cycles) and instance-specific

behavior (i.e. functions that do not belong to a class). This is

an elaborate solution for version control of arbitrary objects,

but the serialization format is still not adaptable.

All of the systems described above have in common that

objects and their meta-objects (e.g. classes and prototypes)

and the programming tools live in the same environment.

More technically, the tools and manipulated objects share

a single execution environment. This is different from pro-

gramming environments for languages like C, Java, or Python,

where the execution of the program under development is

2

http://github.com

Tracking Objects IWST, August, 2019, Cologne, Germany

usually short-lived in comparison to the programming envi-

ronment: during a programming session, the source code is

repeatedly compiled and run for testing or debugging. This

entails a strong separation of software artifacts from the rest,

and the ubiquitous use of the file system as a medium of data

exchange between the two.

In contrast, loading equivalent software artifacts into a

programming environment such as Squeak/Smalltalk can

have immediate side effects. Checking out a class for a Java

program will replace a single file of source code and any

running programs will not be affected by that change un-

til restarted. Checking out a class in Smalltalk does imply

changing an existing class definition and possibly compiling

some methods, immediately affecting all existing instances

of that class. This is a fundamental difference between track-

ing live objects and tracking source code. Our vcs for objects
has to account for that difference.

2.2 Goals for a new version control system
for objects

Our goal is to put arbitrary objects under version control,

not only meta-objects related to source code. To achieve this,

source code and meta-objects should be strictly regarded

as a special case of objects to be versioned. The diversity

of domain objects and their possible repertoire of suitable

data exchange formats should be accounted for by separat-

ing the serialization of objects from their captured snapshot

representation. Moreover, certain version control operations,

such as the handling of differences, should also be under the

influence of domain-specific types. They may have special

requirements for an operation (e.g. to produce differences

that are at all useful for the consuming users) or the nature

of a type might offer opportunities for improvements over

a domain-unspecific, fixed set of procedures and tools. An-

other reason is that the knowledge and code about the rep-

resentation of domain objects can stay close to the domain

objects themselves. In contrast to version control via im-

port/export mechanisms version control for objects should

be controlled from inside the exploratory programming en-

vironment. This should support the construction of well-

integrated tools.

On the other hand, the new system should not prompt

for version control specific specialization too eagerly: users

should focus on their project domain and supply specifics for

version control only later in the process. An adequate solu-

tion that is already sufficient for many objects must be found.

Specializations should be optional, rather than required.

One motivation for version control is collaboration which

requires an agreement on tools and platforms for exchanging

versions. In order to lower the entrance barrier, we want to

base it on an existing wide-spread system, such as Git. Fur-

ther, sharing versioned files (or objects) usually involves a

central place to host and exchange the versioned data. While

this is not technically necessary in distributed version con-

trol systems the presence of platforms such as SqueakSource2,
GitHub, or Atlassian Bitbucket3 indicates that central reposi-
tories are very much desired. Reusing an existing vcs also

means reusing existing platforms.

Reusing a file-based vcs benefits resources that are inher-

ently stored as external files. These external files should also

be version controlled along with the artifacts resident in the

image. Support for external files becomes even more impor-

tant when multiple programming languages are used in a

software project, and the different parts are developed in dif-

ferent programming environments. Like resource files, the

primarily file-based source code must be kept synchronized

with the Smalltalk parts as part of the software configuration

management.

2.3 Diverse representations of objects
There can be many ways to represent one kind of object.

Smalltalk methods, for example, can be represented as byte

codes or source text. Capturing the former may be brittle

because the literals could change and it is specific to the

byte code set employed by the virtual machine. But restoring

a compiled method from such a snapshot could be much

faster than compiling the source code again. Some common

requirements for snapshot and serialization formats, among

which a trade-off must be made, are performance, portability

and interoperability, expressiveness and completeness (i.e.

that no information is lost), and human-readability.

The most suitable form of representation might not even

depend only on the type of object, but also on the use case

of the representation. In the compiled- method example, for

collaboration on GitHub, classes and methods are best rep-

resented in the form edited by the developers (i.e. as source

code). However, if the use case is to distribute the software

it can be more beneficial to share a binary representation for

performance reasons.

2.4 Object graphs
In general, a single object does not have an inherent meaning

on its own. Instead, what makes an object meaningful is

a graph of objects that is reachable from it. For example,

given a user interface that contains a box for text entry and

a button to accept the entered text, the form alone would not

be meaningful without the contained text box and button.

2
http://squeaksource.com (last accessed June 10, 2019).

3
https://bitbucket.org (last accessed June 10, 2019).

3

http://squeaksource.com
https://bitbucket.org

IWST, August, 2019, Cologne, Germany Tobias Pape, Jakob Reschke, Patrick Rein, Fabio Niephaus, Marcel Taeumel, and Robert Hirschfeld

On the other hand, not all objects that are reachable from

a given object might be relevant for the purpose of track-

ing this object for version control. For example, in Squeak’s

implementation of Morphic, each morph has a reference to

its containing morph, the owner. If the user chooses to track

one morph, its owner might not be relevant for versioning

the morph; the owner can change whenever the user puts

the morph into another space of the programming environ-

ment. Further, if the owner reference were always followed

unconditionally, tracking any morph visible on the screen

would mean to track the whole world of visible morphs. Con-

sequently, the developers desire to manage clear boundaries

in the object graph.

2.5 User intentions missing from object
graphs

The generalized variant of the issue raised above with the

example of morph owners has already been documented for

the Self Transporter. According to [30], the following infor-

mation is required when these objects should be transported:

• To which package a part of an object belongs (differ-

ent parts could belong to different packages): As pack-

ages are meta-objects also, we should actually assume

the reverse which is that a package is just a special

composed object which we can use as a starting point

for capturing a graph. Further, the reach of an object

must be expressible, i.e. which references should be

captured.

• Whether a reference from one object to another should

be captured as is or whether the referent should be

replaced by a different value in the transport represen-

tation: This applies for example to or strictly dynamic

objects such as caches.

• Whether a referenced object is a global object that is

assumed to be already present in the target system,

thus making it preferable to capture only a symbolic

reference to the object: This is relevant as some en-

vironments provide a fixed context which can be as-

sumed and does not have to be transported.

• Whether the identity of an object matters when it is

restored: This is especially relevant when multiple ref-

erences to the same object must be transported. If the

identity matters all these references have to point to

the same instance again. This is not relevant for value

objects for example geometric points in Squeak/Smalltalk.

• Whether an object should be recreated from an ab-

stract expression rather than from a complete snap-

shot representation: This information is particular to

the Self transporter. Since we do not want to dictate

a particular serialization format or even prescribe the

in-memory representation of snapshots for all kinds of

objects, this point can be reformulated into “[It must

be defined] whether a special type of snapshot should

be used to represent an object”.

All of these issues require that objects or whole object

graphs must be complemented by additional information,

which will be here referred to as object metadata (or only

metadata for short).

3 AN ARCHITECTURE FOR OBJECT
VERSIONING

In this section, we present our solution to track objects and

store them in existing version control systems. We describe

how object graphs can be captured and rematerialized, how

object identity can be preserved in this process, how differ-

ences between two editions of object graphs can be handled,

and how it can be supported to have different formats in

which snapshots can be stored in an existing vcs. Finally, a

generic way to capture any kind of object is presented, so

that users do not have to provide own solutions for all types

of objects they want to track.

3.1 Storing objects in versions
In order to put anything under version control from inside

of an exploratory programming environment, we require a

connector component to a version control system. It should

be able to access the version history of a repository, create

new versions, and possibly manage independent develop-

ment streams, such as branches. How this connection can be

established without focusing on a particular vcs has already

been treated by previous work. However, some assumptions

must be established on how the vcs deals with objects. This

part of the architecture is based on a subset of an abstraction

for vcs called Pur [9].

The basic concept is a version which describes a revision

of a set of objects. Versions can have any number of par-

ent versions. This relationship forms the version history in a

repository. Each version contains a snapshot of object graphs
and their associated metadata. The Pur architecture deliber-

ately does not define what a snapshot consists of because it

depends on the particular application. However, Pur defines

an entity named store that can create and restore snapshots,

updating the objects in the store. What “restore” means de-

pends on the particular type of the store. The example imple-

mentation Pur for Newspeak[9] defines two stores: an image
store to capture and load classes and methods with a snap-

shot object, and a file store to write and read snapshots to

files.

In the following sections of this section, we will further de-

fine the snapshots of our version control solution for objects

and what they must be able to do.

4

Tracking Objects IWST, August, 2019, Cologne, Germany

Figure 1: An overview of the three realms making up our architecture for object versioning.

3.2 Live objects, snapshot objects, storage
objects

The described version control objects can be categorized into

three realms. This makes communication about the different

version control objects and about crossing the boundaries of

the realms easier. The three realms are shown in Figure 1.

The objects that the users usually interact with are attrib-

uted to the live realm. Domain objects belong to this realm,

as well as their meta-objects that define their types and be-

haviors, such as classes and methods in Smalltalk. A defining

property for live objects is that they would still exist when

version control is not even attempted.

The snapshot realm contains objects that stand in for edi-

tions of objects that originally came from the live realm. Ob-

jects in the snapshot realm reside in the memory of the run-

ning programming environment, just like live objects, but

they solely exist for the purpose of version control. Objects

for differences between editions, and other objects that ex-

plicitly deal with snapshots are also attributed to the snap-

shot realm.

The third realm includes all forms of objects that are in-

tended to be stored outside of the programming environment.

This realm is be called the storage realm. But even when

snapshots from the version control were to be transferred

directly between two programming environments, the rep-

resentation “on the wire” between the two processes would

belong to the storage realm.

Converting objects between the storage and the live realm

always goes via the snapshot realm. Further, there are addi-

tional version control infrastructure objects. They deal with

objects of one particular realm or operate at the boundary

between realms, converting objects from one realm into an-

other. Examples of these are stores, versions, and repositories.

They will be attributed to the realm on which they operate

or if they operate in multiple realms, they will be attributed

to the live or the storage realm. For example, serializers that

convert snapshots to storage data are attributed to the stor-

age realm.

Finally, stores, snapshots and versions contain objects in

different forms (as indicated by the different realms), but ul-

timately they always contain graphs of objects. Therefore, at

Figure 2: External reference into a captured object
graph

a higher level of abstraction, stores, versions and their snap-

shots can share a common set of operations, such as com-

puting differences between each other. To generalize such

operations, we introduce the abstract type object container
as the union of the three concepts.

3.3 Preserving object identity across
system boundaries

In addition to the requirements for transferring objects be-

tween environments (see subsection 2.5), there are further

requirements for tracking objects for version control: if an

object already exists in a target environment, it should be

possible to rediscover it there and different snapshots of the

same object must have an identification.

Rediscovering objects in the target graph is needed to up-

date objects in-place. An alternativewould be to re-materialize

the whole object graph with new objects. This would pre-

serve object references inside the captured graph but refer-

ences from outside of the captured graph would point to the

then obsolete instances (see Figure 2). To identify objects in

different snapshots, objects are assigned names if their iden-
tity needs to be preserved, which is the default. However

some objects do not identification: value objects and objects

that can be identified in the target environment based on

their properties (e.g. a PackageInfo object in Squeak is fully

identified by its name). Such names must be globally unique,

even across the boundaries of the programming environ-

ment. They can take any suitable form but should be small,

5

IWST, August, 2019, Cologne, Germany Tobias Pape, Jakob Reschke, Patrick Rein, Fabio Niephaus, Marcel Taeumel, and Robert Hirschfeld

resilient to collisions, and independent of their object’s state

(i.e. no hash values).

3.4 Capturing and materialization of
object graphs

In this section, we describe how graphs of live objects can be

captured to create graphs of snapshot objects, and how the

inverse operation, materializing live objects from snapshot

objects, can be performed (see Figure 1).

3.4.1 Composition of version snapshots and object graphs.
The snapshot of a version or a store is a collection of object

graphs. Each graph is associated with object metadata that

saves decisions about the capturing or storage, which might

also be needed to recover the graphs properly. In addition to

that, a unique key is assigned to each graph to access it in a

snapshot.

Each object graph stores the bidirectional mapping be-

tween object snapshots and the names of their objects. Ad-

ditionally, each stores a start object, from which all other

objects in the graph can be reached. New graphs are intro-

duced to a store by telling it to track an additional start object

under a given key. The other objects in the graph are then

derived from the relationships among objects, guided or re-

stricted by the metadata that is configured in the store.

To capture the snapshot of a store, the store must enu-

merate the live object graphs that are known to it, convert

them to the snapshot realm and collect them into the overall

snapshot, together with the metadata (see Figure 3).

3.4.2 Abstract algorithm to capture object graphs. To capture
an object graph from a given start object, the graph has to

be traversed and a snapshot has to be created for each object.

All objects encountered that do not already have names from

a previous capture operation must have new names assigned

unless their identity does not matter. These names should

be persisted in the store that tracks live objects, so future

operations on the same graph of objects can look up the

named live objects if they still exist. The names are also

assigned to the respective snapshot objects, so the live object

of a snapshot object can be looked up.

The graph traversal can be realized with an exhaustive

search algorithm (e.g. breadth-first search for graphs). The

algorithm should include multiple-path pruning, so each ob-

ject is captured only once. The live objects being captured

must be able to direct the graph traversal to related objects.

When a live object is encountered during the traversal, a

message is sent to the live object to convert it into its pre-

ferred type of snapshot. This is the opportunity for a live

object to decide that it should be replaced in the snapshot

graph by another object (e.g. by a symbolic reference to it-

self).

Live objects that know that they are the root of a suffi-

ciently independent subgraph could also decide to start an-

other graph traversal that works differently (see Figure 4).

Theymust also respect themultiple-path pruning of themain

traversal. If the snapshots of the objects in this subgraph

should be registered normally (with object names) in the

snapshot graph that is built by the outer graph traversal, a

way to pass the inner snapshots out to the main graph must

be implemented. Alternatively, the aim of the separate traver-

sal might be to encapsulate the results in a single snapshot

object.

Live objects (and objects involved in the capturing tra-

versal) must further be able to access the object metadata,

so gaps of missing information can be filled with this meta-

data. For example, when one attribute of an object should be

captured with a default value instead of the actual value.

There might be more than one way to capture one type of

live object. For example, a CompiledMethod in Smalltalk could

be captured through source code or as compiled byte code.

To support choosing a different type of snapshot than the

one the object prefers, it must be possible to specify this in

the metadata associated with the object. Further, either the

graph traversal or the live object itself has to respect the

override.

3.4.3 Abstract algorithm to materialize object graphs. Con-
verting snapshots to live objects can also be realized with

a traversal of the snapshot object graph, starting from the

snapshot of the start object. As during capturing, each object

should only be rematerialized once.

When a snapshot is to be materialized, a message is sent

to it to convert it back to its original live object. Depending

on the kind of snapshot this may involve, for example, cre-

ating a new instance of the type of the captured object, or

compiling source code. If the live object had itself replaced

by another during capturing, the replacement object will be

rematerialized instead. To get the original live object back,

anothermessage is sent to thematerialized object, essentially

telling it to “bring itself back to live”. A symbolic reference to

a globally accessible object would at this point resolve itself

and return this global object. Live objects can also perform

other post-materialization tasks, such as notifying observers

of changes.

When snapshots are materialized, it is possible that a live

object already exists (i.e. there is a live object with the same

name). In this case, the snapshot object should be instructed

to materialize itself into the existing live object if possible.

This ensures that references to the live object do not become

stale by materializing a new live object.

6

Tracking Objects IWST, August, 2019, Cologne, Germany

Figure 3: Example setting for object graphs, start objects, and object names. The store captures all objects that are
reachable from its known start objects.

Figure 4: Different graph traversal strategy for a sub-
graph. Line styles indicate possibly very different re-
lationships among the objects in the subgraph (e.g.
pointers, naming conventions)

3.5 Differences between snapshots
After having described how objects can be converted be-

tween the live realm and the snapshot realm, in this section

we motivate the need for differences between graphs, de-

scribe how they can be detected independent of a particular

application domain, and how these differences can be applied

to object graphs.

3.5.1 About the importance and granularity of differences.
Differences are important, not only for the users to con-

sume, but also for optimizing certain operations. For exam-

ple, when a new version is to be saved, first computing the

differences between the working copy and its parent version

makes it possible to ignore all unchanged objects. The un-

changed objects may not need to be serialized again and can

be reused for caching of the newly created version. Assuming

that only a small part of a system changes between versions,

processing only the differences can mean that fewer objects

must be processed overall.

Implementing differences requires additional implemen-

tation effort (in comparison to building a purely snapshot-

based system). But the effort can be worth it for both the

user experience and the performance of the version control

system.

There are multiple levels at which differences can be com-

puted.

(1) At the object container level: Which object graphs

have changed?

(2) At the object graph level:Which objects have changed?

(3) At the object level: Which parts of an object have

changed?

3.5.2 Abstract detection of differences. The specific struc-

ture of differences depends on the structure of the snapshots.

However, the structure of collections of differences in an

object graph and the structure of differences between ob-

ject containers can be generalized. The general principle of

detecting changes is described in this section.

An object graph is defined by its start object and contains

a mapping between names and object snapshots. Thus, the

differences between two object graphs can be expressed as

the differences between the start objects plus the differences

for any objects with the same name.

To collect the differences for the snapshots, we can per-

form a simultaneous graph traversal in the the graphs of

snapshots that should be compared. One of the graphs is

the left-side graph, containing snapshots “before” certain

changes that should be detected, the second is the right-side
graph, which captures the situation “after” the changes, and

an optional third graph would be the base graph, which

7

IWST, August, 2019, Cologne, Germany Tobias Pape, Jakob Reschke, Patrick Rein, Fabio Niephaus, Marcel Taeumel, and Robert Hirschfeld

Figure 5: Two graphs being compared, currently in-
specting a particular relationship from the two edi-
tions of the object named A. In graph 1, B is at the end
of this relationship; in graph 2, it is a different object
C. B from graph 1 andC from graph 2 are the referents
in this relationship, while A from graph 1 and A from
graph 2 are the referrers. The change in name from B
to C means that the two captured editions of A relate
to different objects.

contains snapshots from the base version of a merge, or

more generally the base version of a three-way difference of

graphs.

Assume two graphs that contain different snapshot con-

tents for some names. Beginning from the snapshots of the

start objects in each graph, two snapshots are compared in

each step. The determination of the local differences (i.e.

changes that apply to one object) is up to the implementa-

tion of the snapshots being compared because they know

their structure best. The result of the comparison must be

some kind of differences object. We assume that the compar-

ison will somehow iterate over the relevant relationships of

the snapshot object (the “referrer”) and that the other ends

of these relationships (the “referents”) may need to be com-

pared among the two graphs again (see Figure 5).

Depending on the names of the referents, three situations

can arise:

First, if the referent snapshots have the same object name,

then the referrer object is in relation with the same object

in both graphs. This means that this relationship has not

changed. The referents must then be compared in a subse-

quent traversal step to detect differences deeper in the graph.

Second, if the referents have different names, then the re-

lationship has changed and, thus, a difference for the referrer

exists. While users might be interested in the differences be-

tween these distinct referent objects, this comparison does

not make sense in general, e.g. when two of the referents

are of completely unrelated types.

Third, if one of the referents has no object name, meaning

that the identity of the captured object is not tracked, further

information is needed. If it is a snapshot of an immutable

value object, then the difference applies to the referrer. If it

is a snapshot of an object that should be mutated and that

supports fine-granular differences in both graphs then there

is no difference for the referrer.

If a three-way difference is computed and there are three

different names for the snapshots in a set of referents (or two

names and one nameless snapshot), then the relationship

was changed both from the base to the left-side and from

the base to the right-side, but to different objects. This is a

conflict in the referrer and must be appropriately recorded.

When the referent from the right-side graph does not have

a corresponding snapshot in the left-side graph, a new object

has been introduced to the graph. This must be noted in the

differences so it could be added to a graph to which these

differences should be applied. If there is a difference for the

referenced object, then it will be recorded under this name

anyway. For the case when an existing object from the left-

side graph can only be reached via the added object in the

right-side graph, the relationships of the added object must

be followed (see Figure 6). For each referent with a name that

already exists in the left-side graph, the difference traversal

must continue with these same-named snapshots from either

side.

If a three-way difference is computed and a name can

be found via this mechanism in the left-side and right-side

graph, but not in the base graph, then the same object was
added in both changes from the base. Any differences be-

tween the two sides are then automatically conflicts.

If the right-side graph does not contain an object from

the left-side graph, that object has been removed from the

graph. We can detect this by marking each name in the left-

side graph which we have also seen in the right-side graph.

All unmarked objects at the end of the traversal have been

removed. Whether the removal should be noted in the differ-

ences depends on how the store to which these differences

should be applied behaves. It does not need to be noted if

simply removing references to the removed object is suffi-

cient (e.g. when automatic garbage collection is used). It is

also safe for uncaptured objects (outside of the graph) that

refer to the object that has been “removed” from the cap-

tured graph. In case the store has to take care of the deletion

itself (e.g. files on disk may not be deleted automatically),

the removal of an object should be noted explicitly in the

differences.

When one snapshot is told to compare itself to another, the

snapshot implementation can decide to start an own graph

traversal for differences.

3.5.3 Abstract application of differences. Applying differ-

ences relates to detecting differences like materialization re-

lates to capturing. But since the differences between two

snapshot graphs are made up of the collection of differences

8

Tracking Objects IWST, August, 2019, Cologne, Germany

Figure 6: Two graphs being compared. In the right graph an object C has been added and it replaces B at the end
of the reference x from A. B can only be reached from A via C in the right graph. The changes to B are “hidden”
behind the added object. The difference detection graph traversal must therefore follow the relationships of C or
it will not detect the changes in B.

to named objects (as defined above), no further object graph

traversal is needed this time. Instead, the individual differ-

ences must simply be applied to their respective objects in

the left-side graph.

Sometimes, objects appear in the right-side graph that do

not exist in the left-side graph. In this case, these objects have

been added and this addition must be reproduced when the

differences are applied.

If a store on live objects implements the application of

differences and new objects must be created, they must be

materialized similar as described in subsubsection 3.4.3, but

with a variation. If a materialized object refers to another

named object, this referent object must be looked up in the

target graph as usual. But if it already exists, it does not need

to be materialized (which would be the case in the abstract

materialization algorithm above). Instead, only the reference

to this object must be materialized in the referrer, while the

existing referent object is only subject to a change if there is

an own difference for it.

3.6 Storing objects outside of the
programming environment

Objects eventually have to leave the programming environ-

ment to the storage realm, in order to be shared with other

programmers or authors.

When snapshots are exported from the programming envi-

ronment, they must be converted into a representation that

suits the target storage. Snapshots might have more than

one form of representation. For example, a snapshot of a

formatted text could be converted into Markdown or some

specialized Extensible Markup Language (xml) format. For

some objects, users maywant to have control over the export

format, but for others, they might not care.

We note that there can be a variety of storage strategies for

each snapshot type. These strategies are represented through

serializers and deserializers. Serializers convert graphs of snap-
shots into storage objects (e.g. files), and deserializers should

do the inverse. Snapshot types should define a preferred seri-

alizer that is generally suitable for the objects they represent.

For example, character string snapshot could refer to a seri-

alizer that outputs the text in Unicode-encoded text files.

The serializer used for a graph of objects must be recorded

in the object metadata because users may have chosen a

different serializer. Deserializers should be able to answer

the question “Can you read the output of this serializer?”,

so a store can choose a suitable deserializer based on the

information about the serializer.

Because the object metadata must be accessible before the

correct deserializer is known, the format of the metadata

must be determined by the store.

A store must therefore perform the following steps to se-

rialize an object graph:

(1) Look up the serializer according to the metadata, if

none is defined use the preferred serializer of the start

object and add that information to the metadata.

(2) Instruct the serializer about the key of the object graph

to be stored (the serializer may derive the storage lo-

cation from the key).

(3) Invoke the serializer with the object graph.

(4) Write out the metadata to the storage medium.

The steps to deserialize storage objects to snapshots are:

(1) Read in the metadata from the storage medium.

(2) Based on the metadata about the serializer, look up a

suitable deserializer.

(3) Instruct the deserializer about the location of the stor-

age objects.

(4) Invoke the deserializer to obtain a graph of snapshots.

Finally, a store may need to find the storage locations of

objects graphs in the first place. How it does that is basically

implementation-defined, but a good strategy is to maintain

a dictionary that connects graph keys with locations. The

store would have to store this dictionary in a well-known

location and format.

9

IWST, August, 2019, Cologne, Germany Tobias Pape, Jakob Reschke, Patrick Rein, Fabio Niephaus, Marcel Taeumel, and Robert Hirschfeld

3.7 Generic snapshot format for objects
The previous sections described an abstract framework for

version control of diverse types of objects. In this section, we

describe how objects can be captured and compared when

there are no specialized snapshots available for them. As a

consequence, all objects should become trackable.

3.7.1 The structure of objects. Objects can be viewed as com-

prising a number of slots, as in Self or the Common Lisp Ob-

ject System (clos) to denote “a component of an object that

can store a value” [20]. There may be different types of slots,

such as instance variables or unordered items of a collection.

Slots can have an identifier, such as a variable name, symbol,

or index, but they do not need to. However, it must be pos-

sible to look up a slot in an object. A slot can also refer to

behavior, e.g. a method in case of Self or JavaScript.

The snapshot of an object is the collection of its captured

slots, and its assigned name if its identity should be kept. This

schema can be specialized to accommodate specia objects,

such as primitive values. Slots could refer to other object

snapshots directly or by name (if the referent has one). In

programming languages with strong typing, we have to keep

a reference to the type of the original live object— or its

replacement. Thus, when the snapshot is rematerialized into

a live object, the correct type can be instantiated. The default

implementation of the capturing message should enumerate

all slots in the live object and add slots of the appropriate

type to the snapshot. Objects referenced by the captured

slots also have to be traversed. When the snapshot slots are

created, we have to consult the object metadata whether the

slot should be captured at all or whether there is a default

value.

To materialize an object snapshot, we create a new (unini-

tialized) instance of the type of the captured object (which

is either the type of the original live object or the type of

the replacement). Each slot must then be materialized into

this object. What must be done to that object depends on the

type of each slot. For example, a slot for an instance variable

should assign its materialized value to the instance variable.

3.7.2 Differences in single objects. How objects can be mu-

tated depends on the programming language. Commonly

a slot value can be changed to a different object. In some

languages, we can also add or remove slots. The differences

between two object snapshots can therefore be described

by the changes to the slots of the object (reassignments, ad-

ditions, removals). If an object is replaced by another one

everywhere in the system, there might also be the difference

type “object replacement”. But in most cases, it is sufficient

to record that all slots referring to the “replaced” object have

changed.

When we compare an object snapshot with another one

(as described in subsubsection 3.5.2), we must match its slots

with the slots of the other snapshot. If no matching slot can

be found in the other snapshot, the slot was either added

or removed. In both cases, this must be added to the col-

lection of slot changes. If a matching slot is found, the two

slots are compared. Should the slots be of a kind that ref-

erences another snapshot, we determine the differences be-

tween the referents of the slots as described in subsubsec-

tion 3.5.2. Should it be determined that there is a local change

to the referrer, which in this case means that a different ob-

ject has been assigned to the slot, this reassignment is added

to the collection of slot changes.

4 OBJECT VERSION CONTROL IN
SQUEAK/SMALLTALKWITH GIT

A prototype implementation
4
of our approach has been real-

ized in Squeak/Smalltalk and connects to Git as the backend

vcs. The implementation is hosted on GitHub
5
.

4.1 Object containers and object graphs
Capturing live objects is the responsibility of the

SquotImageStore. Given an object and a key, it will tra-

verse the object’s graph for capturing, providing a

bidirectional mapping between paths and start objects. For

the prototype, the only backend vcs at the moment is Git,

which is a file-based vcs, the keys of graphs are also the

paths to the files or directories in which the graphs will be

stored. Because graph keys need to be unique only within a

store, the double role as paths is unproblematic. In addition,

an image store also tracks metadata for each path, e.g., the

desired serializers or deserializers, or arbitrary data.

For bookkeeping, the images store keeps an object reg-
istry that maps all known names to their live objects and

a collection of SquotObjectGraphs, which in this case serve as

local registries for object names. The object registry makes

sure that object names are unique across the object graphs.

UUIDs are used for names in this implementation.

Certain metadata are only relevant to the image store and

not to be persisted. This transient store info is available to all
objects that are being captured or materialized. Such infor-

mation might include which instance variables of an object

not to capture.

Capturing an image store’s snapshot creates a

SquotSnapshot. Snapshots of ordinary objects are called

shadows in Squot. Each SquotSnapshot has a dictionary of

SquotArtifacts. An artifact is the combination of an object

graph, its key (or path), and the associated metadata. An

4
Refer to Appendix B for supplemental information on the systems

architecture.

5
https://github.com/hpi-swa/Squot (last accessed June 10, 2019).

10

https://github.com/hpi-swa/Squot

Tracking Objects IWST, August, 2019, Cologne, Germany

Listing 1: Default implementation Object>>

captureWithSquot:

1 captureWithSquot: aCapturer
2 | toCapture |
3 self class isImmediateClass ifTrue: [^ aCapturer

capturePrimitiveValue: self].
4 self class isBits ifTrue: [^ aCapturer captureBits: self].
5 toCapture := self squotReplacement: aCapturer.
6 ^ aCapturer capture: toCapture as: toCapture squotShadowFactory

artifact is an element of an object container, which can be

queried for artifacts. The result is a mapping from paths (as

above) to SquotArtifact.

4.2 Generic object snapshots
Snapshots for generic objects, implemented in

SquotObjectShadow, contain a collection of slots, the live

object’s class and the class of a potential replacement

for the live object, if desired. Slot types are provided

for the two kinds of Smalltalk object contents: instance

variables (SquotInstVarSlot) and indexable variables

(SquotVariablePartSlot). A slot is key-value–pair, whose key

is the variables’ name or index, respectively. The value is

the shadow of the variables contents.

Certain kind of objects need special treatment. Ob-

jects with value semantics (i.e., SmallInteger, Character, and

SmallFloat64) and certain well-known objects (true, false, and

nil) are shadowed by SquotPrimitiveValue, a simple wrap-

per. This allows serialization by value or well-known name.

CompiledCode is handled by a SquotCompiledCodeShadow, as its

special layout (both indexable reference parts and index-

able byte parts) does not fit the generic slot model. For ef-

ficiency, certain collections have their own shadows: index-

able collections of well-known bit- or character-types (e.g.

ByteArray, WordArray, ByteString, and WideString) are handled

with aSquotBitsObjectShadow that wraps a copy of its contents

rather than creating SquotPrimitiveValue wrapper for each

slot.

4.3 Capturing
To start capturing live objects, a SquotObjectCapturer is handed

to a start object (see Listing 1 for the default implementa-

tion). It can decide to be replaced (squotReplacement:), if nec-

essary, and then hands the to-be-captured objects to the cap-

turer. The capturer performs a breadth-first search to build

a SquotObjectGraph. When new objects are encountered, the

capturer (a) assigns a name to newly encountered objects, (b)

registers them in the object graph and the snapshot’s object

registry and (c) recurses by sending captureWithSquot:. If nec-

essary, the object can decide to be shadowed by something

else than a SquotObjectShadow via squotShadowFactory.

The capturer then creates a new shadow and in a second

step instructs it to initialize itself based on the live object.

This separation allows cyclic object graphs. Generally, initial-

ization comprises the enumeration of a live object’s variables,

adding them to the shadow, creating and populating slots,

and queueing them for capturing.

4.4 Materialization
The SquotShadowMaterializer provides snapshot traversal for

materialization in a recursive, depth-first manner. Given a

start object shadow, thematerialization starts in rematerialize

: if the object shadow has not been materialized already. If a

shadow has an object name, and a live object of that name

exists, the shadow is materialized in place in the live object

(cf. Listing 2). If this is not possible, a new live object with

the shadows content will be created, which, when the object

name is found, will replace the old one. During materializa-

tion, a shadow with slots will instruct the slot to materialize,

recursively. The slots, in turn use the materializer to remate-

rialize their values and put them at the appropriate places in

the live object. Similar to capture, the materialization is two-

step, to allow for cyclic references to materialize correctly

(cf. Listing 3).

4.5 Differences
The implementation supports differences at three

levels: SquotPatch handles the object container level,

SquotObjectGraphDiff the object graph level, and

SquotObjectDiff an similar the object level (cf. sub-

subsection 3.5.1). The SquotDiffBuilder provides graph

traversal for the differences computation, constructing

a SquotObjectGraphDiff. In each step, a left-side shadow is

compared with a right-side one, and optionally a base

shadow. Their object names are compared as described

in subsubsection 3.5.2. Cycles are dealt with by splitting

the creation and initialization of difference objects (see

Listing 4).

The multiple-path pruning in this traversal works by only

checking that the left-side shadow has not been encountered

yet. The rationale is that the changes to a single object do

not depend on the path that led to it. The object must have

changed in the samewaywherever it is referenced. Anything

else means that a former reference to this object was in fact

changed to another object with a different name.

Analogous to capturing, the comparison of slot-based snap-

shots works by delegating the comparison to the contained

slots, storing the result in a SquotObjectDiff. When the ob-

ject names of the compared slot values are equal, no dif-

ference is recorded, but the referents are compared further.

When the object names of the values of two compared slots

are different or absent, a SquotSlotReassignment is recorded,

11

IWST, August, 2019, Cologne, Germany Tobias Pape, Jakob Reschke, Patrick Rein, Fabio Niephaus, Marcel Taeumel, and Robert Hirschfeld

Listing 2: Materialization dispatch in SquotShadowMaterializer

1 findOrCreateAndRematerialize: aShadow
2 self sourceNameOf: aShadow ifPresent:
3 [:name | objectRegistry objectNamed: name ifPresent: [:existing |
4 existing squotShouldKeepIdentity ifTrue: [^ self materialize: aShadow in: existing]].
5 ^ aShadow squotMaterializeWith: self
6
7 materialize: aShadow in: anObject
8 | materializedObject |
9 convertedObjects at: aShadow undecorated put: anObject.
10 (anObject shouldHaveNameAssignedBySquot and: [sourceGraph notNil])
11 ifTrue: [objectRegistry nameOf: anObject ifAbsentAssign: [sourceGraph nameOf: aShadow]].
12 materializedObject := (aShadow materializeAs: anObject with: self) squotReactivateWith: self.
13 anObject becomeForward: materializedObject copyHash: false.
14 ^ anObject

Listing 3: SquotObjectShadow separates allocating new ob-
jects from filling slot values.

1 squotMaterializeWith: aMaterializer
2 | object |
3 object := self createMaterializedInstance.
4 ^ aMaterializer materialize: self in: object

Listing 4: The allocation of new difference objects for
SquotDiffBuilder is separated from actually computing
the differences.

1 diffFrom: leftShadow to: rightShadow ifNew: newBlock andInitialize:
initBlock

2 | diff left |
3 left := leftShadow undecorated.
4 diff := objectDiffs
5 at: left
6 ifPresent: [:existing | ^ existing]
7 ifAbsentPut: newBlock.
8 initBlock cull: diff cull: leftShadow cull: rightShadow.
9 diff squotHasChanges ifTrue:
10 [graphDiff
11 addDiff: diff
12 forObjectNamed: (shadowNames at: left ifAbsent: []).
13 self noteChanged: left].
14 ^ diff

which remembers both values. Differences can be applied to

shadows using a SquotObjectPatcher, which eventually sends

squotApplyTo:with: to each difference object, which results in

a modified object shadow: SquotObjectDiffs simply apply all

their slot differences to the shadow, SquotSlotReassignment re-

place the slot’s valuewith the remembered right-side shadow.

Differences can be applied to a SquotImageStore to change live

objects, re-using the materialization process with a patcher

instead of a materializer.

4.6 Serialization and deserialization
For de/serialization of artifacts, Squot includes the

SquotFileSystemStore that operates on a file directory. To

aid deserialization, it stores object metadata and a table-

of-contents as Smalltalk Object Notation (ston) [31] in

dedicated files. Preferred serializers and deserializers can be

set in an artifact’s metadata. Since Squot provides general

purpose shadow objects, it also provides general purpose

serializers for them: A binary serializer based on Squeak’s

SmartRefStream and a serializer based on ston.

5 DISCUSSION
In this section, Squot and the architecture from section 3 are

evaluated with regard to the goals described in section 2. Ob-

servations, issues and possible improvements are discussed.

5.1 Squot in practice
First of all, the architecture is in actual use through the Squot

and Squit packages. The implementation as described in sec-

tion 4 is capable of tracking, serializing, and restoring com-

plex object graphs such as a workspace morph with variable

bindings (see Listing 5). The example involves different kinds

of objects and circular dependencies in the object graph, as

well as metadata that influences the capturing. Further, the

created file system structure can be managed through a file-

based vcs. In the case of Squot, Git is used through the Squit

Git connector component.

Further, we have created specialized snapshot and serial-

ization formats for Squeak packages, hashed collections, and

string objects. These specializations show that:

• the general (slot-based) approach to object snapshots is

extensible to support types with special requirements,

• domain objects can opt out of the general approach

and implement their own,

• existing classes for snapshots and differences (e.g. those

of Monticello) can be reused and adapted for Squot,

and

• the format of snapshots and the format of the gener-

ated files can be customized separately— to use a dif-

ferent file format, it is not always required to change

the kind of snapshot used for an object.

12

Tracking Objects IWST, August, 2019, Cologne, Germany

Listing 5: A scenario in form of a test case which illustrates how Squot can manage the complex object graph of
a graphical Squeak workspace.

1 workspace := Workspace new. systemWindow := workspace openLabel: 'Workspace'.
2 bindings := Dictionary new. bindings at: #This put: workspace.
3 workspace setBindings: bindings. workspace contents: 'This is a sample.'.
4 "store"
5 imageStore add: systemWindow at: 'sample workspace.morph'.
6 fileStore restoreToSnapshot: imageStore captureSnapshot.
7 "restore in different image store"
8 workspaceArtifact := fileStore captureSnapshot artifactAt: 'sample workspace.morph'.
9 restoredWindow := SquotWorkingCopy newOnObjectMemory
10 loadArtifact: workspaceArtifact; objectAt: workspaceArtifact path.
11 self assert: workspace contents equals: restoredWindow model contents.
12 self assert: restoredWindow model ~~ workspace description: 'new workspace from materialization'.
13 self assert: (restoredWindow model bindingOf: #This) value == restoredWindow model

5.2 Limitations
The following limitations span from limitations arising from

the current implementation to conceptual limitations which

require further research.

5.2.1 State migration. One problem associated with chang-

ing the structure of classes— such as adding or renaming

instance variables— is migrating existing objects to the new

schema. Any migrations that users apply to tracked objects

in own environment will also be applied in other users’ envi-

ronments. These objects have been captured after receiving

the treatment of the migration, after all. But objects that are

not tracked with Squot cannot benefit from that. Therefore,

it is still advisable to take other measures to migrate existing

objects, such as migration code in pre- and post-load scripts

of packages.

5.2.2 Merging objects. While the merging of packages has

already been simplified in Squot, merging for arbitrary ob-

jects (with slot-based shadows) is not implemented yet. The

reason is that further research must be conducted first on

how objects can bemerged correctly. In particular some basic

assumptions from line-based merging via three-way differ-

ences do not hold in object graphs. This problem is out of

scope for this work.

5.2.3 Sharing objects between graphs. One potential prob-
lem with the current implementation is that objects cannot

be shared among multiple object graphs. If one object is ref-

erenced in multiple graphs, these graphs will overlap and

create redundant snapshots (and storage data) for the objects

reachable from the common object. At least the redundant

snapshots will have equal names due to the shared object

registry in an image store. Shared objects would be “rejoined”

when they are materialized. But it could also lead to inconsis-

tencies when changes to common objects are committed for

only one of the involved graphs. So far users have to ensure

that graphs do not overlap.

5.2.4 Re-integrating materialized objects. If multiple parts

of the system are tracked in separate object graphs, it could

be confusing where they are composed again in the target

environment and and how this composition configuration

should be tracked.More generaly speaking it is unclearwhere
new live objects should be put when they are materialized

from a snapshot. Materialized objects are added to an image

store, which is probably not part of the software or docu-

ment under development. The materialized objects might

need to be assigned to some class variable or associated with

content holders, such as graphical tools. Other approaches

could be places and generalized references as found in Com-

mon Lisp [20]).

5.2.5 Partial materialization. Another concern is that of ma-

terializing only parts of a version. Currently, Squot assumes

that an object graph should be deleted (i.e. untracked) if it

is absent in a working copy’s store, but present in the par-

ent version. If a repository contains packages for different

platforms, so not all of them can be loaded at the same time,

support for unmaterialized object graphs without signifying

their deletion becomes a requirement. It could be necessary

to make the untracking of object graphs explicit in the state

of a store to achieve this.

6 RELATEDWORK
Version control has been investigate previously for both

source code and object contents. Moreover, moving objects

between systems as well as combining contents of different

objects have their share in literature.

Version control approaches— code-centric. Pur [10] is a ver-
sion control framework that abstracts from common vcs

with a state-based history model and directed acyclic graphs

as version history. Squot is a partial implementation of the

Pur concepts. Image and file store, working copy and snap-

shot types make up the Pur frontend implementation in

Squot.

13

IWST, August, 2019, Cologne, Germany Tobias Pape, Jakob Reschke, Patrick Rein, Fabio Niephaus, Marcel Taeumel, and Robert Hirschfeld

Most Smalltalk systems (VA Smalltalk: ENVY/Developer [19],
VisualWorks: Store [2], Dolphin source tracking system [25],

Squeak and Pharo: Monticello [18], among others) provide

specialized version control systems for their meta-objects,

usually classes and methods. They do not support tracking

arbitrary objects or only in a fixed serialization format. Or-
well [29] is a Smalltalk vcs and configuration management

system that supports versioning of methods, classes, applica-

tions and configurations, all of which are stored in a single

object database. It does not support tracking arbitrary ob-

jects. Iceberg [6] is source code vcs tool for Pharo/Smalltalk

to interact with Git and GitHub.

Version control approaches—object-centric. CoVer [5] adds
version control to a collaborative hypermedia editing sys-

tem with asynchronous editing. All versions of an object

are combined into a multi-state object to track its identity.

Since arbitrary objects can be mapped to hypertext [5], they

can be managed using CoVer, collaboratively. Squot does not
include any model for collaboration. COOP/Orm [14, 15] pro-

vides fine-grained version control and configuration man-

agement for sets of documents. Each document comprises a

tree (as opposed to Squot’s general graphs) that might con-

tain classes, methods, or textual paragraphs, among other.

Versions are created for documents and multiple versions of

the same document can occur in a configuration. In Squot,

only one version of an object can be checked out at the same

time. HistOOry [21] is an object versioning system to record

the state of selected fields of objects. It is provided as a lan-

guage extension for Squeak and Pharo and, hence, does not

integrate with external-storage vcss. HistOOry can create

views on the snapshots of an object that are polymorphic

with the live object, which is not possible in Squot yet. CoEx-
ist [27, 26] provides continuous object versioning with new

snapshots being created automatically whenever a program

is changed. To achieve short response times a state-based ap-

proach for methods and classes is used. It does not integrate

with external-storage vcs, either The Lively Kernel [28] in-
cludes object versioning facilities: any object is aware of its

previous versions, an global queries allow to identify follow-

ing versions of objects. Lively Kernel includes a parts bin
of reusable graphical objects [12], which is versioned using

Subversion. Simulink [4] is a programming environment that

does not primarily involve source code, rather, hierarchical

blocks are used to model simulation systems. The vcs inte-

gration bears similarities to Squot’s architecture: different

vcs backends [24, 23] and different kinds of objects that can

be tracked and merged [16].

Tracking and transportation of objects. Vegdahl [32] de-
scribes the the challenges of moving objects between Small-

talk systems, including solutions to circular and symbolic

references. The essence of this approach can be found in

the standard serializer of Squeak as well as the more recent

ston [31]: during serialization, objects are assigned unique

identifiers which are used as references. Only the first occur-

rence of an object will serialize its contents. Certain objects,

such as classes, are always serialized symbolically. Self uses

the Transporter [30] to capture objects and transforms them

into Self expressions that recreate the captured objects. In

that course, annotations to the objects are use to preserve

metadata such as categorization. The Transporter has no

vcs capabilities. VisualWorks Parcels [17] are a fast binary
deployment mechanism for objects and source. It supports

circular dependencies among and partial loading of parcels.

Similarly, Fuel [3] is a fast binary object serializer for Pharo

and Squeak in the vein of parcels, but employs object clus-

tering for efficiency. Fuel’s object graph analysis is similar

to capturing in Squot.

Object merging. Operation-based and state-based merging

of objects emerged in the setting of asynchronous collabora-

tive editing of graphical objects [7]. Operation-based merg-

ing has advantages in solving conflicts that would otherwise

require manual resolution and is more efficient for large ob-

ject sets. Nevertheless, Squot uses state-based merging be-

cause Squeak does not provide practical means tocapture all

operations on arbitrary objects. Further, most contemporary

vcss assume a state-based approach, too. Despite that, for

efficiency, Squot employs parts of the operation-based ap-

proaches by computing the differences between snapshots

first and applying those instead of processing whole snap-

shots. For xml documents, a three-way merge approach has

been documented [13]. The approach might be applicable to

Squot, as xml documents are essentially “ordered trees with

labeled nodes”, which matches to Squot snapshots.

7 CONCLUSION AND OUTLOOK
We set out to devise a solution to the problem that, in ex-

ploratory programming environments that are built around

objects, regular (non-code) objects are precluded from spe-

cialized version control solutions. Existing version control

technology should be reused to ease collaboration. Ultimately,

version control for objects should be as practical and acces-

sible as it is for files today.

With the architecture presented, a first step towards that

goal has been made. It provides a framework for modeling

and comparing editions of objects. A generic solution to track

arbitrary kinds of objects is provided, so the effort of ver-

sioning new objects is kept low. When a specialized way to

handle editions of an object is needed, the architecture pro-

vides variation points, so that custom software can supply

their own formats of snapshots and serializations. The pro-

totype implementation Squot proves that the architecture

14

Tracking Objects IWST, August, 2019, Cologne, Germany

is functional and that the status-quo on object version con-

trol could be improved in Squeak/Smalltalk. By building on

the ideas of Pur [9], the architecture should be portable to

various backend version control systems.

The journey towards making version control for objects

feel as natural as it has become for files has not come to

an end yet. Besides the technical challenges illustrated in

section 5, conceptual challenges remain. To provide a fully-

functional version control experience for objects, merging fa-

cilities for arbitrary objects must still be implemented. In gen-

eral, graphical tools would support working with snapshots

and differences. To validate the generality of the proposed

architecture, an implementation in another programming

environment should be undertaken. While Lively Kernel al-
ready supports object versioning, it could be examined how

our solution can extend their approach.

REFERENCES
[1] Conrad Calmez, Hubert Hesse, Benjamin Siegmund,

Sebastian Stamm,Astrid Thomschke, Robert Hirschfeld,

Dan Ingalls, and Jens Lincke. 2013. Explorative author-

ing of active web content in a mobile environment.

In Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam. Num-

ber 72. Universitätsverlag Potsdam. isbn: 978-3-86956-

232-2. http://pub.ub.uni-potsdam.de/volltexte/2013/6

405/.

[2] [n. d.] Cincom visualworks store repository. Retrieved

2017-09-02 from http://www.cincomsmalltalk.com/m

ain/developer-community/store-repository/.

[3] MartinDias,MarianoMartinez Peck, StéphaneDucasse,

and Gabriela Arévalo. 2014. Fuel: a fast general pur-

pose object graph serializer. Software: Practice and Ex-
perience, 44, 4, 433–453.

[4] A. C. W. Grace. 1991. Simulab, an integrated environ-

ment for simulation and control. In 1991 American
Control Conference. (June 1991), 1015–1020. doi: 10.2
3919/ACC.1991.4791532.

[5] Anja Haake and Jörg M. Haake. 1993. Take cover: ex-

ploiting version support in cooperative systems. In

Proceedings of the INTERACT ’93 and CHI ’93 Confer-
ence on Human Factors in Computing Systems (CHI ’93).
ACM, Amsterdam, The Netherlands, 406–413. isbn:

0-89791-575-5. doi: 10.1145/169059.169320. http://doi

.acm.org/10.1145/169059.169320.

[6] [n. d.] Iceberg. Retrieved 2017-09-21 from https://gith

ub.com/pharo-vcs/iceberg/.

[7] Claudia-Lavinia Ignat andMoira CNorrie. 2004. Operation-

based versus state-based merging in asynchronous

graphical collaborative editing. In Proc. 6th Interna-
tionalWorkshop on Collaborative Editing Systems, Chicago.

[8] Daniel Ingalls, Krzysztof Palacz, Stephen Uhler, An-

tero Taivalsaari, and TommiMikkonen. 2008. The lively

kernel a self-supporting system on a web page. In Self-
Sustaining Systems. Springer, 31–50.

[9] Matthias Kleine, Robert Hirschfeld, and Gilad Bracha.

2012. An abstraction for version control systems. In

Technische Berichte des Hasso-Plattner-Instituts für Soft-
waresystemtechnik an der Universtität Potsdam. Num-

ber 54. Universtitätsverlag Potsdam. isbn: 978-3-86956-

158-5. http://pub.ub.uni-potsdam.de/volltexte/2012/5

562/.

[10] Matthias Kleine, Robert Hirschfeld, and Gilad Bracha.

2012. An abstraction for version control systems. Tech-

nical report 54. Universität Potsdam, Potsdam, Ger-

many, (March 21, 2012).

[11] Jens Lincke. 2014. Evolving Tools in a Collaborative
Self-supporting Development Environment. PhD thesis.

Hasso-Plattner-Institut, Universität Potsdam.

[12] Jens Lincke, Robert Krahn, Dan Ingalls, Marko Roder,

and Robert Hirschfeld. 2012. The lively partsbin–a

cloud-based repository for collaborative development

of active web content. In System Science (HICSS), 2012
45th Hawaii International Conference on. IEEE, 693–
701.

[13] Tancred Lindholm. 2004. A three-way merge for xml

documents. In Proceedings of the 2004 ACM symposium
on Document engineering. ACM, 1–10.

[14] Boris Magnusson and Ulf Asklund. 1996. Fine grained

version control of configurations in coop/orm. Soft-
ware Configuration Management, 31–48.

[15] Boris Magnusson, Sten Minör, and Ulf Asklund. 1993.

Fine-grained revision control for collaborative soft-

ware development. In In Proceedings of the 1993 ACM
SIGSOFT Conference on Foundations of Software Engi-
neering, Los Angeles CA, 7–10.

[16] [n. d.] Merge simulink models from the comparison

report - matlab & simulink. Retrieved 2017-09-09 from

https://www.mathworks.com/help/rptgenext/ug/m

erge-simulink-models-from-the-comparison-report

.html.

[17] Eliot Miranda, David Leibs, and Roel Wuyts. 2005.

Parcels: a fast and feature-rich binary deployment

technology. Computer languages, systems & structures,
31, 3, 165–181.

[18] [n. d.] Monticello. Retrieved 2017-09-26 from http://w

iki.squeak.org/squeak/1287.

[19] Joseph Pelrine, Alan Knight, and Adrian Cho. 2001.

Mastering ENVY/Developer. Cambridge University Press,

New York, NY, USA. isbn: 0-521-66650-3.

[20] Kent Pitman, editor. 2005. Common lisp hyperspec.

http://www.lispworks.com/documentation/HyperSp

ec/Front/index.htm.

15

http://pub.ub.uni-potsdam.de/volltexte/2013/6405/
http://pub.ub.uni-potsdam.de/volltexte/2013/6405/
http://www.cincomsmalltalk.com/main/developer-community/store-repository/
http://www.cincomsmalltalk.com/main/developer-community/store-repository/
https://doi.org/10.23919/ACC.1991.4791532
https://doi.org/10.23919/ACC.1991.4791532
https://doi.org/10.1145/169059.169320
http://doi.acm.org/10.1145/169059.169320
http://doi.acm.org/10.1145/169059.169320
https://github.com/pharo-vcs/iceberg/
https://github.com/pharo-vcs/iceberg/
http://pub.ub.uni-potsdam.de/volltexte/2012/5562/
http://pub.ub.uni-potsdam.de/volltexte/2012/5562/
https://www.mathworks.com/help/rptgenext/ug/merge-simulink-models-from-the-comparison-report.html
https://www.mathworks.com/help/rptgenext/ug/merge-simulink-models-from-the-comparison-report.html
https://www.mathworks.com/help/rptgenext/ug/merge-simulink-models-from-the-comparison-report.html
http://wiki.squeak.org/squeak/1287
http://wiki.squeak.org/squeak/1287
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm

IWST, August, 2019, Cologne, Germany Tobias Pape, Jakob Reschke, Patrick Rein, Fabio Niephaus, Marcel Taeumel, and Robert Hirschfeld

[21] Frédéric Pluquet, Stefan Langerman, and Roel Wuyts.

2009. Executing code in the past: efficient in-memory

object graph versioning. In ACM SIGPLAN Notices
number 10. Volume 44. ACM, 391–408.

[22] Marc J Rochkind. 1975. The source code control sys-

tem. IEEE Transactions on Software Engineering, 4, 364–
370.

[23] [n. d.] Set up git source control - matlab & simulink.

Retrieved 2017-09-09 from https://www.mathworks.c

om/help/simulink/ug/set-up-git-source-control.htm

l.

[24] [n. d.] Set up svn source control - matlab & simulink.

Retrieved 2017-09-09 from https://www.mathworks.c

om/help/simulink/ug/set-up-svn-source-control.ht

ml.

[25] [n. d.] Source tracking system. Retrieved 2017-09-02

from http://www.object-arts.com/downloads/docs/i

ndex.html?source_tracking_system.htm.

[26] Bastian Steinert. 2014. Built-in recovery support for ex-
plorative programming. PhD thesis. Universität Pots-

dam.

[27] Bastian Steinert, DamienCassou, and Robert Hirschfeld.

2012. Coexist: overcoming aversion to change. InACM
SIGPLAN Notices number 2. Volume 48. ACM, 107–

118.

[28] Bastian Steinert, Lauritz Thamsen, Tim Felgentreff,

and Robert Hirschfeld. 2014. Object versioning to sup-

port recovery needs: using proxies to preserve pre-

vious development states in lively. In Proceedings of
the 10th ACM Symposium on Dynamic Languages (DLS
’14). ACM, Portland, Oregon, USA, 113–124. isbn: 978-

1-4503-3211-8. doi: 10.1145/2661088.2661093. http://d

oi.acm.org/10.1145/2661088.2661093.

[29] Dave Thomas and Kent Johnson. 1988. Orwell—a con-

figurationmanagement system for teamprogramming.

InACM SIGPLANNotices number 11. Volume 23. ACM,

135–141.

[30] David Ungar. 1995. Annotating objects for transport to

other worlds. In Proceedings of the Tenth Annual Con-
ference on Object-oriented Programming Systems, Lan-
guages, and Applications (OOPSLA ’95). ACM, Austin,

Texas, USA, 73–87. isbn: 0-89791-703-0. doi: 10.1145

/217838.217845. http://doi.acm.org/10.1145/217838.2

17845.

[31] Sven Van Caekenberghe, Stéphane Ducasse, and Jo-

han Fabry. [n. d.] Ston: a smalltalk object notation.

Retrieved 2017-08-17 from https://ci.inria.fr/pharo-c

ontribution/job/EnterprisePharoBook/lastSuccessful

Build/artifact/book-result/STON/STON.html.

[32] Steven R. Vegdahl. 1986. Moving structures between

smalltalk images. In Conference Proceedings on Object-
oriented Programming Systems, Languages and Appli-
cations (OOPSLA ’86). ACM, Portland, Oregon, USA,

466–471. isbn: 0-89791-204-7. doi: 10.1145/28697.287

45.

A TERMS
For an overview of selected terms associated with the lifecy-

cle of objects under version control, have a look at Figure 7.

The terms used in this work (with some deviations in sec-

tion 4, which describes the prototype implementation of the

proposed design), are as follows.

live object An object that would exist even without any

support for support for version control in the program-

ming environment.

snapshot object An object that represents a live object

for the purpose of version control.

to capture an object Convert a live object to a snap-

shot object.

to materialize an object Convert a snapshot object to

a live object. This may have side effects on other live

objects, as noted earlier in this section.

tracked object A live object that is currently considered

for version control and that can be captured at some

point.

captured object Usually a live object that has been cap-

tured.

to serialize an object Convert an object to a series of

bytes, for storing the object to a stream, which can end

up in a file.

to deserialize an object Convert a series of bytes that

was generated by serializing an object back to an ob-

ject.

version (without a referent noun) An object that de-

scribes a set of object graphs at some point in time,

with metadata such as the author who created this

version. Such versions form the version history in a

repository. The Git equivalent would be a commit.

version (of an object) An object as present in a version
as defined above.

edition (of an object) An object in a state that needs

not necessarily be present in any version. It could be

a live object with changes not persisted in a version,

or a modified snapshot object that was derived from

applying only some of the differences between two

versions to a version of an object. The set of versions

of an object is always a subset of the set of editions of

an object.

16

https://www.mathworks.com/help/simulink/ug/set-up-git-source-control.html
https://www.mathworks.com/help/simulink/ug/set-up-git-source-control.html
https://www.mathworks.com/help/simulink/ug/set-up-git-source-control.html
https://www.mathworks.com/help/simulink/ug/set-up-svn-source-control.html
https://www.mathworks.com/help/simulink/ug/set-up-svn-source-control.html
https://www.mathworks.com/help/simulink/ug/set-up-svn-source-control.html
http://www.object-arts.com/downloads/docs/index.html?source_tracking_system.htm
http://www.object-arts.com/downloads/docs/index.html?source_tracking_system.htm
https://doi.org/10.1145/2661088.2661093
http://doi.acm.org/10.1145/2661088.2661093
http://doi.acm.org/10.1145/2661088.2661093
https://doi.org/10.1145/217838.217845
https://doi.org/10.1145/217838.217845
http://doi.acm.org/10.1145/217838.217845
http://doi.acm.org/10.1145/217838.217845
https://ci.inria.fr/pharo-contribution/job/EnterprisePharoBook/lastSuccessfulBuild/artifact/book-result/STON/STON.html
https://ci.inria.fr/pharo-contribution/job/EnterprisePharoBook/lastSuccessfulBuild/artifact/book-result/STON/STON.html
https://ci.inria.fr/pharo-contribution/job/EnterprisePharoBook/lastSuccessfulBuild/artifact/book-result/STON/STON.html
https://doi.org/10.1145/28697.28745
https://doi.org/10.1145/28697.28745

Tracking Objects IWST, August, 2019, Cologne, Germany

Figure 7: Common terms to describe operations of converting objects between different representations. Adopted
variants in bold.

to apply differences to an object Transform an object

from one edition into another edition of itself. Syn-

onym: to patch an object.

merge The operation of combining three editions of each

object in a set of objects into one edition, and the result

of that operation.

The color code used in Figure 7 will also be used for other

figures in this report when applicable: live objects are green,

snapshot objects are yellow, and objects that result from

serialization or are involved in that process are gray.

B SYSTEM ARCHITECTURE
SUPPLEMENT

This section supplements the implementation description in

section 4.

The relationships between the implementation entities

of the Squot prototype as described in subsection 4.1 are

depicted by the diagram in Figure 8.

The relationships between the capturing-related classes

and the difference-related classes as described in subsec-

tion 4.5 are depicted by the diagram in Figure 8.

17

IWST, August, 2019, Cologne, Germany Tobias Pape, Jakob Reschke, Patrick Rein, Fabio Niephaus, Marcel Taeumel, and Robert Hirschfeld

Figure 8: Relationships among object containers, SquotSnapshot, SquotImageStoree, artifacts, and graphs of
shadow objects (snapshot objects). Key: UML

Figure 9: Relationships among object containers, artifacts, object graphs, and their respective difference classes.
Key: UML

18

	Abstract
	1 Introduction
	2 Background
	2.1 Challenges of object versioning
	2.2 Goals for a new version control system for objects
	2.3 Diverse representations of objects
	2.4 Object graphs
	2.5 User intentions missing from object graphs

	3 An architecture for object versioning
	3.1 Storing objects in versions
	3.2 Live objects, snapshot objects, storage objects
	3.3 Preserving object identity across system boundaries
	3.4 Capturing and materialization of object graphs
	3.5 Differences between snapshots
	3.6 Storing objects outside of the programming environment
	3.7 Generic snapshot format for objects

	4 Object version control in Squeak/Smalltalk with Git
	4.1 Object containers and object graphs
	4.2 Generic object snapshots
	4.3 Capturing
	4.4 Materialization
	4.5 Differences
	4.6 Serialization and deserialization

	5 Discussion
	5.1 Squot in practice
	5.2 Limitations

	6 Related work
	7 Conclusion and outlook
	A Terms
	B System Architecture Supplement

