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LARGE TIME CONVERGENCE FOR A CHEMOTAXIS MODEL WITH
DEGENERATE LOCAL SENSING AND CONSUMPTION

PHILIPPE LAURENÇOT

Abstract. Convergence to a steady state in the long term limit is established for global weak
solutions to a chemotaxis model with degenerate local sensing and consumption, when the motility
function is C1-smooth on [0,∞), vanishes at zero, and is positive on (0,∞). A condition excluding
that the large time limit is spatially homogeneous is also provided. These results extend previous
ones derived for motility functions vanishing algebraically at zero and rely on a completely different
approach.

1. Introduction

The chemotaxis system with local sensing and consumption

∂tu = ∆(uγ(v)) in (0,∞)× Ω , (1.1a)

∂tv = ∆v − uv in (0,∞)× Ω , (1.1b)

∇(uγ(v)) · n = ∇v · n = 0 on (0,∞)× ∂Ω , (1.1c)

(u, v)(0) = (uin, vin) in Ω , (1.1d)

describes the dynamics of a population of cells with density u ≥ 0 living on a nutrient with con-
centration v ≥ 0 and moving in space under the combined effects of a nutrient-dependent diffusion
and a nutrient-induced chemotactic bias [12]. Here, Ω is a bounded domain of Rn, n ≥ 1, and the
motility γ is a smooth function which is positive on (0,∞). Unlike the classical Keller-Segel system
with local sensing

∂tu = ∆(uγ(v)) in (0,∞)× Ω , (1.2a)

∂tv = ∆v − v + u in (0,∞)× Ω , (1.2b)

∇(uγ(v)) · n = ∇v · n = 0 on (0,∞)× ∂Ω , (1.2c)

(u, v)(0) = (uin, vin) in Ω , (1.2d)
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in which the variable v is rather the concentration of a signalling chemical produced by the cells
as accounted for in (1.2b) [11], the nutrient is consumed by the cells in the model (1.1) accord-
ing to the nonlinear absorption term −uv in (1.1b). The dynamics of the two models is thus ex-
pected to differ significantly. On the one hand, the long term behaviour of solutions to (1.2) is far
from being completely understood. Convergence of (u, v) to the spatially homogeneous steady state
(‖uin‖1/|Ω|, ‖uin‖1/|Ω|) is established in [3, Theorem 1.5] when γ′(s) ≤ 0 ≤ sγ′(s) + γ(s) for s ≥ 0
and a similar result is likely to be true when γ′ ≥ 0. Such a simple dynamics is however unlikely
to be the generic one, as there exist non-constant stationary solutions to (1.2) in some domains,
see [18, 20]. Besides, though solutions to (1.2) are global and even bounded for a large class of
motility functions γ [1–5, 7, 9, 17, 19, 25, 26], unbounded solutions do exist [6, 8, 10].
The situation is somewhat simpler for (1.1) as the set of stationary solutions can easily be identified

and seen to depend heavily on the value of γ(0) [16,24]. Indeed, if γ(0) > 0, then the only steady states
to (1.1) are the spatially homogeneous solutions (M, 0),M ≥ 0, and they attract the dynamics [13,16].
In contrast, the set of stationary solutions to (1.1) is much larger when γ(0) = 0, as (ū, 0) is a
stationary solution to (1.1) for any (sufficiently smooth) function ū. Despite this wealth of stationary
solutions, Winkler proves in [22,24] that the dynamics of (1.1) selects one and only one steady state
in the large time limit: more precisely, given

γ ∈ C1([0,∞)) , γ(0) = 0, γ > 0 on (0,∞) , (1.3)

satisfying

γ ∈ C3((0,∞)) and lim inf
s→0

{

γ(s)

sα

}

> 0 (1.4)

for some α ≥ 1 and a suitably constructed global weak solution (u, v) to (1.1) [21, 23], there is a
non-negative measurable function u∞ such that

(u(t), v(t)) converges to (u∞, 0) in a suitable topology

if one of the following additional assumptions holds true:

(I): n ∈ {1, 2} and γ′(0) > 0, see [22, Theorem 1.4],
(II): n ≥ 3 and there is α′ ∈ (1, 2] such that

lim sup
s→0

{

s2−α′ |γ′′(s)|
}

< ∞ , (1.5)

see [24, Theorem 1.2].

Observe that, for α ≥ 1, the function γ(s) = sα, s ≥ 0, satisfies (1.3), (1.4), and (1.5) with
α′ = min{α, 2}.
Besides, conditions on γ, uin, and vin are provided to guarantee that u∞ is not a constant, see [22,

Theorem 1.5] and [24, Corollary 1.4].
The aim of this note is to prove that these results are actually valid under the sole assumption (1.3)

on γ, without assuming an algebraic behaviour of γ near zero. However, the convergence established
below takes place in a weaker topology for the u-component than the one obtained in [22, 24]. In
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addition, the approach used herein is different and thus provides an alternative viewpoint on the
stabilization issue for (1.1). We first state the convergence result.

Theorem 1.1. Assume that γ satisfies (1.3) and consider (uin, vin) ∈ L∞
+ (Ω,R2), where E+ denotes

the positive cone of the Banach lattice E. If (u, v) is a global weak solution to (1.1) in the sense of

Definition 2.1 below, then

A∞(x) :=

∫ ∞

0

(uγ(v))(s, x) ds ∈ H1
+(Ω) , x ∈ Ω ,

and

u(t) ⇀ u∞ := ∆A∞ + uin in H1(Ω)′ as t → ∞ , (1.6)

lim
t→∞

‖v(t)‖p = 0 , p ∈ [1,∞) . (1.7)

Moreover, 〈u∞, ϑ〉(H1)′,H1 ≥ 0 for all ϑ ∈ H1
+(Ω) and 〈u∞, 1〉(H1)′,H1 = 〈uin, 1〉(H1)′,H1.

The cornerstone of our approach to the study of the long term behaviour of global weak solutions
to (1.1)is the observation that the dynamics of the system (1.1) is somewhat encoded in that of the
auxiliary function

A(t, x) :=

∫ t

0

(uγ(v))(s, x) ds , (t, x) ∈ (0,∞)× Ω ,

which bears several interesting properties collected in Lemma 2.3. Among others, t 7→ A(t, x) is
non-decreasing for a.e. x ∈ Ω and the trajectory {A(t) : t ≥ 0} is bounded in H1(Ω), two features
which guarantee in particular that the function A∞ introduced in Theorem 1.1 is well-defined and lies
in H1(Ω). Moreover, for all t ≥ 0, the function A(t) is a variational solution of the elliptic equation

−∆A(t) = uin − u(t) in Ω , ∇A(t) · n = 0 on ∂Ω ,

so that the large time behaviour of u(t) is driven by that of A(t).
The second contribution of this paper is in the spirit of [24, Theorem 1.3] and provides an estimate

on the distance in H1(Ω)′ between the initial condition uin and the final state u∞ of the u-component
of (1.1). Its statement requires additional notation, which we introduce now: for z ∈ H1(Ω)′, we set
〈z〉 := 〈z, 1〉(H1)′,H1/|Ω| and note that

〈z〉 = 1

|Ω|

∫

Ω

z(x) dx for z ∈ H1(Ω)′ ∩ L1(Ω).

Now, for z ∈ H1(Ω)′ with 〈z〉 = 0, we define K[z] ∈ H1(Ω) as the unique (variational) solution to

−∆K[z] = z in Ω , ∇K[z] · n = 0 on ∂Ω , (1.8a)

satisfying
〈K[z]〉 = 0 . (1.8b)

We then choose the following norm ‖ · ‖(H1)′ on H1(Ω)′:

‖z‖(H1)′ := ‖∇K[z − 〈z〉]‖2 + |〈z〉| , z ∈ (H1)(Ω)′.
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Proposition 1.2. Assume that γ satisfies (1.3) and consider (uin, vin) ∈ L∞
+ (Ω,R2). If (u, v) is a

global weak solution to (1.1) in the sense of Definition 2.1 below and u∞ denotes the weak limit in

H1(Ω)′ of u(t) as t → ∞ given by Theorem 1.1, then

‖u∞ − uin‖2(H1)′ ≤ ‖uin‖∞‖vin‖1‖γ′‖L∞(0,‖vin‖∞) . (1.9)

In particular, if

‖uin‖∞‖vin‖1‖γ′‖L∞(0,‖vin‖∞) < ‖uin − 〈uin〉‖2(H1)′ , (1.10)

then u∞ is not a constant.

An immediate consequence of Proposition 1.2 is that, given uin ∈ L∞
+ (Ω) with uin 6≡ 〈uin〉 and a

sufficient small vin ∈ L∞
+ (Ω), the first component of the corresponding global weak solution (u, v)

to (1.1) has a non-constant limit. A quantitative estimate on the required smallness of vin in L∞(Ω)
is provided by (1.10) and reads

‖vin‖∞‖γ′‖L∞(0,‖vin‖∞) <
‖uin − 〈uin〉‖2(H1)′

|Ω|‖uin‖∞
.

Such a result is obviously connected with the fact that the solution (u, v) to (1.1) with initial condition
(uin, 0) is the stationary solution (u, v) = (uin, 0), as already mentioned.

2. Proofs

Let us first make precise the notion of global weak solution to (1.1) to be used in this paper. We
emphasize here that, since γ(0) = 0, the equation (1.1a) is degenerate, so that we cannot expect
much regularity on u.

Definition 2.1. Assume that γ satisfies (1.3) and consider (uin, vin) ∈ L∞
+ (Ω,R2). A global weak

solution to (1.1) is a pair of non-negative functions (u, v) such that

u ∈ Cw([0,∞), H1(Ω)′) ∩ L∞((0,∞), L1
+(Ω)) ,

v ∈ C([0,∞), L1
+(Ω)) ∩ L∞((0,∞)× Ω) ∩ L2

loc([0,∞), H1(Ω)) ,

u
√

γ(v) ∈ L2
loc([0,∞), L2(Ω)) ,

which satisfies

〈u(t), ϑ(t)〉(H1)′,H1 −
∫

Ω

uinϑ(0) dx =

∫ t

0

∫

Ω

u(s)γ(v(s))∆ϑ(s) dxds

+

∫ t

0

〈u(s), ∂tϑ(s)〉(H1)′,H1 ds

for ϑ ∈ L2((0, t), H2
N(Ω)) ∩W 1,2((0, t), H1(Ω)) and t ≥ 0, where

H2
N(Ω) := {z ∈ H2(Ω) : ∇z · n = 0 on ∂Ω} ,
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as well as
∫

Ω

(v(t)ϑ(t)− vinϑ(0)) dx+

∫ t

0

∫

Ω

∇v(s) · ∇ϑ(s) dxds +

∫ t

0

∫

Ω

(uv)(s)ϑ(s) dxds

=

∫ t

0

∫

Ω

v(s)∂tϑ(s) dxds

for ϑ ∈ L2((0, t), H1(Ω)) ∩ L∞((0, t)× Ω) and t ≥ 0.

We shall not address the existence issue here and refer to [21–23] for results in that direction, the
main assumption on γ being that it vanishes in an algebraic way at zero. In the non-degenerate case
γ > 0 on [0,∞), implying in particular that γ(0) > 0, existence results are also available, see [14–16].

We now fix γ satisfying (1.3) and consider (uin, vin) ∈ L∞
+ (Ω,R2), along with a global weak solution

(u, v) to (1.1) in the sense of Definition 2.1. As a first step towards the identification of the large
time limit of (u, v), we collect obvious consequences of (1.1), the non-negativity of u and v, and the
comparison principle.

Lemma 2.2. For t ≥ 0,

〈u(t)〉 = M := 〈uin〉 and ‖v(t)‖∞ ≤ V := ‖vin‖∞ . (2.1)

Moreover,
∫ ∞

0

‖(uv)(t)‖1 dt ≤ ‖vin‖1 . (2.2)

Proof. We integrate (1.1a) with respect to space and time and use the no-flux boundary condi-
tions (1.1c) to obtain the first identity in (2.1). Similarly, we infer from (1.1b) and (1.1c) that

d

dt
‖v(t)‖1 +

∫ t

0

‖(uv)(s)‖1 ds = ‖vin‖1 , t ≥ 0 , (2.3)

from which (2.2) readily follows. Finally, we use the comparison principle to deduce from (1.1b),
(1.1c), and the non-negativity of uv that v(t, x) ≤ V for (t, x) ∈ [0,∞)× Ω̄, thereby completing the
proof of (2.1). �

We now define the auxiliary function

A(t, x) :=

∫ t

0

(uγ(v))(s, x) ds , (t, x) ∈ (0,∞)× Ω ,

and devote the next lemma to its properties.

Lemma 2.3. The function A belongs to L∞((0,∞), H1(Ω)) with

‖A(t)‖1 ≤ ‖vin‖1‖γ′‖L∞(0,V ) , t ≥ 0 , (2.4a)

‖∇A(t)‖22 ≤ ‖uin‖∞‖vin‖1‖γ′‖L∞(0,V ) , t ≥ 0 . (2.4b)
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In addition, t 7→ A(t, x) is a non-decreasing function for a.e. x ∈ Ω and

A∞(x) := sup
t≥0

{A(t, x)} =

∫ ∞

0

(uγ(v))(s, x) ds , x ∈ Ω , (2.5)

is well-defined and belongs to H1
+(Ω). Also, for any ϑ ∈ H1(Ω),

lim
t→∞

‖A(t)−A∞‖2 = lim
t→∞

∫

Ω

∇ϑ · ∇(A(t)−A∞) dx = 0 . (2.6)

Proof. Owing to the non-negativity of u and γ,

A(t1, x) ≤ A(t2, x) , 0 ≤ t1 ≤ t2 , x ∈ Ω ,

while, for t ≥ 0, it follows from (1.3), (2.1), and (2.2) that

‖A(t)‖1 =
∫ t

0

∫

Ω

(uγ(v))(s, x) dxds ≤ ‖γ′‖L∞(0,V )

∫ t

0

∫

Ω

(uv)(s, x) dxds

≤ ‖vin‖1‖γ′‖L∞(0,V ) ,

which proves (2.4a). Furthermore, the monotone convergence theorem implies that the function A∞

defined by (2.5) belongs to L1
+(Ω) and

lim
t→∞

‖A(t)− A∞‖1 = 0 . (2.7)

We next infer from (1.1a), (1.1c), and the definition of A that, for t ≥ 0,

u(t)−∆A(t) = uin in H1(Ω)′ . (2.8)

In particular, A(t) − 〈A(t)〉 = K[uin − u(t)] belongs to H1(Ω) and we infer from (2.8) and the
non-negativity of u(t) and A(t) that

‖∇A(t)‖22 = 〈−∆A(t), A(t)〉(H1)′,H1

≤ 〈u(t)−∆A(t), A(t)〉(H1)′,H1 =

∫

Ω

uinA(t) dx

≤ ‖uin‖∞‖A(t)‖1 .
Hence, by (2.4a),

‖∇A(t)‖22 ≤ ‖uin‖∞‖vin‖1‖γ′‖L∞(0,V ) ,

from which (2.4b) follows. Finally, we deduce the H1-regularity of A∞ from (2.4b) by a weak
compactness argument, whereas the convergence (2.6) is an immediate consequence of (2.4a), (2.4b),
and (2.7). �

We next turn to the convergence of v and begin with a classical energy estimate, which is available
here thanks to the non-negativity of the right hand side of (1.1b).

Lemma 2.4. For t ≥ 0,
d

dt
‖v‖22 + 2‖∇v‖22 + 2‖v

√
u‖22 = 0 .
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Lemma 2.5. For each p ∈ [1,∞),

lim
t→∞

‖v(t)‖p = 0 .

Proof. Introducing P := K[u−M ] and P in := K[uin −M ], we observe that P = P in − A, so that

‖∇P‖2 ≤ ‖∇P in‖2 + ‖∇A‖2 ≤ c1 := ‖uin‖2 +
√

‖uin‖∞‖vin‖1‖γ′‖L∞(0,V ) . (2.9)

We next infer from (1.8a) and (2.3) that

d

dt
‖v‖1 = −

∫

Ω

uv dx = −
∫

Ω

(M −∆P )v dx = −M‖v‖1 +
∫

Ω

∇v · ∇P dx .

Hence, using (2.9) and Hölder’s inequality,

d

dt
‖v‖1 +M‖v‖1 ≤ ‖∇v‖2‖∇P‖2 ≤ c1‖∇v‖2 .

After integration with respect to time, we obtain

‖v(t)‖1 ≤ ‖vin‖1e−Mt + c1

∫ t

0

eM(s−t)‖∇v(s)‖2 ds , t ≥ 0 . (2.10)

Now, by Hölder’s inequality,
∫ t

0

eM(s−t)‖∇v(s)‖2 ds ≤
(
∫ t

0

eM(s−t) ds

)1/2 (∫ t

0

eM(s−t)‖∇v(s)‖22 ds

)1/2

≤ 1√
M

(
∫ t

0

eM(s−t)‖∇v(s)‖22 ds

)1/2

.

Since

2

∫ ∞

0

‖∇v(s)‖22 ds ≤ ‖vin‖22
by Lemma 2.4, we deduce from the Lebesgue dominated convergence theorem that

lim
t→∞

∫ t

0

eM(s−t)‖∇v(s)‖22 ds = 0 .

Consequently,
∫ t

0

eM(s−t)‖∇v(s)‖2 ds = 0 (2.11)

and (2.10) and (2.11) entail that

lim
t→∞

‖v(t)‖1 = 0 ,

thereby proving Lemma 2.5 for p = 1. To complete the proof, we use the above convergence, along
with (2.1) and Hölder’s inequality. �

Thanks to the above analysis, we are now in a position to prove Theorem 1.1 and Proposition 1.2.
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Proof of Theorem 1.1. According to Lemma 2.3, the function A∞ introduced in Theorem 1.1 is well-
defined and belongs to H1

+(Ω). Setting u∞ = uin + ∆A∞ ∈ H1(Ω)′, we infer from (2.8) that, for
t ≥ 0 and ϑ ∈ H1(Ω),

〈u(t)− u∞, ϑ〉(H1)′,H1 = 〈u(t)− uin + uin − u∞, ϑ〉(H1)′,H1

= 〈∆(A(t)− A∞), ϑ〉(H1)′,H1

= −
∫

Ω

∇(A(t)− A∞) · ∇ϑ dx ,

and the right hand side of the above identity converges to zero as t → ∞ due to (2.6). We have thus
proved the convergence (1.6), whereas the convergence (1.7) is established in Lemma 2.5. As for the
properties of u∞ stated at the end of Theorem 1.1, they readily follow from (2.1), the non-negativity,
and the convergence (1.6) �

Proof of Proposition 1.2. The starting point is the estimate (2.4b) and the convergences (2.6) which
imply that

‖∇A∞‖22 ≤ ‖uin‖∞‖vin‖1‖γ′‖L∞(0,V ) , (2.12)

recalling that V = ‖vin‖∞. Since 〈u∞〉 = 〈uin〉 by Theorem 1.1, it follows from (2.12) and the
definition of u∞ that

‖u∞ − uin‖2(H1)′ = ‖∇K[u∞ − uin]‖22 = ‖∇A∞‖22 ≤ ‖uin‖∞‖vin‖1‖γ′‖L∞(0,V ) ,

as stated in (1.9).
Assume now that (uin, vin) satisfies (1.10). It follows from (1.9) and (1.10) that

‖u∞ − 〈uin〉‖(H1)′ = ‖u∞ − uin + uin − 〈uin〉‖(H1)′

≥ ‖uin − 〈uin〉‖(H1)′ − ‖u∞ − uin〉‖(H1)′

>
[

‖uin‖∞‖vin‖1‖γ′‖L∞(0,V )

]1/2 − ‖u∞ − uin〉‖(H1)′ > 0 .

Consequently, u∞ 6= 〈uin〉, which completes the proof after noticing that the property 〈u∞〉 = 〈uin〉
established in Theorem 1.1 excludes that u∞ coincides with any other constant. �
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[23] , Global generalized solvability in a strongly degenerate taxis-type parabolic system modeling migration-

consumption interaction, Z. Angew. Math. Phys., 74 (2023), p. 20. Id/No 32.
[24] , Stabilization despite pervasive strong cross-degeneracies in a nonlinear diffusion model for migration-

consumption interaction. preprint, 2023.
[25] Y. Xiao and J. Jiang, Global existence and uniform boundedness in a fully parabolic Keller-Segel system with

non-monotonic signal-dependent motility, J. Differ. Equations, 354 (2023), pp. 403–429.



10 Ph. Laurençot
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