Tomohiro Oda
email: tomohiro@sra.co.jp

Yasuhiro Yamamoto

Kumiyo Nakakoji
email: kumiyo@acm.org

Pintglas

PintGlas -A Live Mobility Framework for Pharo

Keywords: Process migration, Image-based environment, Cloud computing

teaching and research institutions in France or abroad, or from public or private research centers.

Introduction

The image-based environment has been a key architecture of many Smalltalk systems. A Smalltalk image is a snapshot of an execution state of a Smalltalk system including an object memory and VM stacks.

Smalltalk programmers take advantages of Smalltalk images. One notable property of Smalltalk image is process migration; a snapshot can be taken in action and the snapshot can be continued on another host. As Smalltalk image contains execution states including VM stacks, it naturally implements process migration. This enables one computational task can be relayed by multiple computers accessible to the user depending on the location. This relaxes time constraint of interactive computing when the user has limited time to access each computer. A series of computers can together perform the task by turns.

The image-based architecture of Smalltalk also provides portability; a same Smalltalk image can run on different platforms with different processors and different operating systems. This enables one computational task is split into multiple phases each of which is performed on a hardware PL'18, January 01-03, 2018, New York, NY, USA 2018.

suitable for the phase. An interaction demanding phase can be performed on a desktop PC with rich UI devices, a CPU demanding phase can be performed on a high performance server, and a storage demanding phase can be performed on a cloud server with high capacity storage service. This provides more flexibility of changing runtime environments because the checkpoints to split a computational task into phases are not necessarily pre-determined but can be determined in a live way. Portability thus gives flexibility of choices of runtime environments.

While the migration and portability of the image-based architecture enables flexible development and operation of deployed systems, the Smalltalk system iteself provides only a simple API and a UI to create a snapshot. Besides several tools support deploying a production image to remote computers, creating a live image and transfering it to a remote host are left adhoc and require manual labors.

This paper proposes a framework to provide a network mobility to Pharo systems, and introduces its initial development plan. The framework is called PintGlas. It will provide a systematic APIs to create, transfer and manage live Smalltalk images, and simple UIs for Pharo developers to manage globally distributed Pharo processes either in action or hibernated in image files.

PintGlas

This paper proposes a development of a systematic snapshot transfer framework called PintGlas (Pharo Image Network Transfer as GLoval Access Service). The goal of PintGlas is to provide a world-wide network of transfering live Pharo processes where a user can retrieve a live Pharo process on a remote host, continue it on a local host, and return it to the original host with modifications done at the local host in.

This section explains a usage scenario, technical challenges to realize the scenario, and an architecture to implement remote process migration over the Internet.

A usage scenario

Managing a pile of Smalltalk image files is troublesome. One difficulty is that one execution of a Smalltalk system may leave multiple snapshots. The user often needs to figure out which snapshot proceeds which one manually by comparing the contents of change files. In addition, one snapshot might be produced as a result of a series of executions on multiple hosts. The user often needs to search many hosts for the latest snapshot. Another difficulty is that all the latest snapshots are not necessarily stored on file systems; some may be on the core memory. The user needs to be accessible to the running Smalltalk system and command it to create a snapshot on the file system. Although tools such as TelePharo and desktop sharing systems may relax geographic constraints on such operations, they are not integrated with snapshot management.

PintGlas is a framework to address those issues. A hypothethical story below illustrates the supposed usage scenario of PintGlas.

Tammy is a researcher in Biology and uses multiagent simulation systems built on Pharo. The simulation may proceed in a batch mode or in an interactive mode. She sometimes uses the interactive mode to change some parameters of a simulation while its running. One run of simulation may take a few minutes or several months depending on the complexity of the simulation model and the number of time steps to simulate. Sometimes it takes longer than expected. So, Tammy installs PintGlas to the simulator so that a simulation could be transfered to remote locations for the case.

Tammy started a simulation on a desktop PC at her Tokyo office. She knew the simulation could take weeks, and decided to keep it running during her business trip to France. She flew to France without taking a snapshot of the simulation. Instead, she enabled "remote snapshot" option in the PintGlas settings.

In France, Tammy borrowed a laptop PC from her host institution. She was curious to see how the simulation had been going on. She installed Pharo with PintGlas, and opened a global list of her Pharo processes. She found one process still running at her desktop PC. By clicking on it, the latest snapshot of the simulation taken a minute ago was transfered to the laptop with a confirmation dialog asking if the simulation in Tokyo should be terminated or not. She answered to continue the simulation in Tokyo.

A simulation window opened and rendered exactly the same as the one in her Tokyo office a minute ago. The simulation was running on the both PCs. At this moment, a fork of the downloaded snapshot was created. Tammy checked the current status of the simulation and wanted to give a little modification to a set of parameters. She opened a settings dialog, gave some key strokes, and closed it to continue the simulation with the new set of parameters. She used the laptop to monitor the simulation, and it seemed going as expected. Tammy returned the laptop PC to the host institution before leaving France.

Tammy returned to Tokyo. She went to the office and unlocked the display screen. PintGlas informed that a fork of the simulation process had been created, and asked to choose a snapshot to continue. She chose the one saved from the laptop in France. She got the modified version of the simulation and continued it on her powerful desktop PC.

In the software development, similar scenarios are addressed by version control systems. A code repository serves as a hub of development processes that manages forks across multiple hosts so that programmers can continue modifications on different hosts by turns. The difference is that Pharo processes are dynamic while source files are static. We expect PintGlas to serve a hub of Pharo processes that frees Pharo users of managing geographically spread piles of Pharo images either in action or in hibernation.

Technical elements

The key features of PintGlas described in the above scenario are (1) to create and transfer a snapshot, (2) to provide a systematic organization of snapshots, and (3) to launch a specified snapshot. This section enumerates necessary technical elements of PintGlas from the scenario.

Create and transfer a snapshot

In the scenario, Tammy created snapshots twice; the first snapshot in Tokyo ('remote snapshot' in Figure 1 and compaction. The change file will also record that a snapshot is taken, which affects development tools such as Change Sorter. Snapshot should be taken with as small impacts to the process as possible. PintGlas will "fork" and change the current working directory where the forked child process will write the image file and changes file using SmalltalkImage>>snapshotPrimitive. Then the forked process will create a ZipArchive object that contains the image file, changes file, and the "pharo-local" folder, and will transfer it to a server.

Taking a remote snapshot adds an extra complexity. Because one host may run arbitrary number of Pharo processes, it would be reasonable to have a server process that accepts requests from remote hosts to take snapshots and passes it to the specified Pharo process. Many organizations install firewalls at their gateways to the Internet. Snapshot transfer needs to be on networking techiques to communicate over firewalls, such as WebSocket or polling to a global server. Authentication is mandatory to access a global hub server.

Organize snapshots

To organize snapshots, PintGlas should navigate through snapshots in a meaningful way to the user's tasks. Each snapshot should have version information so that the user can choose an appropriate version of snapshots taken in series at multiple hosts. PintGlas must provide UIs to show family trees of snapshots along with task names and timestamps. It should also be possible for the user to import a Pharo installation into PintGlas, to remove a branch of a family tree of snapshots, and to explicitly fork a snapshot.

The package names installed in a snapshot are often useful to characterize the snapshot. A snapshot may come with labels that indicate installed packages.

Launch a snapshot

Launching a locally copied snapshot is relatively easy with a simple management of virtual machines to run the specified snapshot. PharoLauncher [START_REF] Ducasse | Lulu.com & Square Bracket Associates[END_REF] exactly provide this mechanism.

PintGlas will also provide opportunity for the user to switch to the newer snapshot than the currently running one. In the scenario, Tammy returned to Tokyo office and chose to continue the snapshot taken in France than the one running on the desktop PC in Tokyo. Active detection of decendent snapshots will be required. This functionality will help the user to simplify the branches in a snapshot version tree to avoid confusions. A client is responsible to accept snapshot requests from the local server. On the other hand, the client can send a request to list the available snapshots and to download a specific one. The client may launch a Pharo process with the obtained snapshot. A client can be a small launcher that the user launches a Pharo system under the management of PintGlas.

Architecture

A local server is a snapshot repository. It accepts connection from local Pharo processes on the same host to store, list and download snapshots. The local server is responsible to manage versions of snapshots. Versions must keep consistency not only in a local host but among globally distributed hosts. A version should keep information of the parent version, the host id, and timestamp. When a snapshot is sent to a client Pharo, the local server creates a new version from the snapshot and transmit it to the client. When the client based on the sent snapshot returns a new snapshot to the local server, the local server stores it as another version whose parent is the sent version of the snapshot. As a result, the requested snapshot derives two successor versions, the sent version and the returned version in a series.

A local server and local Pharo processes together create, manage and launch snapshots in standalone settings. A global hub server is a broker of snapshots stored in local servers. A global hub server accepts a connection from local servers. A local server send newly stored snapshots since the last update to the global hub server. The global hub server may store them or just keep metadata of snapshots. The global hub server creates a global view of snapshot versions across the multiple hosts, and brokers snapshots according to it.

Related Work

This section describes existing programs that partially implement technical elements required by PintGlas.

Croquet

Process migration using Smalltalk systems has been studied long time. Croquet [START_REF] Smith | Croquet-a collaboration system architecture[END_REF] is one of recent system that realize process migration built on Squeak Smalltalk. Croquet serves a distributed collaborative 3D space where multiple workers can share a virutal space and communicate each other. As a Smalltalk system, a message to a shared object called TObject was redirected to its counter parts in other hosts, and such objects were kept consistent by two-phased commit system. Although Croquet employs initial synchronization of images, it does not directly provide a catalog of snapshots and its delivery. While Croquet provides in-image process migration, PintGlas aims at image-wise process migration. TelePharo can be a complementary framework of PintGlas; TelePharo can serve a mobility framework within a local network and PintGlas is for wider distributions.

PharoLauncher

PharoLauncher is the current distribution form of the Pharo system [START_REF] Ducasse | Lulu.com & Square Bracket Associates[END_REF]. It employs delivery system of Pharo images. PharoLauncher provides a catalog of existing snapshots on file servers so that the user can choose a vanilla snapshot of a Pharo version or an installation of a certain software built on Pharo. It then downloads the specified snaphost and a virtual machine if needed, and then launches it on a local host. While PharoLauncher provides snapshot catalogs, snapshot transfer and execution, it does not handles dynamic management of snapshots. PharoLauncher does not have 1 https://github.com/pharo-ide/TelePharo 2 https://github.com/pharo-iot/PharoThings functionality to save snapshots of local Pharo processes and transfer of such snapshots to other launchers. PharoLauncher can be described a static and one-way delivery system of Pharo images in the context of this paper, and it has partially implemented networking functions and UIs for snapshot catalogs.

Cruiser

Cruiser3 is a deployment assistant for Pharo. It removes unnecessary components and credential information, such as login/password pairs for source code repositories. Although Cruiser does not manage the distribution of created snapshots, its features to create safe images for delivery will also be implemented in PintGlas.

Concluding Remarks

The image-based architecture of Smalltalk systems has been one of great differentiators from other file-based programming environments. It had both pros and cons; it provides portability and mobility of Smalltalk processes at the cost of less explicitness of the content. It has been and still is hard to manage image files with version control systems like other file-based languages although Smalltalk source code can be seamlessly managed by the verson control systems. PintGlas is still at the stage of an emerging idea to make Smalltalk images portable, mobile and manageable. We will

 , January 01-03, 2018, New York, NY, USA Tomohiro Oda, Yasuhiro Yamamoto, and Kumiyo Nakakoji

Figure 1 .

 1 Figure 1. PintGlas summons a remotely running Pharo image to another host

2

 2

Figure 2

 2 illustrates the current plan for the architecture of PintGlas. The PintGlas system consists of three tiers; clients, local servers, and a global hub server. Clients are Pharo installations with PintGlas client module. It keeps connection to a local server on the same host.

Figure 2 .

 2 Figure 2. A typical configuration of PintGlas and process migration mechanisms

https://github.com/VincentBlondeau/Cruiser

Acknowledgments

The authors thank Prof. Shigeru Chiba for his insightful comments on application scenarios of live process migrations.