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Abstract.

In a previous work [1], we have developed a non-linear moment model for

electrons that self-consistently captures non-Maxwellian electron energy distribution

function (EEDF) effects. The model does not rely in the local approximation and

the transport coefficients are calculated by expanding the distribution function into

Hermite polynomials and by taking moments of the Boltzmann equation, including

the collision operator for elastic and inelastic collisions with arbitrary cross sections.

This model captures the classical Fick’s, Fourier’s, and Ohm’s law as well as Soret,

Dufour, and Peltier effects. In addition, novel non-local transport phenomena appear

as a result of spatial gradients of the kurtosis of the distribution function. In this

paper, we discuss on the transport effects by analyzing two collisional models: constant

collision frequency and constant cross section. We estimate the order of magnitude of

the transport processes in non-equilibrium electrons by analyzing the Langmuir probe

measurements of a low-pressure argon inductively-coupled discharge. The results show

that, under these conditions, the transport produced by the spatial gradients in the

kurtosis of the distribution function produces a heat-flux contribution that is of the

same order of magnitude as the Fourier and Dufour’s effects. These transport effects

are beyond the local field or the electron gradient expansions, commonly used in the

low-temperature plasma modelling.

1. Introduction

Understanding the transport of mass, momentum, and energy in multicomponent

plasmas is a fundamental problem that concerns all areas of plasma physics, from

low-temperature plasmas [2, 3, 4] and magnetically-confined fusion plasmas [5, 6]

to space plasmas [7]. In this paper, we will focus on the collisional transport of

electrons in partially-ionized plasmas. In particular, we study the transport processes

of electrons under non-equilibrium conditions where the electron energy distribution

function (EEDF) is not Maxwellian. This loss of thermal equilibrium under collisional
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conditions can be a result of the collisions with the other species (elastic and inelastic),

spatial gradients or the presence of an electromagnetic field. Measurements of non-

Maxwellian EEDFs are found in gas discharges [8], in the core distribution function of

the solar wind [9, 10, 11] and observed in kinetic simulations of the scrape-off layer of

tokamaks [12].

The transport of electrons with non-Maxwellian EEDFs is a long-lived problem in

gas discharges and swarms [13, 14]. In order to develop fluid models that describe the

transport of non-equilibrium electrons, a common approach is to compute the transport

coefficients from the solution of the spatially-homogeneous Boltzmann equation in the

“two-term” approximation [15, 14]. This approach is usually referred to as “local-field

approximation” as it assumes a local equilibrium between the local electric field and the

collisions. The transport fluxes are usually expanded in series of the density gradient [4]

or, alternatively, by including an ansatz that includes the mean energy gradient [15, 14].

In addition to swarms and gas discharges, the two-term approximation has also been

used to study the transport coefficients in fully-ionized heliospheric plasmas. In these

plasmas, the EEDFs are also measured as non-Maxwellian with populated tails, usually

well-fitted with Kappa distributions [16]. The influence of the suprathermal particles

on the transport coefficients has been studied by Husidic et al. [17] by considering a

fully-ionized plasma and a Krook-type collisional operator.

Alternatively, the collisional transport in multi-component plasmas has been

traditionally studied with Grad’s method [18] as explained in seminal works by

Braginskii [19], Balescu [20] and Zhdanov [21] or more recently by Hunana et al. [22],

Simakov [23], and Raghunathan et al. [24]. The Grad’s method considers velocity

moments of the kinetic equation by expanding the distribution function into series of

Hermite polynomials. In most of these works [19, 20, 21, 23, 24], the energy distribution

function is considered to be Maxwellian and only perturbations in the first and second

spherical harmonics components of the distribution function in the velocity space are

considered.

In a recent work [1], we have developed an electron fluid model based on a

regularized Grad’s method that includes the perturbations in the energy distribution

function. The model considers electron-electron, electron-ion and electron-neutral

elastic collisions as well as inelastic and ionization collisions. As opposed to the “local-

field approximation”, the model does not rely in the solution of a spatially-homogenous

Boltzmann solver nor it expands the transport fluxes into series of the density gradient.

Instead, the model is based on the resolution of the scalar and vectorial moments

of the Boltzmann equation up to the contracted fourth-order moment. As a result,

the transport coefficients are self-consistently calculated with the Chapman-Cowling

collision integrals as well as novel transport fluxes appear as a result of non-local

transport phenomena.

In this paper, we first summarize the set of regularized 9M equations. After,

we present a discussion on the transport phenomena. The general equations can be

simplified and obtain analytical expressions, for two collision models: for a constant
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collision frequency and a constant cross section. Finally, we estimate the order of

magnitude of the transport fluxes in an ICP argon discharge at 5 mTorr.

2. Summary of the derivation of the model

We now proceed to briefly describe the derivation of the transport model of the

regularized moment equations. A detailed derivation can be found in Ref. [1].

2.1. Kinetic equation

We consider the electron kinetic equation in a partially-ionized plasma that reads as

follows:

∂fe
∂t

+ v · ∇fe −
eE

me

· ∇vfe =

i,g,e∑
α

δfe
δt

∣∣∣∣el
eα

+
δfe
δt

∣∣∣∣exc
eg

+
δfe
δt

∣∣∣∣iz
eg

. (1)

Here, the subscripts e, i, and g stands for the electron, ion, and gas species

(where the excited states are not tracked), respectively. The collision terms include

elastic collisions, including electron-electron, electron-ion, and electron-neutral, with a

Boltzmann collision operator; inelastic collisions with a Wang Chan-Uhlenbeck [25]; the

inelastic collisions with a simplified Giovangigli collision operator [26] that considers the

recombination reaction to be negligible, as usually done in low-temperature plasmas,

e.g., see Robson and Ness [27]. The ions and neutrals are assumed to be at rest and in

thermodynamic equilibrium at a different temperature from the electrons.

2.2. Hermitian expansion and the two-term approximation

In Grad’s method [18], the distribution function is approximated by a Maxwellian

distribution function with a polynomial perturbation,

fe(x, ce, t) = ne

(
me

2πeTe

)3/2

e−
mec

2
e

2eTe [1 + χe(ce)] , with ce = v − ue. (2)

The perturbation is a truncated series of Hermite polynomials [20],

χe(ce) =
N∑

n=0

h(2n)H(2n)(ce) +
M∑
n=0

h(2n+1)
r H(2n+1)

r (ce) +
P∑

n=0

h(2n+2)
rs H(2n+2)

rs (ce) + · · · . (3)

The superscript stands for the order of the polynomial whereas the subscript refers

to the tensorial rank. N , M , P ... are the number of polynomials considered in the

truncation.

The irreducible Hermite polynomials can be written as a function of the Laguerre-

Sonine polynomials and spherical harmonics,

χe(ce) =
N∑

n=0

b0nL
1/2
n (ce) +

M∑
n=0

1∑
m=−1

b1nL
3/2
n (ce)ceY

m
1 +

P∑
n=0

2∑
m=−2

b2nL
5/2
n (ce)c

2
eY

m
2 + · · · .
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Here, L
l+1/2
n are the Laguerre-Sonine polynomials and Y m

l are the spherical harmonics.

Written in this form, we can identify that the expansion in the polynomials H(2n)

are responsible for the isotropic part of the distribution function, H
(2n+1)
r for the first

anisotropy, and H
(2n+2)
rs for the second anisotropy. In conclusion, the reader can see the

equivalence between the Grad’s and the polynomial expansion that is used in multi-term

Boltzmann solvers for low-temperature pasmas and swarms [4, 27, 28]. For this reason,

in the present paper, we consider a distribution function with the same perturbation

as in the two-term approximation, i.e., scalar h(2n) and vectorial moments h
(2n+1)
r . As

in the two-term expansion, no tensorial polynomials H
(2n+2)
rs are taken into account in

this theory. In this work, we consider moments up to the fourth moment, i.e., N = 2,

M = 1 (the so-called 9M equations).

The set of equations studies the evolution of nine fields: density, velocity vector,

energy, heat-flux vector and contracted (trace) fourth-moment. The moment variables

are computed from the distribution function as

ne =

∫
fedv, meneuei =

∫
mevifedv, pe =

1

3

∫
mec

2
efedv, (4)

qei =
1

2

∫
mec

2
e ceifedv, and p(4)e =

1

2

∫
mec

4
efedv.

We use the normalized contracted fourth-moment that measures the deviations of the

fourth-order moment from a Maxwellian, i.e., excess kurtosis of the distribution function,

∆e =
p
(4)
e − 15

2
ne

e
2T 2

e

me

15

2

nee
2T 2

e

me

. (5)

With these definitions and Grad’s non-equilibrium distribution function, the moment

evolution equations as well as the collisional exchange terms can be exactly computed.

We refer the interested reader to Ref. [1] where the 9-M set of moment equations is

presented.

The Grad’s non-equilibrium distribution function for this choice of moments can

be decomposed into an isotropic part of the distribution function and a anisotropic part

along the first spherical harmonic, as follows:

f (9M)
e (x,ve, t) = ne

(
me

2πeTe

)3/2

e−
mev

2
e

2eTe

[
1 + χ

(9M)
isot (ve) + χ

(9M)
anisot(ve)

]
(6)

where

χ
(9M)
isot (ve) =

2∑
n=0

h(2n)H(2n)(ve) =

(
15

8
− 5βe

2
v2e +

β2
e

2
v4e

)
∆e (7)

and

χ
(9M)
anisot(ve) =

1∑
n=0

h(2n+1)
r H(2n+1)

r (ve) = 2βeueivei +
8β2

e

5mene

qeivei

(
βev

2
e −

5

2

)
. (8)

Here, βe = me/(2eTe), and we have assumed ue ≪
√
eTe/me, as explained in [1].
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The reader can note that the 9-M distribution function can be written as in the

two-term Boltzmann expansion as:

f (9M)
e (x,ve, t) = f 0

e (x, ve, t) +
ve

ve
· f 1

e (x, ve, t) (9)

with

f 0
e (x, ve, t) = ne

(
me

2πeTe

)3/2

e−
mev

2
e

2eTe

{
1 +

(
15

8
− 5βe

2
v2e +

β2
e

2
v4e

)
∆e

}
, (10)

f 1
e (x, ve, t) = neve

(
me

2πeTe

)3/2

e−
mev

2
e

2eTe

{
2βeue +

8β2
e

5mene

(
βev

2
e −

5

2

)
qe

}
. (11)

2.3. Regularization of equations

The original system of Grad’s moment equations has no parabolic terms in the equations,

which can lead to spurious discontinuities. For this reason, different authors have

proposed the regularization (or parabolization) of the Grad’s equations [29, 30, 31]

by introducing a Chapman-Enskog expansion of the moment variables in series of the

Knudsen number.

Following the methodology proposed in previous regularized models, the study

of electrons in a partially-ionized plasma allows for additional considerations in the

Chapman-Enskog expansion. In particular, the electron-to-atom mass ratio can be

included in the asymptotic analysis [32], as well as the different Knudsen numbers

(corresponding to the different collision interactions). As a result, we consider the

following expansion for the variables in terms of the electron-gas Knudsen number,

ue = u0
e +Knegu

1
e + · · · ,

qe = q0
e +Knegq

1
e + · · · .

We consider the following ordering in Knudsen number, characteristic of weakly-ionized

plasmas, that scales with the electron-to-atom mass ratio ε = me/mh as,

Kneg = O
(
ε1/2
)
< Knee ≪ Kninel

eg . (12)

By following the procedure described in Ref. [1], we find that the moment equations

can be regularized. Whereas the density, energy, and fourth moment are described

by a non-linear mixed hyperbolic-parabolic equations, the electron particle and heat-

fluxes are described as transport fluxes that are function of the gradients of the density,

pressure, and fourth moment and the electric field. In this manner, as considered in the

two-term approximation, the anisotropic part of the distribution function is assumed to

be small as compared to the isotropic part.

3. System of regularized moment equations with non-Maxwellian EEDFs

We summarize the set of equations and transport model that was proposed in Ref. [1].

The general expression of the collision frequencies and the transport coefficients for

arbitrary collision cross sections are given in Appendix A.
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Conservation equations

∂ne

∂t
+∇ · (neue) = ṅe, (13)

3

2

∂pe
∂t

+∇ ·
(
5

2
peue + qe

)
= −eneue ·E − Q̇elast − Q̇(excit,iz), (14)

∂p
(4)
e

∂t
+∇ ·

(
7

3
p(4)e ue + 14

pe
ρe
qe

)
= −4

e

me

qe ·E − 10
e

me

peue ·E + Q̇(4)
ee − Q̇

(4)
elast − Q̇

(4)
(excit,iz)

(15)

Transport fluxes

ue = −De

(
1

ne

∇ne + (1 + χe)∇ lnTe + αe∇∆e

)
− µeE, (16)

qe = Λeneue − κe∇Te − ϑe∇ne − κe∇∆e. (17)

Collision exchange terms

ṅe = nengK
(0)
iz (18)

Q̇elast =

i,g∑
α

{
me

mα

neν
(T,2)
eα e (Te − Tα) +

me

mα

neν
(∆,2)
eα ∆eeTα

}
(19)

Q̇(excit,iz) =

(excit,iz)∑
k

neν
(0,k)
eg eϕ∗

k (20)

Q̇(4)
ee = −p2e

ρe
ν∆
ee∆e − 4νq

eeqekuek (21)

Q̇
(4)
elast =

i,g∑
α

{
me

mα

ν(T,4)
eα

p2e
ρe

(
1− Tα

Te

)
+ ν(∆,4)

eα ∆e

p2e
ρe

Tα

Te

}
(22)

Q̇
(4)
(excit,iz) = 2

(
p2e
ρe

)
ng

(excit,iz)∑
k

(
2K

(1)
k

(
ϕ∗
k

Te

)
−K

(0)
k

(
ϕ∗
k

Te

)2
)

(23)

4. Discussion of the transport equations

The transport phenomena appearing in the fluxes of Eqs. (16)-(17) are summarized in

Table 1, with the analytical expressions of the transport coefficients in Appendix A.2, for

general cross sections interaction. We can identify some of the classical transport effects

in multicomponent plasmas: Fick’s, Ohm’s, and Fourier’s law, and Peltier, Soret and

Dufour effects. In addition, two novel transport effects appear that are consequence

of the spatial gradients in the kurtosis of the EEDF. The general equations can be

reduced to less complicated expressions if the cross section varies in a simple way

with velocity. For this reason, we consider two simplified cases: constant electron-

gas collision frequency, i.e., cross-section has a dependence as σeg ∝ v−1
e (Maxwell’s
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Table 1. Summary of the transport effects that are captured by the regularized 9-M

model. The analytical expressions for a general interaction is in Appendix A.2.

Transport effect Associated transport coefficient Thermodynamic force

P
a
rt
ic
le

fl
u
x Fick’s law De ∇ne

Thermophoresis or Soret effect χe ∇Te

Ohm’s law µe E

Novel non-local effect αe ∇∆e

H
ea
t
fl
u
x Peltier effect Λe neue

Fourier’s law κe ∇Te

Dufour effect ϑe ∇ne

Novel non-local effect κe ∇∆e

molecules or Langevin interaction), and constant cross section (hard sphere interaction).

Both cases can be interpreted in terms of interparticle forces. The constant collision

frequency corresponds to a polarizing force between the electron and the neutral particle.

Alternatively, the constant cross section model is preferred as it can approximate the

elastic collision between an electron and a gas atom for limited energy ranges, in most

common gases.

4.1. Constant electron-neutral collision frequency

We consider the first the case where the electron-gas collision frequency is constant ν̄eg,

which corresponds to the Langevin interaction or the so-called Maxwell’s molecules.

The momentum transfer cross section is Q
(1)
eg = ν̄eg/(ng|ve − vg|).

As a result, the collisional frequencies read:

ν(u,1)
eg = ν(q,3)

eg = ν̄eg, ν(q,1)
eg = ν(∆,2)

eg = 0, (24)

ν(T,2)
eg = 3ν̄eg, ν(u,3)

eg =
5

2
ν̄eg, ν(T,4)

eg = 30 (1 + ∆e) ν̄eg, ν(∆,4)
eg = 30ν̄eg.

The transport coefficients read

De =
eTe

meν̄eg
, µe =

e

meν̄eg
, χe = αe = Λe = 0, (25)

κe =
5

2

pee

meν̄eg

1 + 2∆e

1 + νqee
ν̄eg

, ϑe =
5

2

(eTe)
2

meν̄eg

∆e

1 + νqee
ν̄eg

, κe =
5

2

ne (eTe)
2

meν̄eg

1

1 + νqee
ν̄eg

.

Note that the thermophoresis, the novel non-local effect in the flux of particels, and

the Peltier effects are lost. This can be explained due to the fact that as the collision

frequency does not depend on the energy of the electrons, the cross-effects that couple

the high-energy and lower-energy electrons disappear.

4.1.1. Weakly-ionized plasma We consider a case that where the electron-gas elastic

frequency is much larger than the electron-electron collision, i.e., ν̄eg ≫ νee. The set of
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moment equations for constant electron-neutral collision frequency reads

∂ne

∂t
−∇ ·

(
e

meν̄eg
neE +

1

meν̄eg
∇pe

)
= ṅe, (26)

3

2

∂pe
∂t

−∇ ·
(
5

2

e

meν̄eg
peE +

1

3ν̄eg
∇p(4)e

)
=

e2ne

meν̄eg
E2 +

e

meν̄eg
∇pe ·E + 3

me

mg

neν̄ege (Tg − Te)− Q̇(excit,iz), (27)

∂p
(4)
e

∂t
−∇ ·

(
7

3

e

meν̄eg
p(4)e E +

14

3

eTe

meν̄eg
∇p(4)e +

(
7

3
p(4)e − 35

p2e
ρe

)
1

meneν̄eg
∇pe

)
=

10
e2pe
m2

e ν̄eg
E2 +

4

3

e

meν̄eg
∇p(4)e ·E + 30

me

mg

ν̄eg
p2e
ρe

(
Tg

Te

− (1 + ∆e)

)
− Q̇

(4)
(excit,iz). (28)

The system of transport equations is simpler than the original system that considers

a collision frequency that depends on the collision relative velocity. It is interesting

to note that the scalar (density, energy, fourth moment) moment equations present a

similar structure: an advection term due to the electric field that is proportional to

the mobility, a diffusion term, and a dissipation term. The diffusion term couples the

equation with the subsequent moment, except the fourth moment equation that due to

the truncation is coupled to the energy. The dissipation terms are similar in both the

energy and fourth moment equations: with a term that is proportional to the square of

the electric field, a dissipation term proportional to the scalar product of the gradient

of the moment and the electric field, and the collisional exchange with the neutral gas.

Note that the average energy exchange due to elastic collisions reads the form that is

proportional to 3ν̄eg, as in the case of Maxwellian EEDF, c.f., e.g., Ref. [21].

Concerning the transport coefficients in the fluxes of particles and energy of

Eqs. (25), one can find that, although we obtained the equations with a methodology

that is completely different to the two-term Boltzmann equation, we find the same

mobility and diffusion coefficient as in the two-term Boltzmann approximation. In a

DC case, the two-term Boltzmann theory shows that the mobility and the diffusion

coefficients depend on the isotropic distribution function and the momentum transfer

frequency, as follows:

µe =
4πe

3me

∫ ∞

0

d

dve

(
v3e

νm(ve)

)
f 0
e

ne

dve and De =
4π

3

∫ ∞

0

v4e
νm(ve)

f 0
e

ne

dve, (29)

with the momentum transfer collision frequency νm(ve) = ngQ
(1)
eg ve. In the case of

constant collision frequency, i.e., νm(ve) ≡ ν̄eg, and injecting the definitions of Eqs. (10)-

(11), we obtain,

µe =
e

meν̄eg

∫ ∞

0

4πv2e
f 0
e

ne

dve =
e

meν̄eg

De =
2

3

1

meν̄eg

∫ ∞

0

2πmev
4
e

f 0
e

ne

dve =
2

3

ε̄

meν̄eg
≡ eTe

meν̄eg
.



Transport phenomena of electrons with non-Maxwellian EEDF 9

Here, we have used the relations
∫∞
0

4πv2e f
0
e dve = ne and

∫∞
0

2πmev
4
e f

0
e dve = 3/2neeTe,

as
∫∞
0

v2e f
Max
e χ

(9M)
iso dve =

∫∞
0

v4e f
Max
e χ

(9M)
iso dve = 0 where fMax

e is the Maxwellian

distribution (cf. Balescu [20] Eq. (4.3.9)).

Similarly, one can retrieve the following relations for a Maxwellian EEDF (∆e = 0):

De

µe

=
Dεe

µεe

= Te =
2

3
ε̄ and

De

Dεe

=
µe

µεe

=
5

3
. (30)

Here, we have defined Dεe and µεe as the energy diffusion and mobility, as defined in

[14]. The relations of Eq. (30) are the Einstein relations of Maxwellian electrons, as

described in classical books, e.g., [33]. These relations are consistent with the two-term

Boltzmann equation. Note that, as the new transport effect in the particle and heat

flux is proportional to ∇∆e, it also vanishes with a Maxwellian EEDF. In summary,

the regularized moment model shows to be consistent with the classical theory for

Maxwellian electrons and constant electron-gas collision frequency.

4.2. Constant electron-neutral cross section

We now consider the case where the electron-gas collision frequency is a hard sphere

interaction, i.e., the momentum-transfer cross section is constant Q
(1)
eg = πr2g where rg

is the radius of the neutral particle (we assume it to be constant and much larger than

the electron). The collision frequency can be written as a function of the mean electron

peculiar speed, νHS
eg = ngQ

(1)
eg v̄eth with v̄eth =

√
8eTe/πme. As a result, the collisional

frequencies read,

ν(u,1)
eg =

4

3
νHS
eg , ν(q,1)

eg =
4

15
νHS
eg , ν(T,2)

eg =

(
4 +

3

2
∆e

)
νHS
eg , ν(∆,2)

eg = 2νHS
eg , (31)

ν(u,3)
eg = 4νHS

eg , ν(q,3)
eg =

12

5
νHS
eg , ν(T,4)

eg = (48 + 90∆e) ν
HS
eg , ν(∆,4)

eg = 72νHS
eg . (32)

The transport coefficients read,

De =
13

16

eTe

meνHS
eg

1− 5
13
∆e +

15
26

νqee
νHS
eg

1 + 5
8

νqee
νHS
eg

, χe = − 5

13

1 + ∆e

1− 5
13
∆e +

15
26

νqee
νHS
eg

,

αe = − 5

13

1

1− 5
13
∆e +

15
26

νqee
νHS
eg

, µe =
13

16

e

meνHS
eg

1 + 15
26

νqee
νHS
eg

1 + 5
8

νqee
νHS
eg

Λe = − 5

13
eTe

1

1 + 15
26

νqee
νHS
eg

, κe =
75

52

pee

meνHS
eg

1 + 2∆e

1 + 15
26

νqee
νHS
eg

(33)

ϑe =
75

52

(eTe)
2

meνHS
eg

∆e

1 + 15
26

νqee
νHS
eg

, and κe =
75

52

ne (eTe)
2

meνHS
eg

1

1 + 15
26

νqee
νHS
eg

. (34)

In the case of hard-sphere collisions, all the transport processes that were summarized in

Table 1 are present. In this case, the transport coefficients depend on the temperature

of electrons (as v̄eth is a function of the temperature) and also depend on the EEDF

(through the variable ∆e).
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4.2.1. Weakly-ionized plasma As done above, we consider a case where the electron-

gas elastic frequency is much larger than the electron-electron collision, i.e., νHS
eg ≫ νee.

The set of moment equations for constant electron-neutral collision frequency reads

∂ne

∂t
−∇ ·

(
13

16

e

meνHS
eg

neE +
9

8

1

meνHS
eg

∇pe −
1

24

1

eTeνHS
eg

∇p(4)e

)
= ṅe, (35)

3

2

∂pe
∂t

−∇ ·
(
55

32

e

meνHS
eg

peE +
15

16

eTe

meνHS
eg

∇pe +
5

48νHS
eg

∇p(4)e

)
=

13

16

e2ne

meνHS
eg

E2 +

(
9

8

e

meνHS
eg

∇pe −
1

24

1

TeνHS
eg

∇p(4)e

)
·E

+ 4
me

mg

neν
HS
eg e

{(
1− 1

8
∆e

)
Tg −

(
1 +

3

8
∆e

)
Te

}
− Q̇(excit,iz), (36)

∂p
(4)
e

∂t
−∇ ·

{
e

meνHS
eg

(
91

48
p(4)e − 35

8

p2e
ρe

)
E

+
ne

eTeνHS
eg

(
7

72
p(4)e +

35

8

p2e
ρe

)
∇p(4)e +

1

meneνHS
eg

(
21

8
p(4)e − 105

8

p2e
ρe

)
∇pe

}
=

55

8

e2pe
m2

eν
HS
eg

E2 +
e

meνHS
eg

(
5

12
∇p(4)e +

15

4

pe
ρe
∇pe

)
·E

+
me

mg

νHS
eg

p2e
ρe

(
(48 + 18∆e)

Tg

Te

− (48 + 90∆e)

)
− Q̇

(4)
(excit,iz). (37)

The system of transport equations is more complex than the case with constant collision

frequency. We note that the diffusion terms couple the moments at different order.

Similarly, in the energy dissipation due to the electric field, an additional term appears

that is proportional to the gradient of the fourth moment. Finally, the effect of a

non-Maxwellian EEDF is present in the electron-neutral collisions.

Concerning the transport coefficients in the fluxes of particles of Eqs. (26), one can

retrieve the Einstein relation for a Maxwellian EEDF (∆e = 0):

De

µe

= Te. (38)

Note that this relation is also consistent with the coefficients as obtained with the two-

term Boltzmann approach, i.e., Eq. (29). In this case, the Einstein relation is not found

for the energy diffusion due to the effect of the Soret effect, that in this case is not

zero. Consequently, the Peltier effect is modified, as compared to the case with constant

collision frequency.

5. Order of magnitude of the transport fluxes in an ICP discharge

We study the order of magnitude of the transport fluxes of Eqs. (16)-(17), and the

transport effects of Table 1. We use the Langmuir probe measurements in the ICP

discharge described in Refs. [34, 35]. In Fig. 1, we present the measurements at pg = 5
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Figure 1. Left: Lagmuir probe measurements of the EEDF along the axis of an argon

ICP discharge at 5 mTorr and 200 W, the antenna is placed at x = 0. Right: Electron

density, temperature and deviation of the contracted fourth moment along the axis as

fitted by a 9M Grad’s distribution function.

mTorr and RF power 200 W. In the same figure, we present a fit of the EEDF that uses

the Grad’s 9M non-equilibrium distribution function. As the EEDF is not Maxwellian,

the contracted fourth moment of the fitted Grad’s distribution is ∆e < 0, which means

that the tail is is depopulated (as compared to a Maxwellian at the same temperature).

The axial distribution of density, temperature and normalized contracted fourth moment

is presented on the left panel of Fig. 1, where x = 0 is the powered antenna and x = 13

cm is the position of the exhaust grid. The density is localized close to the antenna,

whereas the temperature and the fourth moment slightly decrease along the axis. As the

RF field tends to thermalize the electron distribution function, the distribution function

is less Maxwellian for increasing distances from the antenna. Similarly, one can note that

the local field approximation would fail in representing these low-pressure conditions.

We compute the transport coefficients with the cross section from [36] in

(Eqs. (A.10)-(A.16)) with the measured electron density and temperature and

by considering a homogeneous argon gas background at 300 K. Similarly, the

thermodynamic forces are computed by considering the gradients of the measured

quantities. The velocity is assumed to be of the order of the local Bohm’s velocity in

order to estimate the Peltier effect. In Fig. 2, we show the contribution of the different

terms of the transport velocity (left) and heat-flux (right). The transport velocity is

dominated by Fick’s diffusion as the density gradients are large under these pressure

conditions. Note that this diffusion velocity is compensated by the electric field, which is
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Figure 2. Order of magnitude of the different transport effects (velocity on the left

and heat flux on the right) along the axis of an argon ICP discharge at 5 mTorr and

200 W.

not measured and hence not presented in the figure. The thermodiffusion and transport

of particles due to EEDF spatial gradients are much smaller than the Fick’s diffusion

as the temperature and EEDF kurtosis gradients are small.

Alternatively, the heat-flux contributions of Fig. 2 show that the Dufour effect (heat

flux produced by density gradients), Fourier’s law (heat flux produced by temperature

gradients) and the heat-flux produced by fourth-moment gradients are of the same order

of magnitude. Note that Dufour’s effect has a different sign than Fourier’s law and that

this effect does not appear for Maxwellian EEDFs. We highlight the magnitude of

the novel transport effect that transports energy from regions with a more thermalized

(Maxwellian) distribution function to regions with more non-equilibrium distribution

function (with depopulated tails).

As discussed in Section 4, the particle and heat fluxes depend on the collision cross

section and the distribution function. In particular, simplified local-field models that

assume the Einstein relation for the energy coefficients, as shown in Eq. (30), are widely

used in the literature although these relations only hold for Maxwellian EEDFs and

constant collision frequency. However, as explained above these models provide a wrong

representation of the heat-flux as ϑe = 0 and hence Dufour’s effect is not captured by the

model. Similarly, the novel non-local transport effect κe∇∆e is not captured with this

assumption of Eq. (30). Similarly, models that assume a Maxwellian EEDF have the

same problem in the representation of the heat-flux as both Dufour’s effect nor κe∇∆e

are null. In addition, we would like to highlight that models that consider a constant

momentum transfer cross section like BGK models (Bhatnagar-Gross-Krook) do not

capture Soret and Peltier effects as well as the flux of particles due to gradients of the

kurtosis. Finally, under these low-pressure conditions, the local field approximation is

not justified. In Eq. (15), the local-field approximation assumes that the left-hand-side

of the equation is negligible and the electric field terms balance the collisional terms.

However, we can see that the gradients in the fluxes are not negligible and therefore
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the EEDF is not local but a consequence of the both transport and the local collisional

processes.

6. Conclusions

We have presented a discussion on the transport effects of the regularized 9M equations

for non-equilibrium electrons in a partially-ionized plasma. This set of equations takes

into account the effect of electrons out of equilibrium with a non-Maxwellian EEDF.

The model shows that, besides the classical Fick’s, Fourier’s, and Ohm’s laws, and Soret,

Dufour and Peltier effects, additional transport effects result from spatial gradients in the

kurtosis of the EEDF. This effects can be regarded as non-local transport phenomena, as

they account for the spatial variations of the shape of the EEDF. In addition, the novel

transport model takes into account the effect of the EEDF in the transport coefficients,

in particular in the diffusion coefficient, heat conductivity, the thermodifussion, and the

Dufour’s coefficient.

We have studied the transport model in two limiting cases: a constant collision

frequency and a constant cross section. The constant collision frequency model is not

able to capture Soret, Peltier and the transport of particles due to EEDF gradients. The

diffusion and mobility coeffients are found to be consistent with the two-term Boltzmann

theory. As a result, the model finds the classical Einstein relations for Maxwellian

electrons. Alternatively, the constant cross section model captures all the mentioned

transport processes as well as the Einstein relation for particle diffusion in Maxwellian

electrons.

In this paper, by using the measured EEDFs in an ICP argon discharge, we have

estimated the order of magnitude of the transport effects. The results show that, under

these conditions, the transport of particles is dominated by Fick’s diffusion. On the

other hand, the spatial gradients in the kurtosis of the EEDF plays an important role in

the heat-flux with a contribution that is of the same order as the Fourier’s and Dufour’s

constributions. This transport processes are beyond the local-field approximation or the

expansion in density gradients, both models widely used in the modeling of electrons in

low-temperature plasmas.

The model is based on the regularized Grad’s method and has the following

assumptions and conditions of validity:

- The anisotropic part of the distribution function is assumed to be much smaller

than the isotropic one. This assumption holds for a plasma where the collision

between the electrons and the heavy species are dominant, i.e., Kneg ≪ 1.

- The energy tensor is assumed to be isotropic (i.e., no tensorial polynomials are

considered in the expansion). This assumption holds for electric fields that are not

too large ((eEtc/me)
2 ≪ v2th), where tc is the time between collisions.

- Grad’s distribution is known to admit non-physical negative values, since the

polynomial expansion may change its sign at high energies. The equations lose
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their validity if the negative part of the tail is close to the energy of the threshold

in inelastic collisional processes.

- The model considers the main collision mechanisms in an atomic gas in a weakly-

ionized plasma, where the ionization dominates as compared to the recombination.

Note that the first two assumptions are the same of the two-term Botlzmann approach.

These assumptions hold, for instance, in low-pressure ICP discharges of noble gases

plasmas. Possible developments of the model to extend the region of validity are

explained below.

Extensions of the model, using the same methodology, are possible. In particular,

the model can be extended to study higher pressure conditions and more complex plasma

mixtures. Under these conditions, superelastic collisions [37] and recombination and

attachment [38] can modify the EEDF and need to be taken into account in the kinetic

equation. Similarly, in more complex mixtures with molecular gases need more detailed

models [39] for the concentration of excited species that influence the EEDF [40]. The

Hermite basis is able to approximate any EEDF (with certain regularity conditions [41]),

however, it converges better (with less number of moments) for distributions closer

to Maxwellian. The number of Hermite polynomials needed to represent the EEDF

in complex molecular mixtures will depend largely on the conditions. In particular,

the ionization degree of the plasma (as the electron-electron collisions thermalize the

distribution function), the effect of the electric field (the effect of the tails of the EEDF in

the transport in partially-ionized plasmas depends on the E/N and the mean energies),

and the spatial gradients (diffusion in the velocity space is usually coupled to the

diffusion in the physical space).

Appendix A. Collisional frequencies and transport coefficients

Appendix A.1. Collision frequencies

The collisional frequencies, which are proportional to the heavy particle density, read

ν(u,1)
eα =

16

3
nαΩ

(1,1)
eα , ν(q,1)

eα =
16

3
nα

[
2

5
Ω(1,2)

eα − Ω(1,1)
eα

]
, (A.1)

ν(T,2)
eα = nα

[
(16 + 30∆e)Ω

(1,1)
eα − 40∆eΩ

(1,2)
eα + 8∆eΩ

(1,3)
eα

]
, (A.2)

ν(u,3)
eα =

16

3
nαΩ

(1,2)
eα , ν(q,3)

eα =
16

3
nα

[
2

5
Ω(1,3)

eα − Ω(1,2)
eα

]
, (A.3)

ν(T,4)
eα = nα

[
(64 + 120∆e)Ω

(1,2)
eα − 160∆eΩ

(1,3)
eα + 32∆eΩ

(1,4)
eα

]
(A.4)

ν(∆,2)
eα = 16nα

[
Ω(1,2)

eα − 5

2
Ω(1,1)

eα

]
, ν(∆,4)

eα = 64nα

(
Ω(1,3)

eα − 5

2
Ω(1,2)

eα

)
(A.5)

where α ∈ {i, g} and

Ω(l,r)
eα (Te) =

1

2

(
1

πβe

)1/2 ∫ ∞

0

ξ2r+3e−ξ2Q(l)
eαdξ with ξ =

√
βeg and βe =

me

2eTe

. (A.6)
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The electron-electron collision frequencies read,

νq
ee =

16

15
neΩ

(2,2)
ee , and ν∆

ee = 8neΩ
(2,2)
ee , (A.7)

where

Ω(2,2)
ee (Te) =

1

2

(
2

πβe

)1/2 ∫ ∞

0

ξ7e−ξ2Q(2)
ee dξ with ξ =

√
βe/2g. (A.8)

Note that only the linear terms are considered in the computation of the electron-

electron collisions. As the Coulomb viscosity cross section Q
(2)
ee ∝ v−4

e , decreases very

fast with the energy, the second-order term χeχe1 can be neglected as it only becomes

important at high energies. Nevertheless, this small correction can be added in future

extensions of the model.

The inelastic collision rates read,

K
(r)
inel = 4π

(
me

2eTe

)r ∫ ∞

0

v2r+3
e Q

(T )
inelf

(0)
e

(
1 + χ

(9M)
isot

)
dve. (A.9)

Appendix A.2. Transport coefficients

The transport coefficients are written as a function of the frequencies and the normalized

contracted fourth moment as follows

De =
eTe

me

ν
(q,3)
eh + νq

ee − 5
2
(1 + ∆e)ν

(q,1)
eh

(ν
(q,3)
eh + νq

ee)ν
(u,1)
eh − ν

(q,1)
eh ν

(u,3)
eh

, (A.10)

χe = − 5

2

(1 + ∆e)ν
(q,1)
eh

ν
(q,3)
eh + νq

ee − 5
2
(1 + ∆e)ν

(q,1)
, αe =

χe

1 + ∆e

, (A.11)

µe =
e

me

ν
(q,3)
eh + νq

ee − 5
2
ν
(q,1)
eh

(ν
(q,3)
eh + νq

ee)ν
(u,1)
eh − ν

(q,1)
eh ν

(u,3)
eh

(A.12)

Λe = − eTe

ν
(u,3)
eh − 5

2
ν
(u,1)
eh

ν
(q,3)
eh + νq

ee − 5
2
ν
(q,1)
eh

, (A.13)

κe =
5

2

pee

me

1 + 2∆e

ν
(q,3)
eh + νq

ee − 5
2
ν
(q,1)
eh

(A.14)

ϑe =
5

2

(eTe)
2

me

∆e

ν
(q,3)
eh + νq

ee − 5
2
ν
(q,1)
eh

, and (A.15)

κe =
5

2

ne (eTe)
2

me

1

ν
(q,3)
eh + νq

ee − 5
2
ν
(q,1)
eh

(A.16)

where the electron heavy collision frequency is computed as the sum of the contributions

of ions and gas, i.e., νeh = νei + νeg.
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