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Acceleration of the Primary Basic Functions Calculation from the
EFIE-Characteristic Basis Function Method (CBFM) Combined

with a New Physical Optics Approximation

Christophe Bourlier*

Abstract—This paper presents a new scheme to implement the iterative physical optics (IPO)
approximation with edge diffraction for the scattering from large perfectly-conducting objects, for
which, multiple reflection occurs. The use of the EFIE (electric field integral equation) discretized
by the Galerkin MoM (method of moments) with Rao-Wilton-Glisson basis functions leads to solve a
linear system. The characteristic basis function method (CBFM) needs to invert the self-impedance
sub-matrices to calculate the primary basis functions (PBFs). To accelerate this stage, these sub-linear
systems are directly solved from the physical optics (PO) approximation. In addition, to improve the
precision of PO, the EFIE-PO self-impedance matrix is derived analytically. This avoids to apply
the magnetic field integral equation (MFIE), for which its principal value is related to PO. Numerical
results showed that the resulting algorithm, EFIE-CBFM-PO, predicts inherently the edge diffraction.
A domain decomposition method is able to split up the geometry into blocks, for which either the PO
or a LU decomposition is applied according the sub-geometry. To accelerate the coupling steps, the
adaptive cross approximation (ACA) is also implemented and the resulting method is tested on different
targets having a curvature and producing multiple reflections. The numerical results show that EFIE-
CBFM-PO is more accurate than the conventional EFIE-CBFM-POJ (based on Jakobus et al. work),
specially for objects with curvature.

1. INTRODUCTION

The method of moments (MoM) [1] has been commonly used to solve the electromagnetic scattering
problems. It transforms integral equations into matrix equations. For a perfectly-conducting object,
the EFIE (electric field integral equation) is commonly applied. To solve the matrix equations, iterative
solvers can be employed, like the based-conjugate gradient algorithms [1, 2], the steepest descent fast
multipole method [3–5] (SDFMM), the adaptive integral method (AIM) [6–10] and the sparse-matrix
canonical grid (SMCG) [11–15]. Compared with the iterative solvers, the direct solvers have some
attractive features. For example, they do not suffer from the unpredictable convergence and can
efficiently solve the problems with multiple right-hand-side vectors. However, it is well known that
the conventional direct solvers, such as lower-upper (LU) decomposition, are very expensive for large
targets. To overcome this issue, efficient algorithms [16–20], based on subdivision of the entire geometry
into several subdomains (blocks), have been developed to rigorously solve large problems. By this way,
the solution is calculated from an iterative scheme, in which size smaller problems are solved from
direct or iterative solvers. In this paper, one focuses on the characteristics basis function method
(CBFM) [16, 21–25].

On the other hand, to handle very large problems (high frequency), the physical optics (PO)
approximation can be applied. For canonical geometries, the scattered field can be analytically

Received 19 January 2023
* Corresponding author: Christophe Bourlier (christophe.bourlier@univ-nantes.fr).
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evaluated [26–31] by introducing special functions, especially in the near field and for complex shapes.
For complex geometries, numerical techniques have also been developed [32–35], especially for different
excitations [36, 37]. For concave object, it is necessary to evaluate the scattered field associated to the
double bounce. It is then impossible to derive closed-form expressions even for canonical geometries,
without the introduction of simplifying assumptions [38–45]. Other accelerations of PO were proposed
in the context of open-ended cavities, for which multiple bounces occur, with the iterative PO (IPO)
method [46–51]. In addition, the IPO can be improved [52] by adding the edge diffraction contribution
from an equivalent current method [53, 54].

Classically, in the lit region, the PO contribution can be obtained from the principal value of the
magnetic field integral equation (MFIE). The purpose of this paper is to address a new IPO numerical
scheme based on the EFIE formulation, for which the PO impedance matrix is derived to calculate the
primary basis functions (PBFs). For a perfectly-conducting surface, Jakobus et al. [55] expressed the
surface currents on the edges from the PO approximation, named POJ. In [23], POJ is generalized to a
dielectric (rough) surface, called the modified equivalent current approximation (MECA), to efficiently
calculate the PBFs. By applying PO on each block, which evaluates the single-reflection contribution,
the multiple bounces are accounted for by interacting the blocks between them. To expedite this
stage, the adaptive cross approximation (ACA) [56, 57] is applied to compress the inter-blocks coupling
matrices.

This paper will show that EFIE-CBFM-PO is more accurate than EFIE-CBFM-POJ, specially
for objects with curvature. The use of EFIE-CBFM-POJ does not require to invert a matrix whereas
EFIE-CBFM-PO needs this operation. To exploit the sparsity of the EFIE-PO impedance matrix, a
basic iterative technique is also addressed (paragraph 4.6) to accelerate the calculation of the PBFs. In
addition, to evaluate the gain in saving time, the theoretical and numerical complexities of the different
hybridizations are presented (paragraph 4.7). This will show that the fact to use the MatLab software,
the expected complexities can be overestimated when iterative solvers are included.

The paper is organized as follows. Section 2 addresses a brief review of CBFM combined with
ACA and Section 3 details the derivation of the EFIE based-PO impedance matrix. Section 4 shows
numerical results of the RCS for a plate (single bounce), a sphere (single bounce with curvature), a
dihedral (at least two bounces), an open-ended cavity (multiple bounces) and a paraboloid. The last
section gives concluding remarks.

2. CHARACTERISTIC BASIS FUNCTION METHOD (CBFM)

The EFIE is solved using the MoM to determine the field scattered by a perfectly-conducting object.
The use of the Galerkin method with Rao-Wilton-Glisson basis functions [58] yields the linear system
Z̄a = b [1, 20]. The matrix Z̄ is the impedance matrix and b the source vector. The time convention
e−jωt is used throughout this paper.

The first stage of CBFM [16, 59, 20] decomposes the geometry into P sub-geometries (blocks). The
impedance matrix Z̄ takes the from




Z̄1,1 Z̄1,2 . . . Z̄1,P

Z̄2,1 Z̄2,2 . . . Z̄2,P
...

...
. . .

...
Z̄P,1 Z̄P,2 . . . Z̄P,P







a1

a2
...

aP


 =




b1

b2
...

bP


 , (1)

where Z̄p,p are the self-impedance matrix of the block number p and Z̄p1,p2 the coupling-impedance
matrix between the blocks p1 and p2. ap and bp are sub-vectors of the block p.

For each block, the second stage calculates the primary basis function (PBFs) by solving the matrix
equation [59]

Z̄i′,i′Yi′,kIPW
= Bi′,kIPW

. (2)

The symbol prime in the subscript of Equation (2) shows that the block is enlarged of some nOL adjacent
edges. This overlapping improves the accuracy of CBFM. The linear system (2) is solved by considering
2NIPW,i bi-polarized incident plane waves {Bi′,kIPW

} (kIPW ∈ [1; 2NIPW,i]). The vectors {Yi′,kIPW
} are

stored in a matrix J̄i of size NEdge,i × 2NIPW,i, where NEdge,i is the number of edges of the block i
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without overlapping (the overlapped edges of Yi′,kIPW
are removed). The integer NIPW,i has not to be

too large so that the matrix size is moderate. Thus, a singular value decomposition (SVD) filtering
with threshold εCBFM is applied in order to avoid linear dependency. As a consequence, the size of J̄i

becomes NEdge,i ×NIPW,SVD,i with NIPW,SVD,i < 2NIPW,i.
The last stage of CBFM solves a reduced linear system Z̄RaR = bR defined as




Z̄R
1,1 Z̄R

1,2 . . . Z̄R
1,P

Z̄R
2,1 Z̄R

2,2 . . . Z̄R
2,P

...
...

. . .
...

Z̄R
P,1 Z̄R

P,2 . . . Z̄R
P,P







aR
1

aR
2

...
aR

P




=




bR
1

bR
2

...
bR

P




, (3)

where the submatrix Z̄R
i,j and the subvector bR

i are defined as
{

Z̄R
i,j = J̄H

i Z̄i,jJ̄j [NIPW,SVD,i ×NIPW,SVD,j ]
bR

j = J̄H
j bj [NIPW,SVD,i × 1]

. (4)

Moreover, the symbol H stands for the conjugate transpose operator and the indexes i and j go
from 1 to P . The vector ai of Equation (1) is equal to ai = J̄iaR

i . The size of the characteristic
matrix is (PN̄IPW,SVD)2 instead of N2

Edge = (PN̄Edge)2 for the whole geometry, where N̄IPW,SVD =
(1/P )

∑P
p=1 NIPW,SVD,p. If multiple excitations {b} (for instance, monostatic case) are considered, then

Z̄R (or the two matrices of the LU decomposition) and {Ji} must be stored. The reduction factor is
β2 ≈ (N̄Edge/N̄IPW,SVD)2 in comparison to the whole matrix.

In Equation (4), to accelerate the matrix-vector product, the coupling matrices {Z̄i,j} are
compressed by using the adaptive cross approximation (ACA) [56, 57]. In addition, to further reduce
the matrix rank, a second compression based on two QR decompositions, named RACA, is applied.
This principle is summarized in [20] and two thresholds {εACA, εRACA} are then introduced.

The CBFM+ACA parameters are listed in Table 1. For a rough surface and from numerical tests
or physical considerations, Bourlier et al. [20] addressed a detailed analysis of the numerical values to

Table 1. Definition of the notations introduced for CBFM and ACA. {P, nOL, εSVD, NIPW,p} are the
inputs of CBFM. εACA is the input of ACA. The remained values are numerically obtained from these
inputs (outputs).

Name Definition Typical values
NEdge Total number of edges Table 2
P Number of blocks Table 2
nOL Exceed edges due to the overlapping 1
εSVD CBFM threshold of the SVD truncation 10−3–10−4

NIPW,p CBFM plane wave number of block p Eq. (25) of [20]
εACA ACA threshold 10−3–10−2

NIPW,SVD,p
Reduced value of NIPW,p

after a SVD truncation
NEdge,p Number of edges of a block p

NEdge,OL,p
Number of edges of a
block with overlapping

N̄Edge =
∑P

p=1 NEdge,p Mean value of NEdge,p over p ∈ [1;P ] Table 2
N̄IPW =

∑P
p=1 NIPW,p Mean value of NIPW,p over p ∈ [1;P ] Figures 2, 4, 5, 7 and 9

N̄IPW,SVD =
∑P

p=1 NIPW,SVD,p Mean value of NIPW,SVD,p over p ∈ [1;P ] Table 2
εRACA RACA threshold 10εACA
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choose {P, nOL, εSVD, NIPW,p, εACA} and their impact on the accuracy of CBFM. From this study, these
values has been updated for the scenarii presented in Section 4.

3. CBFM COMBINED WITH THE PHYSICAL OPTICS

3.1. Introduction

From a conventional LU decomposition and for a given block p, Equation (2) implies that the complexity
to calculate the 2NIPW PBFs is 2NIPWO(N3

Edge,OL,p). In order to reduce this complexity, the PO
approximation can be applied.

Li et al. applied this way for a dielectric rough surface by developing the current-based PO method
called the modified equivalent current approximation (MECA) and based on [55], valid for a perfectly-
conducting surface. Another way would be to use the MFIE principal value since it is equal to
J = 2n̂ × Hinc, in which n̂ is the normal to the surface and Hinc the incident magnetic field, both
defined at a given point on the surface. In addition to be consistent with PO, in the shadow region,
J = 0.

The discretization of an integral equation (EFIE or MFIE) to obtain the linear system Z̄X = b
implies that the impedance matrix Z̄ is independent of the excitation b, related to the incident field,
and depends only on the surface geometry. But, since the shadow region is computed from the incident
field direction k̂inc, Z̄ can not contain the information on the shadow region. So, the MFIE principal
value of the impedance matrix gives PO if all the points of the surface are viewed by the emitter. For a
given excitation, an heuristic approach would be to set to zero the elements of the impedance matrix,
for which the edges are in the shadow region given by the criterion n̂ · k̂inc > 0, where n̂ is the normal
to the edge (or mean normal to the two adjacent facets).

For a perfectly-conducting open surface, the EFIE is more accurate than the MFIE, but the EFIE
principal value (triangle on itself) is not related to PO, unlike MFIE. To our knowledge, this derivation
has never been published in the past; this is the main novelty of this paper and the resulting method
is named EFIE PO. The numerical results will show that the based-EFIE PO is more accurate than
MECA.

To derive the EFIE PO impedance matrix, we start from EFIE and we calculate the resulting
Green function that obeys the PO approximation. Theoretically, it is important to underline that the
Green function G characterizes the propagation from a source point of coordinates r to the observation
point r′. This means that G should be independent of the excitation.

3.2. EFIE PO Green Function

From the EFIE [1] (Equation (2.119)), one can write

− j

ωµ0
Einc(r′) =

∫∫

S
K (

r′, r
)
dr, (5)

where the kernel K(r′, r) = G(r′, r)[J(r) + ∇(∇ · J(r))/k2]. G stands for the Green function, k the
wave number, r′ an observation point, r a point on the surface, Einc the incident electric field, ω the
pulsation frequency and µ0 the permeability of the vacuum.

In the lit region, the PO approximation assumes that the surface current equals J(r) = 2n̂(r) ×
Hinc(r), where Hinc stands for the incident magnetic field. Then

∇ · J(r) = 2∇ · [n̂(r)×Hinc(r)] = 2 [(∇× n̂) ·Hinc − n̂ · (∇×Hinc)]
≈ −2n̂ · (∇×Hinc) , (6)

since ∇ × n̂ ≈ 0 related to the surface curvature, which is consistent with the PO approximation.
Moreover

∇ [∇ · J(r)] = −2∇ [n̂ · (∇×Hinc)]

≈ −2
{

(n̂ ·∇) (∇×Hinc) + n̂×
[
∇× (∇×Hinc)

}]
, (7)
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because for any vectorial function A(r) and B(r), ∇(A ·B) = (A ·∇)B + (B ·∇)A + A× (∇×B) +
B× (∇×A), where A = n̂ and B = ∇×Hinc, for which (B ·∇)n̂ ≈ 0 and ∇× n̂ ≈ 0.

For any vectorial function A(r), the curl vectorial operator curlA = ∇ ×A. From a Maxwell’s
equation, we can show that

∇× (∇×Hinc) = −∇2Hinc + ∇ (∇ ·Hinc) = −∇2Hinc, (8)
since ∇ ·Hinc = divHinc = 0. Then

∇ [∇ · J(r)] ≈ −2
{

(n̂ ·∇) (∇×Hinc)− n̂× (∇2Hinc

) }
. (9)

With the time convention e−jωt and a Maxwell’s equation, ∇ × Hinc = ε0∂tEinc = −jωε0Einc

where ε0 is the vacuum permittivity and ∂t = ∂/∂t. The use of the wave propagation leads to
∇2Hinc = µ0ε0∂

2
t Hinc = −µ0ε0ω

2Hinc.
The above equation is simplified as

∇ [∇ · J(r)] ≈ 2
[
jωε0 (n̂ ·∇)Einc − µ0ε0ω

2n̂×Hinc

]

≈ 2jωε0 (n̂ ·∇)Einc − 2k2n̂×Hinc, (10)
where µ0ε0ω

2 = k2. Finally, the use of PO leads to

J(r) +
∇ [∇ · J(r)]

k2
≈ 2jωε0

k2
(n̂ ·∇)Einc. (11)

The boundary condition implies that the tangent component of the electric field t̂ · Einc = Et

is continuous, where t̂ is a vector tangent to the surface. The substitution of Equation (11) into
Equation (5) yields

Et(r′) = −2
∫∫

S
G

(
r′, r

)
(n̂(r) ·∇) Et(r)dr. (12)

We can note
(n̂ ·∇) Et = n̂ ·∇Et = (n̂ · r̂) ∂Et

∂r
, (13)

since for any vector r = (x, y, z) and scalar function f(r), we have

∇f = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z
= x̂

∂f

∂r

∂r

∂x
+ ŷ

∂f

∂r

∂r

∂y
+ ẑ

∂f

∂r

∂r

∂z
= x̂

∂f

∂r

x

r
+ ŷ

∂f

∂r

y

r
+ ẑ

∂f

∂r

z

r

=
r
r

∂f

∂r
= r̂

∂f

∂r
, (14)

where r =
√

x2 + y2 + z2 and r = x̂x + ŷy + ẑz.
In addition, since the gradient ∇Et is a vector normal to the surface, the scalar product with the

normal n̂ is one. For a surface with a small curvature, to be consistent with PO, this implies that
n̂ · r̂ ≈ 1. Therefore, taking the partial derivative over r′ of Equation (12), we obtain

Ft(r′) = −2
∫∫

S

∂G (r′, r)
∂r′

Ft(r)dr, (15)

where Ft = ∂Et/∂r. Moreover
∂G (r′, r)

∂r′
= −jkG

(
r′, r

) (
1 +

1
jkr′

)
≈ −jkG

(
r′, r

)
. (16)

The above equation assumes that |kr| À 1 (far field approximation). Since the Green function depends
on the difference ‖r′−r‖ and from Equation (16), Equation (15) takes the form Ft = 2jk(G∗Ft), where
∗ is the convolution product. Thus, under the PO approximation, the Green function writes

G
(
r′, r

)
=

1
2jk

δ
(
r′ − r

)
, (17)

where δ is the two-dimensional delta function. As expected, this means that the resulting PO Green
function depends only on a single point. In other words, it is local, that is, no multiple reflection.
The multiple refections will be accounted for by decomposing the geometry into sub-geometries and by
introducing the coupling matrices.
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3.3. EFIE PO Impedance Matrix

In Equation (17), the Dirac delta function δ(r′ − r) contributes if r′ = r. This implies that∫∫

S
G

(
r′, r

) ∇ (∇ · J(r)) dr = ∇′ (∇′ · J(r′)
)
, (18)

where the operator ∇′ acts on the vector r′. From the RWG basis function fn(r′) = f ′n, ∇′ · f ′n is a
constant, which implies that ∇′∇′ · f ′n = 0.

Substituting Equation (17) into Equation (5), applying the boundary conditions (continuity of
the tangent component) and the Galerkin method of moments with RWG basis function fn [1]
(Equation (7.11)), an element of the resulting impedance matrix equals

Zm,n =
1

2jk

∫∫

Sm

∫∫

Sn

fm(r) · fn(r′)δ
(
r′ − r

)
drdr′ =

1
2jk

∫∫

fn=fm

fm(r) · fn(r)dr

=
PV(MFIE)

jk
, (19)

where PV stands for the principal value. Equation (19) clearly shows that the EFIE PO is obtained
from the PV of MFIE divided by the factor jk. Physically, the PV (represented mathematically by the
Dirac delta function in Equation (17)) means that the impedance matrix accounts only for the local
interactions (triangle on itself), which is consistent with PO, since the multiple reflections are neglected.

Doing analytically the integration over r of Equation (19), Zm,n can be expressed as

Zm,n =
cm,n

12jk

{
3∑

i=1

(
‖Vi‖2 + V1 ·V2 + V1 ·V3 + V2 ·V3

)
+ 6 [Vm ·Vn −VG · (Vm + Vn)]

}
, (20)

where {Vi} are the coordinates of the three vertices of the triangular facet, VG its gravity center and
{Vm,n} the unshared vertices. Moreover, cm,n = smsnLmLn/(4A), where sm = ±1, sn = ±1, Lm,n the
edge length and A the facet area.

Equation (19) shows that the PO impedance matrix is sparse since a facet interacts only with itself
(no multiple reflections). This involves that only 4NEdge,p elements of the sub-impedance matrix are
calculated (instead of N2

Edge,p). Lucente et al. [59] proposed a similar way to accelerate the computation
of the PBFs by calculating only the elements of the EFIE sub-impedance matrix, for which the
interaction length between the edges does not exceed 0.15λ. By comparing this approach with the
previous one, numerical results show that PO approximation is more accurate.

Since the PO impedance matrix is sparse, to solve the resulting linear system, the use of iterative
algorithms can be very efficient if the number of iterations is small. Sub-section 4.6 will address one
which has these features.

4. NUMERICAL RESULTS

The computer machine is Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GHz (4 processors) with 768 GB
(needed for the brute force of MoM, that is EFIE-LU) of RAM. The wavelength in free space λ is 1m.
The azimuthal incident and scattering angles are φinc = φsca = 0. Table 2 lists the parameters of the
simulations. In comparison to the whole matrix of size NEdge × NEdge (NEdge = PN̄Edge), the size of
the CBFM characteristic matrix is NR × NR, where NR = PN̄IPW,SVD. In the legend of the figures,
[N̄IPW ⇒ N̄IPW,SVD] is given.

4.1. Smooth Plate of Area (6λ)2

First a smooth plate (without thickness) is considered. It lies on the (Ox, Oy) plane and centered at
(0, 0, 0) and its surface area is LxLy, where {Lx,y} are the surface lengths with respect to the x̂ and ŷ
directions. The sampling steps with respect to the x̂ and ŷ directions are equal ∆x = ∆y = 0.1λ.

Figures 1 and 2 plot the RCS in dBm2 versus the scattering angle θsca for lengths Lx = Ly = 6λ
(number of edges NEdge = 10, 680). The incident angle is θinc = 0. The specular direction is defined as
−θinc = 0 and the polarization is VV. The simulation parameters are listed in Table 2.
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Figure 1. RCS in dBm2 versus the scattering
angle θsca. Square plate of lengths Lx = Ly =
6λ, θinc = 0 and the polarization is VV. The
simulation parameters are listed in Table 2.

Figure 2. Same as in Fig. 1 but the results
of EFIE-CBFM are shown. The simulation
parameters are listed in Table 2.

Table 2. Parameters of the simulations. nOL = 1 for all scenarii.

Geometry P NEdge N̄Edge N̄Edge,OL N̄IPW,SVD εCBFM

Plate 9 10,680 1187 1323 88 10−3

Sphere 8 10,806 1351 1519 41 10−3

Dihedral 8 9,480 1185 1344 106 10−3

Open cavity 24 62,320 2597 2915 211 10−4

Paraboloid 36 24,120 670 856 99 10−3

In the legend, the labels mean:
• EFIE-LU: EFIE and the linear system is solved from a LU decomposition (reference solution).
• MFIE-LU: MFIE and the linear system is solved from a LU decomposition.
• EFIE-PO: EFIE is computed from the PO impedance matrix derived in Section 3.3.
• POJ : The {an} coefficients (unknowns of the linear system Z̄a = b) are computed from PO derived

in Reference [55] (the linear system is not solved).
• EFIE-CBFM-PMethod-[N̄IPW ⇒ N̄IPW,SVD] (P = 9 and a block of area (2λ)2), where ‘Method”

is the method applied to calculate the PBFs of a block. It can be “LU” (calculated from a LU
decomposition of the sub-impedance matrix), “POJ” (calculated from the PO published in [55])
and “PO” (computed from the PO impedance matrix derived in Section 3.2).
In addition, the last number “Dif” in the legend, is the mean difference in dB scale (ratio in linear

scale) over the Nθsca scattering angles against the reference method “EFIE-LU”. It is defined as

Dif =
1

Nθsca

∑

θsca

10
∣∣∣∣log10

(
RCS

RCSEFIE-LU

)∣∣∣∣ . (21)

As expected, around the specular direction (near 0 degree), Fig. 1 shows that the PO results of
the different formulations match well with those obtained from EFIE-LU. Far from this direction, they
strongly deviate because PO neglects the edge diffraction. For a smooth plate, the principle value of
MFIE only contributes (because no curvature) which equals PO when no shadow occurs. If a thin
smooth plate (typically of thickness of 0.1λ) is considered, then a very good agreement between EFIE-
LU and MFIE-LU is obtained. But the number of unknowns is approximated twice larger, which needs
more numerical resources.
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In other hand, Fig. 2 shows that the EFIE-CBFM-9LU results coincide with those of EFIE-
LU. Moreover, those computed from CBFM combined with PO match very well with EFIE-LU. It is
important to underline that this means that the edge diffraction is accounted for in CBFM although the
PBFs are calculated from PO. As pointed out by Lucente et al. [59], even if the PFBs are approximated,
thanks to the second step of CBFM consisting in calculating the characteristic impedance matrix, CBFM
gives good results.

From Table 2 the reduction factor NEdge/NR = 10, 680/(9× 88) ≈ 13.5.

4.2. Sphere of Radius Equals 0.8λ

To test the performances of CBFM combined with PO, a geometry with a curvature depicted in Fig. 3
is considered: A sphere of radius equals 0.8λ and the edge mean length is 0.05λ. The simulation
parameters are listed in Table 2.

Figure 4 plots the RCS in dBm2 versus the scattering angle θsca. The incident angle is θinc = 0
and the polarization is VV. In addition, the reference Mie solution ([60], Section 6.1) is plotted. As
expected, the EFIE-LU results match well those of Mie, as well those computed from CBFM-8LU and

Figure 3. Sphere of radius equals 0.8λ (NEdge = 10, 806). A block is represented by a color and the
edge mean length is 0.05λ. The simulation parameters are listed in Table 2.

Figure 4. RCS in dBm2 versus the scattering
angle θsca. Sphere of radius equals 0.8λ (NEdge =
10, 806 and the geometry is shown in Fig. 3),
θinc = 0 and the polarization is VV. The
simulation parameters are listed in Table 2.

Figure 5. Same variations as in Fig. 4 but the
MFIE is applied.
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CBFM-8PO, except those obtained from CBFM-8POJ (PO published in [55]). This means that POJ is
inaccurate for the calculation of the PBFs for an object with a curvature. The results computed from
“CBFM-8PO” are slightly better than those obtained by “CBFM-8LU” because the number of PBFs
N̄IPW,SVD is slightly larger (42 and 41, respectively).

From Table 2, the reduction factor NEdge/NR = 10, 806/(8× 41) ≈ 33.
Figure 5 plots the same variations as in Fig. 4 but the MFIE is applied. As we can see, a good

agreement is obtained between the different models except when “POJ” (PO published in [55]) is applied
for the calculation of the PBFs. In comparison to EFIE-CBFM, more PBFs are needed (62 instead of
41 for EFIE), which explains that the MFIE-CBFM results are slightly better.

4.3. Dihedral with Defaults

To exhibit at least two reflections, a dihedral is considered in Fig. 6. It is composed of two identical
plates of area (4λ)2 with 4 defaults of Gaussian shapes with an amplitude a = 0.5λ. In addition, the
plates are orthogonal.

Figure 6. Dihedral composed of two identical
plates of area (4λ)2 with 4 defaults of Gaussian
shapes with an amplitude a = 0.5λ. In addition,
the plates are orthogonal. The total number of
blocks P = 8 (area (2λ)2 and plotted in different
colors) and the 4 defaults are included into 4
blocks. The simulation parameters are listed in
Table 2.

Figure 7. RCS in dBm2 versus the scattering
angle θsca. The geometry is shown in Fig. 6 and
the polarization is VV. The simulation parameters
are listed in Table 2.

Figure 7 plots the corresponding RCS in dBm2 versus the scattering angle θsca. The simulation
parameters are listed in Table 2. As we can see, CBFM-8LU perfectly matches with the reference
method EFIE-LU and CBFM combined with the PO impedance matrix (CBFM-8PO and CBFM-
4LU+4PO) predicts satisfactory results. Nevertheless, the comparison of CBFM-8POJ with EFIE+LU
is not satisfactory. For the PBFs computation, the domain decomposition method is able to apply
either LU or PO on each block. For CBFM-4LU+4PO, LU is applied on the 4 blocks with defaults
and for the 4 remaining blocks, PO is used. As expected, the comparison of CBFM-4LU+4PO with
CBFM-8LU shows that the use of LU on the blocks with defaults slightly improves the results. The
local default has an amplitude of a = 0.5λ and the area block is (2λ)2. This implies that the mean slope
of the default is of the order of a/λ = 0.5 and the PO approximation may be failed.

From Table 2, the reduction factor NEdge/NR = 9, 480/(8× 106) ≈ 11.2.



10 Bourlier

4.4. Open-ended Cavity of Size 4 × 4 × 12λ3 with 1 Default

To exhibit multiple reflections, an open-ended cavity is considered in Fig. 8. The total number of blocks
is P = 24 and the single default of a Gaussian shape with an amplitude |a| = 1λ) (located at the
bottom) is included into 4 blocks.

Figure 8. Open-ended cavity of size 4× 4× 12λ3

with 1 default of Gaussian shape (a = −0.5λ).
The total number of blocks is P = 24 and the
single default (located at the bottom) is included
into 4 blocks. The simulation parameters are
listed in Table 2.

Figure 9. RCS in dBm2 versus the scattering
angle θsca. The geometry is shown in Fig. 8,
the polarization is VV and θinc = −π/6. The
simulation parameters are listed in Table 2.

Figure 9 plots the corresponding RCS in dBm2 versus the scattering angle θsca. The polarization is
VV and θinc = −π/6. The simulation parameters are listed in Table 2. In addition, in comparison to the
three previous geometries, the number of PBFs N̄IPW is multiplied by 2 and the threshold εCBFM = 10−4

(instead of 10−3) to obtain more-accurate results. As we can see in Fig. 9, CBFM-24LU still predicts
very good results and CBFM combined with PO, except POJ, give satisfactory results.

From Table 2 the reduction factor NEdge/NR = 62, 320/(24× 211) ≈ 12.3.

4.5. Paraboloid of Size 9 × 9λ2

To exhibit multiple reflections for an object with curvature, a paraboloid is considered in Fig. 10. The
total number of blocks is P = 36. Fig. 11 plots the corresponding RCS in dBm2 versus the scattering
angle θsca. The polarization is VV and θinc = −π/6. The simulation parameters are listed in Table 2.
As we can see in Fig. 11, CBFM-36LU predicts very good results and, CBFM-36PO combined with PO
and RACA (for the compression of the coupling matrices) give satisfactory results. Some differences
occur for low strengths of the RCS. In the legend of Fig. 11, the numbers with an exponent indicate
the RACA thresholds (εACA, εRACA = 10εACA). The last number equals the mean RACA compression
ratio τ̄RACA. If τRACA = 1, then a coupling matrix can only be nearly expressed as the product of a
single column vector by a single row vector.

It is well known that ACA algorithm is efficient for two “far” blocks. Thus, for blocks sharing at
least one vertex, ACA is not applied. This means in Fig. 10 that ACA is applied on 1090 block pairs
over a total of 362 = 1296. As we can see in Fig. 11, as (εACA, εRACA = 10εACA) increases, the ACA
compression ratio increases and it is closer of 1, implying that RACA is very efficient. In addition, the
precision on the RCS remains satisfactory.
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Figure 10. Paraboloid of size 9 × 9λ2 with an
amplitude of a = 4.5λ. The total number of blocks
is P = 36. The simulation parameters are listed
in Table 2.

Figure 11. RCS in dBm2 versus the scattering
angle θsca. The geometry is shown in Fig. 10,
the polarization is VV and θinc = −π/6. The
simulation parameters are listed in Table 2.

4.6. PBFs Computation Acceleration from Iterative Algorithms

It is important to underline that the PO impedance matrix Z̄PO is nearly diagonal. A simple means to
solve the linear system Z̄POX = b is to write

X = Z̄−1
POb =

(
Z̄D + ∆̄Z

)−1 b =
[
Z̄D

(
Ī + Z̄−1

D ∆̄Z

)]−1
b

=
(
Ī + M̄c

)−1 Z̄−1
D b

≈
K∑

k=0

(−M̄c

)k Z̄Db =
K∑

k=0

Ȳ(k), (22)

in which {
Ȳ(0) = Z̄Db k = 0
Ȳ(k+1) = −M̄cȲ(k) k > 0

. (23)

This algorithm converges if the spectral radius (largest modulus of its eigenvalues) of M̄c = Z̄−1
D ∆̄Z is

strictly smaller than one. The matrix Z̄D is the diagonal part of Z̄PO and the sparse matrix is defined
as ∆̄Z = Z̄PO − Z̄D and has only 3NEdge non zero values. Thus, the calculation of M̄cȲ(k) requires
only 3NEdge + NEdge = 4NEdge multiplications instead of N2

Edge for a full matrix. The complexity of
the above iterative method is O(4KNEdge), where K is the convergence order obtained by setting a
threshold.

Figure 12 plots the RCS in dBm2 versus the scattering angle θsca. The simulation parameters are
the same as in Fig. 11. In addition, in the legend “LU” means “EFIE+LU” and the last 3 curves are
obtained from EFIE-CBFM combined with PO. The label “ITK̄” means that the PFBs are computed
from Equation (22) and the mean convergence order K̄ = 12, whereas for “GCK̄” (function bicg in
MatLab), they are computed from the gradient conjugate method and K̄ = 8. For the both methods,
the threshold equals 10−3. As we can see, the two iterative methods predict good results in comparison
to 36PO and converge rapidly.

4.7. Complexity and Comments on the MatLab Software

Figure 13 plots the filling time in seconds to calculate the whole impedance matrix (for LU) and the
sub-matrices of CBFM. Figs. 14 and 15 plot the numerical and theoretical complexities in seconds (the
time filling is not included), respectively. The geometry shape is shown in Fig. 10 of size L× L, where
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Figure 12. RCS in dBm2 versus the scattering
angle θsca. The simulation parameters are the
same as in Fig. 11. In addition, in the legend
“LU” means “EFIE+LU” and the last 3 curves are
obtained from EFIE-CBFM combined with PO.

Figure 13. Filling time in seconds to calculate
the whole impedance matrix (for LU) and the sub-
matrices of CBFM. The EFIE is applied.

Figure 14. Numerical complexity in seconds (the
filling time is not included). The EFIE is applied.

Figure 15. Theoretical complexity in seconds
(the filling time is not included). The EFIE is
applied.

the length L ranges from 6λ to 16λ and the amplitude a = L/2 (the slopes are constant with respect
to L). The number of edges NEdge ranges from 10,680 to 119,600 and the size of the blocks (2λ)2 are
constant (their number ranges from 9 to 100). The EFIE is applied. The complexity is modeled as
C = aNn

Edge, in which (a, n) are obtained from a linear regression. The value of n (with 2 digits) is
listed in the legends of Figs. 13, 14 and 15. The last number r is the regression coefficient (if r = 1 the
regression is perfect).

As expected, Fig. 13 shows that the time to calculate the elements of the impedance matrix(ces)
is nearly O(N2

Edge) and the use of ACA (εACA = 10−4, εRACA = 10εACA = 10−3) allows us to reduce
this time as O(N1.4

Edge). Theoretically, the complexity can be approximated by O(N2
Edge)(1 − τ̄RACA),

where τ̄RACA ∈ [0.98, 0.99] (mean RACA compression ratio, see labeled of Fig. 11 for typical values).
The complexity of ACA is O(R2(M + N)), where R is the matrix rank of size M × N , must be also
accounted for. Fig. 13 reveals that the use of PO does not change the time because only 4PNEdge
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additional elements (in comparison to N2
Edge) are computed. It is important to underline that the times

of LU and CBFM should be the same. The explanation is that with CBFM, to compute the P 2 sub-
matrices, the associated function (written in C) is called P 2 times from MatLab, whereas only once for
LU.

The EFIE-CBFM theoretical complexity (filling time of the impedance matrices not included) is
expressed as

CCBFM = C1 + C2 + C3, (24)

with 



C1 = P
[
2O

(
N̄3

Edge,OL

)
+ N̄IPWO(N̄2

Edge,OL)
]

PBFs computation

C2 = 2P 2N̄IPW,SVDO
(
N̄2

Edge

)
Z̄R computation

C3 = O (
N2

R

)
+O (

N3
R

)
To solve Z̄RXR = bR

. (25)

In C1, the factor 2 is for the complexities of the SVD and LU decompositions.
Figure 14 shows that the numerical complexity of LU is nearly O(N2.8

Edge) instead of O(N3
Edge) for

the theoretical one. In Matlab, the function linsolve is applied to solve the linear system and its is well
optimized since it is parallelized. The use of CBFM (without parallelization) allows us to reduce the
complexity as O(N1.8

Edge) and its hybridization with ACA (in Equation (4), acceleration of the matrix-
matrix products because the sub-matrices are compressed) slightly reduces the time.

The use of CBFM-POJ does not require to invert a matrix, that is in Equation (25), C1 =
P [O(N̄3

Edge,OL)+N̄IPWO(N̄Edge,OL)], whereas CBFM-PO needs this operation. As shown in Section 4.6,
to exploit the sparsity of the PO impedance matrix, a basic iterative technique is applied. In addition,
the guess is computed by taking the diagonal of the matrix. Numerical tests showed (see Fig. 12) that
the method converges rapidly. The theoretical complexity to compute the 2NIPW PBFs of a single
block is approximately O(4N̄Edge,OLKNIPW), whereas from LU, it is O(N̄3

Edge,OL). Therefore, the time
saving should be N̄2

Edge,OL/(4KNIPW) À 1. With MatLab, numerical tests (1400 edges; sub-surface of
size (2λ)2) showed that this ratio is the order of 1. This shows that the function linsolve of MatLab,
for which no loop is needed for the calculation of the PBFs, is well optimized (because parallelized) for
multiple excitations. When CBFM is hybridized with PO and an iterative solver (like IT or CG), two
loops are needed; the first one on the PBFs number and the second one, on the iteration k to obtain the
convergence order K. This explains why the complexity (not shown here) is nearly the same between
CBFM-LU and CBFM-PO-IT or CBFM-PO-CG.

On the other hand, since the PO impedance matrix is sparse, a specific LU decomposition using
this property can be applied. The function lu of the MatLab software has this property. But, for the
calculation of the PBFs, it is more relevant to use the MatLab function linsolve which can solve a
linear system with multiple excitation vectors but by considering a full matrix (a sparse matrix is not
accepted). Comparing lu (with a sparse matrix) and linsolve (the sparse matrix is converted into a full
matrix), the computing time is very similar, which means that the computing time to solve a linear
system from CBFM-LU and CBFM-PO is nearly the same with MatLab.

The comparison of Fig. 15 with Fig. 14 reveals that the theoretical complexity matches with the
numerical one for CBFM. If ACA is hybridized, then the theoretical complexity is underestimated,
because the complexity of the ACA algorithm is not accounted for. Theoretically, in Equation (25), the
complexity C1 is multiplied by 1− τ̄RACA, where τ̄RACA ∈ [0.98, 0.99] (mean RACA compression ratio,
see labeled of Fig. 11 for typical values).

Another advantage of CBFM (with or without PO) is that the memory requirement is
P 2O(N̄2

IPW,SVD), whereas for a conventional MoM, it is P 2O(N̄2
Edge). In addition, once the characteristic

matrix Z̄R is calculated and stored, multiple excitations can simultaneously be handled with linsolve.
It is also possible with a conventional MoM, but the entire impedance matrix must be stored, which is
impossible for huge problems.

With CBFM, the comparison of Fig. 13 with Fig. 14 shows that the time allocated to compute
the sub-matrices is larger than that to solve the linear system. Another advantage of a domain
decomposition method is its ability to be parallelized. This procedure will allow us to reduce the
computing time of the first (calculation of the self-impedance sub-matrices and the PBFs) and second
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(computation of the characteristic matrix) stages of CBFM. With respect to the CBFM stages, a detailed
analysis of the complexity is addressed in [20].

5. CONCLUSION

This paper proved that the CBFM is a very efficient method to calculate the RCS from a large object,
for which multiple refection occurs. In addition, to accelerate the calculation of the PBFs, the PO
approximation with single refection is applied. The PO impedance matrix needs to be derived from
the EFIE to avoid to apply the MFIE. To our knowledge, it is the first time that this derivation is
addressed. Its numerical computation requires to nearly calculate 4NEdge elements instead of N2

Edge.
Numerical tests on different targets showed that EFIE-CBFM-PO match very well with EFIE-CBFM-
LU and the conventional MoM. In addition, a simple iterative algorihtm is addressed to accelerate the
PBFs calculation with PO. The fact to invert the matrix allows us to have a robuster PO versus the
surface curvature, unlike POJ.
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18. Bourlier, C. S. Bellez, and G. Kubické, “Sub-domain decomposition iterative method combined
with ACA: An efficient technique for the scattering from a large highly conducting rough sea
surface,” IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 659–666, 2015.

19. Bellez, S., C. Bourlier, and G. Kubické, “An efficient PILE algorithm for solving the scattering
from three-dimensional (3-D) nested homogeneous dielectric bodies,” Journal of the Optical Society
of America A, Vol. 32, No. 3, 392–401, 2015.

20. Bourlier, C., Y. Arencibia Noa, and G. Kubické, “Two domain decomposition methods, SDIM and
CBFM, for the scattering from a two-dimensional perfectly-conducting rough surface: Comparison
and parametric study,” Journal of the Optical Society of America A, Vol. 37, No. 9, 1512–1525,
2020.

21. Yagbasan, A., C. A. Tunc, V. B. Erturk, A. Altintas, and R. Mitra, “Characteristic basis
function method for solving electromagnetic scattering problems over rough terrain profiles,” IEEE
Transactions on Antennas and Propagation, Vol. 58, No. 5, 1579–1589, 2010.

22. Garcia, E., C. Delgado, L. Plata Lozano, I. Gonzalez-Diego, and M. Felipe Catedra, “An efficient
hybrid-ccheme combining the characteristic basis function method and the multilevel fast multipole
algorithm for solving bistatic RCS and radiation problems,” Progress In Electromagnetics Research
B, Vol. 34, 327–343, 2011.

23. Li, C. and R. Mittra, “Characteristic basis function method for fast analysis of 3-D scattering from
objects buried under rough surfaces,” IEEE Transactions on Geoscience and Remote Sensing,
Vol. 57, No. 8, 5252–5265, 2019.

24. Xia, C., W. You, and Y. Sun, “Fast calculation of monostatic radar cross section of conducting
targets using hierarchical characteristic basis function method and singular value decomposition,”
Progress In Electromagnetics Research Letters, Vol. 81, 133–139, 2019.

25. Bourlier, C., “Rough layer scattering filled by elliptical cylinders from the method of moments
combined with the characteristic basis function method and the Kirchoff approximation,” Journal
of the Optical Society of America A, Vol. 38, No. 10, 1581–1593, 2021.

26. Pouliguen, P., R. Hemon, C. Bourlier, J. F. Damiens, and J. Saillard, “Analytical formulae for
radar cross section of at plates in near field and normal incidence,” Progress In Electromagnetics
Research, Vol. 9, 263–279, 2008.

27. Vallecchi, A., “Physical optics curved-boundary dielectric plate scattering formulas for an accurate
and efficient electromagnetic characterization of a class of natural targets,” IEEE Transactions on
Geoscience and Remote Sensing, Vol. 46, No. 6, 1657–1666, 2008.

28. Bourlier, C. and P. P. Pouliguen, “Useful analytical formulae for nearfield monostatic radar
cross section under the physical optics: Far-field criterion,” IEEE Transactions on Antennas and
Propagation, Vol. 57, No. 1, 205–214, 2009.

29. Corbel, C., C. Bourlier, N. Pinel, and J. Chauveau, “Rough surface RCS measurements and
simulations using the physical optics approximation,” IEEE Transactions on Antennas and



16 Bourlier

Propagation, Vol. 61, No. 10, 5155–5165, 2013.
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51. Thomet, A., G. Kubické, C. Bourlier, and P. Pouliguen, “Low computational cost method for
scattering of large cavities based on ACA compression of Iterative Physical Optics,” Int. Conf.
Electromagn. Adv. Appl. (ICEAA), 207–210, Sep. 2015.

52. Hémon, R., P. Pouliguen, J. Saillard, and J. F. Damiens, “Implementation of the equivalent
currents method in the IPO method,” 2008 IEEE Antennas and Propagation Society International
Symposium, San Diego, CA, Jul. 2008.

53. Michaeli, A., “Equivalent edge currents for arbitrary aspects of observations,” IEEE Transactions
on Antennas and Propagation, Vol. 23, No. 3, 252–258, 1984.

54. Knott, E. F., “The relationship between Mitzner’s ILDC and Michaeli’s equivalent currents,” IEEE
Transactions on Antennas and Propagation, Vol. 33, No. 1, 112–114, 1985.

55. Jakobus, U. and M. Landstorfer, “Improved PO-MM hybrid formulation for scattering from three-
dimensional perfectly conducting bodies of arbitrary shape,” IEEE Transactions on Antennas and
Propagation, Vol. 43, No. 2, 162–169, 1995.

56. Bebendorf, M. and S. Rjasanow, “Adaptive low-rank approximation of collocation matrices,”
Computing, Vol. 701, No. 1, 1–24, 2003.

57. Zhao, K., M. N. Vouvakis, and J.-F. Lee, “The adaptive cross approximation algorithm
for accelerated method of moments computations of EMC problems,” IEEE Transactions on
Electromagnetic Compatibility, Vol. 47, No. 4, 763–773, 2005.

58. Rao, S., D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,”
IEEE Transactions on Antennas and Propagation, Vol. 30, No. 409-18, 1982.

59. Lucente, E., A. Monorchio, and R. Mittra, “An iteration-free MoM approach based on excitation
independent characteristic basis functions for solving large multiscale electromagnetic scattering
problems,” IEEE Transactions on Antennas and Propagation, Vol. 56, No. 4, 999–1007, 2008.

60. Tsang, L., J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves, Theories and
Applications, W. S. in Remote Sensing, John Wiley & Sons, Inc., 2000.


